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Abstract— It will be shown that the global cost of the task al-
locations obtained with fast greedy algorithms can be improved
upon by using a class of auction methods called Stochastic Clus-
tering Auctions (SCAs). SCAs use stochastic transfers or swaps
between the task clusters assigned to each team member, allow
both uphill and downhill cost movements, and rely on simulated
annealing. The choice of a key annealing parameter and turning
the uphill movements on and off enables the converged solution
of a SCA to slide in the region between the global optimal
performance and the performance associated with a random
allocation. The first SCA, called GSSCA, was based on a Gibbs
Sampler, which constrained the stochastic cluster reallocations
to simple single transfers or swaps. This paper presents a
new and more efficient SCA, called SWSCA, based on the
generalized Swendsen-Wang method that enables more complex
and efficient movements between clusters by connecting tasks
that appear to be synergistic and then stochastically reassigning
these connected tasks. For centralized auctioning, extensive
numerical experiments are used to compare the performance
of SWSCA with GSSCA in terms of costs and computational
and communication requirements. Distributed SWSCA is then
compared with centralized SWSCA using communication links
between robots that were motivated by a generic topology called
a “scale free network.”

I. INTRODUCTION

Auction methods are an effective approach to task allo-

cation for heterogeneous robot teams. They are generally

presented as either centralized auctions that involve a central

auctioneer that determines the task allocation based on the

task bids provided to it by each team member [1], [2],

[3], [4], [5], [6] or distributed auctions that involve peer-to-

peer redistribution of plans between given subsets of robots,

where one of the robots serves as the auctioneer [7], [8],

[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],

[20]. However, this distinction is not strong since centralized

auction approaches lead to distributed auction approaches

using the concept of “opportunistic centralization” [12] in

which the centralized auction algorithm is applied regionally.

This concept is used in this paper in Section II-E. Oppor-

tunistic centralization is inherent in all of the distributed

auction approaches. (One way to see this is that each of

the distributed auction methods corresponds to a centralized

auction method when the auction simultaneously involves

each of the robots, i.e., a regional auction is the global

auction.)
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Distributed auctions can generally be divided into three

classes. The first set [8], [11], [14], [15], [17], [20] uses

greedy auctioning, which is inherently suboptimal. The

second set [9], [10], [12], [13], [16] uses the determinis-

tic heuristics in [6] to limit the combinations considered

in combinatorial auctioning. A current limitation of these

methods is that the deterministic heuristics assume that the

triangle inequality is preserved for the metric cost space [21],

which does not apply to cost functions that can be used

to represent minimum time objectives (see (2) below). The

third set of auction methods [7], [18], [19] is closely related

to the method developed here. This set uses a deterministic

synthesis of single transfer, swap and multi-party exchange

movements between the clusters assigned to the robots.

However, a limitation of all the approaches in these three

classes is that they do not provide a mechanism to avoid

local minima [7], [21] (see Section II-C).

An additional limitation of the previously developed auc-

tion methods is that they do not provide a mechanism to

enable the performance after convergence to slide in the

region between the globally optimal performance and the

performance associated with some random allocation, as

illustrated in Fig. 1. In particular, once these algorithms

converge for a given problem they converge to a single cost.

However, it may be desirable to specify that one is willing

to increase (or decrease) computational and communication

requirements in order to increase (or decrease) the allocation

performance by decreasing (or increasing) the converged

cost.

The first stochastic clustering auction based on global

optimization, in this case simulated annealing, is presented

in [22] and is called here the Gibbs Sampler Stochastic Clus-

tering Auction (GSSCA) since the underlying optimization

algorithm is a Gibbs Sampler in the class of probabilistic

algorithms called Markov Chain Monte Carlo [23]. GSSCA

alternates with equal probabilities between transfer and swap

moves and allows not only downhill movements, but also

uphill movements, which can enable it to escape local

minima. The team performance obtained after algorithm con-

vergence can slide in the region between the global optimal

performance and the performance of a random allocation by

tuning the annealing suite and turning the uphill movements

on and off [22] (see Sections II-D and III-A).

However, the difficulty of approaching optimal clustering

using a Gibbs Sampler is well reflected in a simple Ising

and Potts model [24]. In Fig. 2 the tasks are indicated by

the shaded circles and aggregated into two clusters, each

cluster corresponding to the robot of the identical shading.
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Fig. 1. Illustration of the ability of an “ideal auction method” to trade off computational and communication requirements so that the converged performance
lies anywhere in the performance spectrum

Fig. 2. Illustration of a reallocation task for two homogeneous robots r1
and r2 that is difficult to accomplish efficiently using a clustering algorithm
based on a Gibbs Sampler

The Gibbs Sampler requires flipping two connected sets of

tasks, S1 and S2, from light circles in the current allocation

to red circles in the optimal allocation. The probability of

flipping a task from light to red is p0 = 1
2 . Thus, the expected

number of steps N needed to flip the 5 tasks in the set S1

from light to red is N = 1
(1/p0)5

= 25. This illustrates that

the expected number of steps required to switch M tasks is

exponential in M . Intuitively, it is desirable to flip an entire

set of interconnected tasks such as S1 in one step. This paper

presents a stochastic algorithm that enables these types of

complex movements for optimal task allocation based on an

algorithm that uses a generalized Swendsen-Wang method

and has been successfully applied to image segmentation and

stereo in computer vision [24].

The remainder of this paper is organized as follows.

Section II formulates the basic optimization problem for

task allocation, provides a description of the Swendsen-

Wang Stochastic Clustering Auction (SWSCA) and discusses

how the algorithm may be used for both centralized and

distributed auctioning. Section III considers centralized auc-

tioning and presents simulation results from random scenar-

ios with a focus on comparing the results of the SWSCA

and GSSCA algorithms with and without uphill movements.

Section IV considers distributed auctioning and presents

simulation results from random scenarios using communi-

cation links motivated by a generic topology called a “scale

free network”; the focus is on comparing the performance

achieved with distributed and centralized SWSCA. Finally,

Section V presents conclusions and future work.

II. SWENDSEN-WANG STOCHASTIC

CLUSTERING AUCTION

This section first presents the basic problem statement.

It then describes the Swendsen-Wang Stochastic Clustering

Auction (SWSCA). Furthermore, a generic framework for

Stochastic Clustering Auctions (SCAs) is given and used to

describe greedy and non-greedy versions of an SCA. After

introducing the concept of regional cost, it is shown that

when a distributed auctioneer reduces the corresponding re-

gional cost, the global cost will either decrease or remain the

same. Hence SWSCA is proposed to optimize the regional

cost in a distributed auction.

A. Notation and Problem Statement

Let R denote a set of k heterogeneous robots, and T
denote a set of n tasks, i.e. R = {r1, r2, . . . , rk} and

T = {t1, t2, . . . , tn}. Also, let A denote the allocation,

A = {a1, a2, . . . , ak}, where as is a cluster of tasks,
k
⋃

s=1
as = T , as

⋂

at = ∅, (s 6= t) and the cluster as

is assigned to robot rs. Each as is decomposed into ns

connected components asi such that as =
ns
⋃

i=1

asi. Let CP

denote the entire set of connected components such that

CP = {asi : s = 1, 2, . . . , k; i = 1, . . . , ns}. A(asi) = t
is used to denote the allocation of the connected component

asi from robot rs to robot rt. The cost associated with A is

given by either

C(A) =
k

∑

s=1

cs(as), (1)

or

C(A) = max
s

cs(as), (2)

where cs(as) is the minimum cost for robot rs to complete

the set of tasks as. The individual cost function cs(·) is based

on characteristics of each robot, e.g. the dynamic model of

the robot, the state of the market, current task commitments

and/or a human-inspired measure. The problem is to solve

the optimization min
A

C(A). In practice the cost function in

(1) might be used to represent the total distance traveled

or the total energy expended by the robots while the cost
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function in (2) might be used to represent the maximum

time taken to accomplish the tasks.

B. Description of the Swendsen-Wang Stochastic Clustering

Auction (SWSCA)

In the auction framework [13], SWSCA attempts to mini-

mize the cost C(A) using a Markov chain search process

in the space of possible allocations. It is assumed that

the robots are cooperative, and that collusion, shilling and

other cheating mechanisms are not allowed [14]. The basic

algorithm was originally developed in [24]. The essential

mechanism of SWSCA is to start with an allocation A for

k clusters and to reduce or probabilistically hillclimb C(A)
by rearranging the tasks T in connected components among

the clusters. The rearrangement is performed in a stochastic

fashion using transfer and swap moves. These moves are

performed with probabilities proportional to the negative

exponential of the costs C(A) of the resulting allocations

A (see (3) and (7)). SWSCA is always guaranteed to result

in an allocation that has a cost less than or equal to the cost

of the initial allocation. The algorithm is described below.

1) The auctioneer partitions T into k clusters to form an

initial allocation A(0) = {a
(0)
1 , a

(0)
2 , . . . , a

(0)
k }, where

each cluster a
(0)
s is an unordered subset of T . Let

A = A(0) and A∗ = A(0). (A is the current algorithm

allocation, while A∗ is the allocation that has the

lowest cost.)

2) Each robot rp ∈ R (p = 1, 2, . . . , k) uses a “con-

strained Prim’s Algorithm”1 (a greedy algorithm) to

efficiently approximate the cost cp(ap) and submits

its cost to the auctioneer. In this bid valuation stage,

each cluster ap becomes an ordered subset of T . The

auctioneer computes the global cost C(A) using (1) or

(2) and sets a high temperature T .

3) Each robot rp ∈ R (p = 1, 2, . . . , k) constructs an

adjacency graph G0(a
(0)
p ) = 〈T (a

(0)
p ), E0(a

(0)
p )〉 for

each cluster a
(0)
p , where E0(a

(0)
p ) is the edge set of

T (a
(0)
p ).

4) Each robot rp ∈ R (p = 1, 2, . . . , k) submits lmin(a
(0)
p )

to the auctioneer, where l(a
(0)
i ) = min

e∈E(a
(0)
i )

l(e), and

l(e) denotes the Euclidean length of the edge e.

5) For each e ∈ E(A), the auctioneer turns the edge e off

with a probability 1−pe, e.g., pe =
lmin

l(e) , where lmin =

min{lmin(a
(0)
1 ), lmin(a

(0)
2 ), . . . , lmin(a

(0)
k )}. For s =

1, 2, . . . , k this results in the decomposition of as ∈ A
into ns connected components asi such that as =
ns
⋃

i=1

asi.

6) The auctioneer collects all the connected components

in the set CP .

7) The auctioneer rearranges the clusters with equal prob-

abilities selecting either a single move (a) or a dual

move (b) among CP after randomly selecting two

clusters as and at for task transfers or swaps.

a) Single Move (Connected Component Trans-

fer): Select a connected component asi ∈ CP

from robot rs with a probability in q(asi|CP),
e.g., q(asi|CP) = 1

||CP|| in a uniform distri-

bution. Assume that asi is reassigned to robot

rp with a probability in q(A(asi) = p|asi,A)
for p = 1, 2, . . . , k (p 6= s), e.g., q(A(asi) =
p|asi,A) =

1
k in a uniform distribution, resulting

in the new allocation A
(s,p)
i that has two modified

clusters2 a
(−i)
s and a

(+i)
p . Assume that robot

rs computes3 cs(a
(−i)
s ) and robot rp computes3

cp(a
(+i)
p ), which the auctioneer uses to compute

the corresponding cost C(A
(s,p)
i ) (based on (1)

or (2)). The probability αS(A → A
(s,t)
i ) of

the acceptance of the transfer of the connected

component asi from robot rs to robot rt is given

by [24]

αS(A → A
(s,t)
i ) = min(1, α1

S · α
2
S · α

3
S), (3)

where

α1
S =

∏

e∈E(asi,at)
(1− pe)

∏

e∈E(asi,as−asi)
(1− pe)

, (4)

α2
S =

P (A(asi) = s|asi,A
(s,t)
i )

P (A(asi) = t|asi,A)
, (5)

α3
S =

exp(−C(A
(s,t)
i )/T )

k
∑

p=1,p 6=s

exp(−C(A
(s,p)
i )/T )

. (6)

If C(A
(s,t)
i ) is less than C(A∗), then the new A∗

is updated to A
(s,t)
i .

b) Dual Move (Connected Component Swap): Se-

lect two connected components in as and at, one

connected component asi from robot rs with a

probability in q(asi|CP) and the other connected

component atj from robot rt with a probability

in q(atj |CP), and swap them, resulting in the

new allocation A
(s,t)
i,j that has two modified clus-

ters2 a
(−i,+j)
s and a

(+i,−j)
t . Assume that robot rs

computes3 cs(a
(−i,+j)
s ) and robot rt computes3

ct(a
(+i,−j)
t ), which the auctioneer uses to com-

pute the corresponding cost C(A
(s,t)
i,j ) (based on

(1) or (2)). Then, the probability αD(A → A
(s,t)
i,j )

of swapping the two connected components is

given by

αD(A → A
(s,t)
i,j ) = min(1, α1

D · α
2
D), (7)

where

α1
D =

∏

e∈E(asi,at)
(1− pe)

∏

e∈E(asi,as−asi)
(1− pe)

·

∏

e∈E(atj ,as)
(1− pe)

∏

e∈E(atj ,at−atj)
(1− pe)

, (8)

α2
D =

exp(−C(A
(s,t)
i,j )/T )

exp(−C(A
(s,t)
i,j )/T ) + exp(−C(A)/T )

.

(9)
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(The proof of (7) can be generalized from the

proof of (3) in [24].) If C(A
(s,t)
i,j ) is less than

C(A∗), then the new A∗ is updated to A
(s,t)
i,j .

8) The auctioneer accepts the proposal with probability

αS(A → A
(s,t)
i ) or αD(A → A

(s,t)
i,j ) so that A is

updated and the cost C(A) is put on log. Otherwise,

the auctioneer declines the proposal and the auctioneer

keeps the current configuration and goes back to Step

5).

9) If the auction evolution termination criterion is satis-

fied, i.e., T < Tcut, where Tcut is some threshold tem-

perature, then the auction is terminated and the final

allocation is A∗ with final cost C(A∗) ≤ C(A(0)). If

the criterion is not satisfied, reduce T , using T ← T/β
where β > 1 and go to Step 5).

C. Further Discussion of GSSCA and SWSCA

In the implementation of GSSCA in [22] and SWSCA

used in this study, the algorithms alternate with equal prob-

abilities between single and dual moves. Simulation results

(omitted for brevity) showed that when a SCA alternates with

equal probabilities between single and dual moves it is more

efficient than using exclusively single moves or dual moves.

In order to search for the global optimum, a simulated

annealing method has been adopted. Similar to the seminal

work in [25], a SCA starts with a high value of T and

gradually reduces it in order to to make small variations in

the task allocation while searching for the optimal allocation

in T . Although simulated annealing and the random nature

of the search help in avoiding local minima, the convergence

to a global minimum is difficult to establish. As described

in [23], the output of this algorithm is a Markov chain that

is neither homogeneous nor convergent to a stationary chain.

If the temperature T is decreased slowly, then the chain is

guaranteed to converge to a global minimum. Note that the

use of an internal greedy algorithm (see Step 2) above) is

likely to prevent the computation from converging to desired

global optimum even if the annealing procedure converges.

Hence, the primary purpose of using simulated annealing is

to enable the algorithm to yield high performance solutions

with reasonably fast execution times rather than guarantee

asymptotic convergence to a global optimum.

D. Non-Greedy and Greedy Stochastic Clustering Auctions

Algorithm 1 describes the generic structure of the non-

greedy and greedy versions of a Stochastic Clustering Auc-

tion (SCA). The greedy version of SCA is called here gSCA.

Both the GSSCA of [22] and the SWSCA of this paper fit in

the Algorithm 1. These algorithms primarily differ in line 3,

where they propose reclustering. The proposals of GSSCA

are based on treating tasks individually and hence involve

simple transfer and swaps of individual tasks. In contrast,

SWSCA is based on transfers and swaps of interconnected

tasks. All SCA algorithms can be made greedy by not

allowing the uphill movements associated with line 8, which

enable the algorithm to escape local minima. The ability to

initialize and update the annealing suite in lines 1 and 10

and turn the uphill movements on and off in line 6 provides

SCA with the ability to trade off the converged algorithm

cost with computational and communication efficiency. This

is a novel feature of SCA. The authors’ experience is that

when a mission is being planned and more time is available

it may be advisable to use the non-greedy version of a SCA.

However, during a mission, a greedy SCA may be needed.

Algorithm 1 principal mechanisms for the non-greedy and

greedy versions of a Stochastic Clustering Auction

1: Initialize the annealing suite.

2: repeat

3: Propose a reclustering.

4: Decide whether to accept the proposed cluster.

5: if the solution is better (for gSCA only) then

6: Accept.

7: else

8: Accept with an acceptance probability.

9: end if

10: Update the annealing suite.

11: until The termination is reached

E. Use of a SWSCA for Distributed Task Allocation

If all the mission tasks are given in T , then a SWSCA

is a centralized auction. A centralized auction may make

sense at the beginning of a mission, but it may not be

feasible during the mission due to limited communication

and the computational cost of a centralized auction. Hence,

once the mission begins, it is assumed that clustering must

be performed in a distributed fashion in which each robot

sequentially in a given (possibly random) order becomes the

auctioneer. If the distributed auction is based on optimizing

the regional cost, the new global cost will be at least as

small as the global cost of the initial global allocation, which

motivates basing distributed SWSCA on the optimization of

regional costs. In particular, each robot, sequentially or in

random order, calls and clears one auction. Rounds are held

repeatedly until a stable solution is reached. The auctioning

process can recommence when a new task is obtained or

when there is a substantial change in the existing costs.

III. EXPERIMENTAL RESULTS FOR

CENTRALIZED IMPLEMENTATION OF SWSCA

This section provides simulation results for SWSCA using

the multi-robot routing problem, which is a standard test

domain for robot coordination using auctions [4], [7], [9],

[10], [11], [12], [13], [16], [18], [19]. The task allocation is

time-extended assignment such that all tasks are assigned to

robots before the assignments are carried out [26]. It is free

of conflicts since each task is assigned to no more than one

robot. The tasks in the multi-robot routing problem consid-

ered here are to visit targets and complete an assignment. The

SWSCA task allocations are compared with those obtained

using the Sequential (single-item) Auction (SA) and the

Parallel Auction (PA), which are standard auction methods in

the existing literature [13], [14], [16], [20], and their variants,
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the Look-Back Sequential (single-item) Auction (LBSA) and

the Look-Back Parallel Auction (LBPA), which take into

account the previous bids when considering the cost of the

current bid in comparison with SA and PA. LBSA and LBPA

sometimes yield better performance than their better known

respective counterparts, SA and PA, while having similar

computational requirements.

For each simulation the stochastic random scenario ap-

pears in a 10000m×10000m area. The initial robot positions

were evenly distributed along one edge of the area and the

speeds for each of the robots were assumed to be constant

and were chosen randomly from the interval (0m/s,20m/s]

assuming a uniform distribution. The cost function is a

MINSUM cost function in (1) corresponding to the total

distance traveled or the total energy expended. Also, for each

simulation the following SWSCA parameters were used:

initial temperature, T = 1000; and termination temperature,

Tcut = 20.

The communication complexity of SWSCA is measured

by the number of auction cycles (ACs). Formally, an AC

is one bid evaluation cycle corresponding to Steps 5)-8) of

Section II-B. In addition, to evaluate the performance of

SWSCA the concept of Mean Cost Improvement (MCI) is

introduced as given by Definition 1.

Definition 1 For m stochastic scenarios let {CSWSCA(q) :
q = 1, · · · ,m} denote the set of m costs resulting from

SWSCA and let {CBestGreedy(q) : q = 1, · · · ,m} denote the

set of minimum costs achievable with the greedy algorithms:

SA, LBSA, PA and LBPA. The Mean Cost Improvement

(MCI) is the average of the normalized improvement of the

SWSCA cost over the best of the greedy algorithms, such that

MCI
∆
=

m
∑

q

(

CBestGreedy(q)−CSWSCA(q)
CBestGreedy(q)

)

m
. (10)

Previous studies [22], [24] reveal the performance and

algorithm convergence benefits of initializing an SCA with

an allocation obtained from a greedy algorithm as op-

posed to initializing them with a random allocation. Thus,

the lowest cost allocation from the set of greedy auc-

tions {SA,LBSA,PA,LBPA} is used to initialize SWSCA.

This section studies the performance of centralized SWCA

(cSWSCA), greedy centralized SWSCA (gcSWSCA), cen-

tralized GSSCA (cGSSCA), greedy centralized (gcGSSCA),

and the four greedy auctions using simulations involving

1000 random scenarios for a given number of tasks and

robots.

A. Simulation Results for cSWSCA and gcSWSCA with 3

Robots

Among the annealing suite the cooling schedule rate β is

used to control the annealing speed, i.e. how fast the auction

process terminates. The initial simulations were restricted to

3 robots with the number of tasks ranging from 5 to 100 in

increments of 5. The algorithms cSWSCA and gcSWSCA

were evaluated for 3 cooling schedule ratios β, represent-

ing slow (β=1.001), medium (β=1.01), and fast (β=1.1)

algorithm convergence. For the smallest cooling schedule

(a) gcSWSCA

(b) gcGSSCA

Fig. 3. Mean cost improvement (MCI) vs. the number of robots and the
number of tasks for gcSWSCA and gcGSSCA for β = 1.01

ratio, β = 1.001, the MCI of cSWSCA is in the interval

[12.2%, 40.9%] and (for the same number of tasks) is always

greater than the MCI for gcSWSCA, which is in the interval

[11.05%,36.6%] with a maximum increase of 21.63%. In

contrast, for the larger cooling schedule ratio, β = 1.01, the

MCI of gcSWSCA is in the interval of [10.51%,23.3%] and

is always greater than the MCI for cSWSCA, which is in

the interval of [10.25%,22.2%] with a maximum increase of

13.47%. For cSWSCA the auction cycles interval changes

from [3,99] to [1,4] with a maximum decrease of 96%.

For medium to fast annealing, e.g. β = 1.01 or β =
1.1, gcSWSCA tended to converge faster than cSWSCA

in terms of ACs by an order of magnitude, while actually

exceeding cSWSCA in MCI. The reason for this is that the

uphill random walk that is a part of cSWSCA is inefficient

when the annealing is sufficiently fast. The purpose of the

uphill random walk is to enable the optimization to escape

local minimum. However, when the annealing is fast, the

optimization will usually converge to a local minimum and

the uphill movement simply makes the optimization less

efficient. These general trends were also seen when the

number of robots was varied. In the subsequent sections,

therefore, the greedy version of SWSCA was utilized for
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β = 1.01 since it is shown that good performance is achieved

in medium annealing with a reasonable number of ACs.

B. Simulation Results for gcSWSCA and gcGSSCA with a

Varying Number of Robots

In the subsequent simulations the number of robots was

added as a variable in the random simulations. In particular,

1000 random scenarios were again studied for a given

number of robots and tasks with the number of robots now

ranging from 2 to 10 and the number of tasks ranging from

10 to 260 in increments of 10. These results showed that

the relationship between the MCIs and ACs of gcSWSCA

observed before for 3 robots extend to an arbitrary number

of robots. (The detailed results are omitted for brevity.)

Second, they were used to provide a fairly comprehensive

comparison of gcSWSCA and gcGSSCA (see Section III-

B.1). Third, they were used to generate curves that can be

used to determine the number of robots needed for a mission

that is specified by some number (or range of numbers) of

possible tasks in a specified region (see Section III-B.2).

(a) gcSWSCA

(b) gcGSSCA

Fig. 4. Average numbers of auction cycles to converge vs. the number of
robots and the number of tasks for gcSWSCA and gcGSSCA for β = 1.01

1) Comparison of gcSWSCA with gcGSSCA: Fig. 3 shows

that the maximum MCI for gcSWSCA is 26.88% while the

maximum MCI for gcGSSCA is 4.03%. Also, Fig. 4 shows

that the maximum AC for gcSWSCA is 24 while the maxi-

mum AC for gcGSSCA is 30. In general gcSWSCA is able

to achieve a higher MCI (i.e., performance improvement)

than gcGSSCA in a comparable number of ACs (auction

cycles), revealing the efficiency of the synergic task coupling

in SWSCA. It should be noted that an AC in SWSCA is more

computationally expensive than an AC in GSSCA. Future

work will quantify this extra expense.

(a) Mean cost vs. the number of robots and the number of tasks
for gcSWSCA
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(b) Frontal plane of Fig. 5(a) in 260 tasks

Fig. 5. Mean cost vs. the number of robots and the number of tasks, and
its “slice” in a frontal plane for gcSWSCA with β = 1.01

2) Evaluation of gcSWSCA: Fig. 5 displays the costs (in

this case for gcSWSCA with β = 1.01) as a function of the

number of robots and tasks. It shows that as the number of

tasks increases, a substantial performance improvement (i.e.,

distance savings) can be achieved by adding a small number

of robots. For example in Fig. 5(b), which shows the costs

for 260 tasks, the cost corresponding to 2 robots is 127.1

km, while the costs with 6 robots improves to 96.2 km. In

general for a fixed number of tasks, the corresponding “slice”

of a 3-D curve such as Fig. 5(b) may be used to trade off

performance vs. the number of robots and hence provides a

guideline for choosing the desired number of robots for the

expected mission.

IV. EXPERIMENTAL RESULTS FOR DISTRIBUTED

IMPLEMENTATION OF SWSCA

As previously discussed, distributed auctions are needed

due to limited communication between robots. This section

uses numerical experiments to evaluate the efficacy of the

distributed SWSCA (dSWSCA) approach described in Sec-

tion II-E. As in Section III, random scenarios were simulated

in a 10000m× 10000m area and the speeds for each of the
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robots were assumed to be constant and were chosen ran-

domly from the interval (0m/s,20m/s] assuming a uniform

distribution. The cost function is a MINSUM cost function as

in (1). The SWSCA parameters used were as before: initial

temperature, T = 1000; termination temperature, Tcut = 20;

and the cooling schedule ratio, β = 1.01.

A. Two Metrics for Evaluation of dSWSCA

The efficacy of dSWSCA is measured by comparing

the resultant global cost with the corresponding gcSWSCA

global cost. This leads to the following definition for opti-

mization efficiency.

Definition 2 The optimization efficiency for scenario q is

denoted by ηq ∈ (0, 1] and defined by ηq
∆
=

C∗

q

Cq
, where C∗

q is

the global cost resulting from the application of gcSWSCA

and Cq is the global cost resulting from the application of

dSWSCA.

A tournament corresponds to one round of distributed auc-

tioning in which one of the robots serves as the auctioneer

and leads an auction with the robots that are within commu-

nication range. To quantify the extent of robot interaction in

the tournaments of the distributed auctioning the concept of

tournament participation index is introduced in the following

definition. Increasing values of this index corresponds to

increasing communication between the robots.

Definition 3 The Tournament Participation Index (TPI)5

for k robots is denoted by ζ(k) ∈ (0, 1] and defined by

ζ(k)
∆
=

k∑

p=1
b2(p)

k

k2 =

k∑

p=1
b2(p)

k3 where b(p) is the number of

robots that participate in the regional auction in which robot

rp is the auctioneer. Hence ζ(k) is the mean of b2(p) for the

k robots, normalized so that it lies in the interval (0, 1].

Note the TPI ζ(k) = 1 corresponds to full communication

between each of the robots.

B. Evaluation of Distributed SWSCA Using Scale Free Net-

works

A key issue is how to evaluate dSWSCA using simu-

lations. In this section we base the simulations on robots

whose communication links are determined according to the

topology of a scale free network (SFN) [27]. As a robot is

added to a SFN, the communication links with other robots is

determined probabilistically using “growth” and “preferential

attachment” laws [27]. The resulting SFN networks tend to

have some robots that have sparse communication links while

others have more dense communication links.

A SFN network for 11 robots is illustrated in Fig. 6.

This circular network was used in the simulations and it

was assumed that each robot sequentially takes a turn as an

auctioneer in the pattern r1 → r2 → r3 → . . .. The origin

of the circle defining the positions of the robots was at the

center of a 10000m×10000m area and the diameters of the

circles were chosen to be 5000m. The auctioning process

4TPI is similar to but different than the degree or connectivity in networks or graph

theory since there are no redundant connections between two robots and b(p) counts

the robots instead of the links.

(a) SFN for 11 robots

(b) One physical representation of SFN in Fig. 6(a)

Fig. 6. A SFN communication pattern for 11 robots (The solid lines
represent communication links among the 11 robots while the dashed lines
represent the communication links determined by the growth and preferential
attachment laws when a 12th robot is added to the network.)

for dSWSCA was initialized using the set of fast greedy

algorithms {SA,LBSA,PA,LBPA}. In the dynamic scenarios

300 tasks were randomly given at the outset of auctioning

and subsequently no tasks were changed or added. However,

a new robot r12 is added after robot r1 serves as the auction-

eer for the second time. For a given number of tasks each

simulation involved 1000 random scenarios. Fig. 7 showed

that the mean optimization efficiency actually decreased after

the new robot r12 was introduced due to the TPI decreasing

from 0.0744 to 0.0689. However, the distributed auctioning

accommodated the new robot and increased the optimization

efficiency as the tournaments progressed.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel Stochastic Clustering Auc-

tion (SCA) based on the generalized Swendsen-Wang

method. The new algorithm is called the Swendsen-Wang

SCA (SWSCA) and unlike the previous Gibbs Sampler SCA

(GSSCA) it enables the transfer and swapping of tasks that

have been connected. SCA algorithms are based on simulated

annealing and have the ability to avoid local minima via

uphill moves. However, for faster convergence the uphill

movements may be turned off resulting in a greedy SCA.
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Fig. 7. Mean optimization efficiency vs. number of tournaments for a SFN
of abstract auction rotation patterns in Fig. 6: 300 tasks with a new robot
introduced after Tournament 12, which causes a decrease in TPI

The experiences of the authors is that when a mission is first

planned (and more time is available) the uphill movements

should be included to increase performance. However, during

a mission it may be more appropriate to use a greedy SCA.

A series of random simulations showed that SWSCA

was able to obtain significantly greater cost improvements

than GSSCA for both the greedy and non-greedy cases.

Distributed SWSCA, denoted as dSWSCA, was based on

applying the greedy SWSCA regionally and enabling each

robot to serve as the auctioneer in a rotation pattern. The

performance of dSWCA was evaluated in random simu-

lations using communication links derived from a scale

free network. The simulation results showed that dSWSCA

continuously improved the global performance each time

one of the robots completed its tournament (i.e., its auction

process).

The current Swendsen-Wang SCA is only valid for homo-

geneous teams. Future work will develop an algorithm that

uses concepts from SWSCA to achieve greater efficiency

than GSSCA in allocating tasks for heterogeneous teams.
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