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Abstract— Communication among robots is key to perfor-
mance in cooperative multi-robot systems. In practice, com-
munication connections for information exchange between all
robots are not always guaranteed, which adds difficulty to state
estimation. This paper examines the decentralized cooperative
simultaneous localization and mapping (SLAM) problem under
a sparsely-communicating and dynamic network. We mathe-
matically prove how the centralized-equivalent estimate can
be obtained by all robots in the network in a decentralized
manner. Furthermore, a robot only needs to consider its
own knowledge of the network topology to detect when the
centralized-equivalent estimate is obtainable. Our approach is
validated through more than 250 minutes of experiments using
a team of real robots, with accurate groundtruth data of all
robots and landmark features.

I. INTRODUCTION

A cooperative multi-robot system is beneficial in many

applications. It allows for the implementation complex strate-

gies that require more than a single robot. Multiple robots

can also provide a certain degree of redundancy to ensure the

completion of tasks should a portion of the multi-robot team

become disabled. Communication and the mutual exchange

of information are key performance factors for many coop-

erative multi-robot systems. However, only a few number of

researchers have examined the limitation of communication

range and its impact on a multi-robot system (and on cooper-

ative SLAM in particular). Leung et al. [1] presented an algo-

rithm for performing decentralized cooperative localization

in sparsely-communicating robot networks. The algorithm

is versatile in that it can use different recursive filtering

methods within it. They showed with a proof in [2] that the

algorithm allows all robots to obtain decentralized estimates

that are equivalent to the centralized estimate whenever

possible, even when the communication network between

robots is never fully connected. Furthermore, simulation re-

sults show how localization performance of the decentralized

algorithm changes with respect to network connectivity. In

this paper, we examine the more difficult cooperative de-

centralized simultaneous localization and mapping (SLAM)

problem, in which each robot is required to estimate the

map and the state of all robots in a sparsely-communicating

and dynamic network. More specifically, we examine how

robots can obtain the centralized-equivalent state estimate

for the system under the assumption of a network that is

never guaranteed to be fully connected. Our decentralized

Fig. 1. Our decentralized cooperative SLAM experiment includes a fleet
of five robots built using the iRobot Create platform. A 10-camera Vicon
motion capture system provides accurate groundtruth information for both
robots and landmarks during our experiments.

cooperative SLAM algorithm is validated through more than

250 minutes of experiments with real hardware (as shown

in Fig. 1) and the results are compared with groundtruth

data for both robot poses and landmark positions. To the

knowledge of the authors, this is one of the few multi-robot

SLAM experiments where millimetre-accurate groundtruth

data is available.

We begin with a review of some of the past work in multi-

robot state estimation in section II. Section III contains the

problem formulation for cooperative SLAM. In section IV,

we present and prove several key theorems that form the

basis of our decentralized algorithm, and also discuss the

necessary initial conditions for the decentralized cooperative

SLAM problem. In section V, we present our decentralized

algorithm. Section VI describes our experimental setup, and

the experimental results are presented in section VII.

II. RELATED WORK

The study of distributed and decentralized state estimation

first started with sensor networks, and later progressed to

the study of the cooperative localization problem. This

problem involves a team of robots communicating relative

measurements and odometry information with one another
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to determine the state of the team. Refer to [2] for a

more thorough review of past work on sensor networks and

cooperative localization.

Cooperative SLAM extends the idea of cooperative lo-

calization to estimate a map of the environment. Fenwick

et al. [3] generalized the single robot Extended Kalman Filter

(EKF) SLAM approach for the multi-robot scenario. Using

the information form of the EKF and taking advantage of the

additive property of updating an estimate with observation

information, Nettleton et al. [4, 5] devised a decentralized

SLAM algorithm that involves low-bandwidth transmission

of sub-map information between robots. Reece and Roberts

[6] pointed out that Nettleton’s approach could yield highly

conservative estimates and proposed a method to improve on

this. Later, Thrun et al. [7] introduced the Sparse Extended

Information Filter (SEIF) for SLAM, which could be ex-

tended for the multi-robot case. Howard et al. [8] presented

a novel approach to multi-robot SLAM that used manifold

maps. In their experiments, each robot maintained its own

manifold map until it encountered another robot, at which

point their maps were merged. Howard [9] also looked at per-

forming multi-robot SLAM, wherein each robot was unaware

of each other’s initial pose and began state estimation in a

decentralized manner. When robots encountered each other

for the first time, their individual maps were combined into

a common map using relative poses. The mapping process

then continued as robots broadcasted new observations to

one another. The notion of a virtual robot traveling back-

ward in time was introduced to allow the incorporation of

information gathered by a robot before the common map was

merged. Ko et al. [10], Zhou and Roumeliotis [11] and Wang

et al. [12] also examined the unknown initial correspondence

problem. Zhou and Roumeliotis [11] performed experiments

where robots used relative range and bearing measurements

as well as landmarks in the robots’ maps to create a merged

map. Also related is the work by Stachniss [13] on multi-

robot mapping with known poses, where robots keep track

of information communicated to other robots to maintain the

centralized estimate. In contrast to this, an important aspect

of our current work is that robots do not need to keep track

of what other robots know, and we can still guarantee that the

centralized-equivalent estimate is obtainable by all robots.

In the works mentioned above, methods that can obtain

the centralized estimate requires a static and fully connected

network, and methods that do not rely on a static and fully

connected network are sub-optimal in the sense that they

can not show that the centralized-equivalent estimate can be

obtained. Furthermore, in some the works mentioned, robots

do not estimate the state of one another other. In this paper,

we present an algorithm that will address all the above issues.

That is, we will present an algorithm that is able to provide

the centralized-equivalent estimate of all robots and observed

landmarks whenever possible in a sparsely-communicating

and dynamic network that never has to be fully connected.

III. PROBLEM FORMULATION

In a multi-robot system, let N represent the set that

contains the unique identification indices of all robots, and

let M represent the set that contains the unique identification

indices of all landmarks (which make up the map). We

assume a general system model:

xi,k = g (xi,k−1,ui,k, ǫk) (∀i ∈ N)

xj,k = xj,k (∀j ∈ M)

y
j,i
i,k = h (xi,k,xj,k, δk) , (∀j ∈ N ∪M)(dj,ik ≤ robs)

where for timestep k, xi,k (i ∈ N) represents the state (pose)

of robot i, xj,k (j ∈ M) represents the state (position)

of the landmark j, ui,k represents the odometry informa-

tion of robot i, g(·) is the state transition function (with

process noise, ǫk), y
j,i
i,k represents the measurement (e.g.,

range/bearing) of robot j with respect to robot i, h(·) is the

measurement function (with measurement noise, δk), d
j,i
k is

the distance between robot i and object (robot or landmark)

j, and robs is the measurement range limit. Let

Xk = {xi,k}, (∀i ∈ N ∪Mk)

represent the set of all states at timestep k, where Mk is the

set of landmarks that has been observed by at least one robot

up to time k. Let

Xi,k = {xj,k}, (∀j ∈ Ni,k ∪Mi,k)

represent the states of all robots and landmarks known to

robot i up to time k, where Ni,k is the set of robots known

to robot i up to time k, and Mi,k is the set of landmarks

known to robot i up to time k. Let

Yi,k = {yj,i
i,k}, (∀j)(dj,ik ≤ robs)

represent the set of all measurements made by robot i at

timestep k. Due to uncertainty in both state transition and

measurements, the true state of the system cannot be found

deterministically, but can only be estimated using odometry

and measurement data. In general, the centralized belief,

bel(Xk), is represented by a probability density function,

p(·), over all states, Xk:

bel(Xk) := p (Xk|bel(X0), {ui,1:k} , {Yi,1:k} , (∀i)) ,

which is conditioned on the initial belief, bel(X0), past

odometry data, and past range and bearing measurements.

The knowledge set, Si,k, consists of all odometry and

measurement data, as well as the previous state estimates

known to robot i at time k. We assume initial that

Si,0 = {bel(xi,0)} , (∀i ∈ N).

Robots within communication range rcomm of each other are

able to exchange and relay state estimates, odometry data,

and measurement data. Let S−

i,k represent the knowledge set

after state transition and observations, but before communi-

cation is established with any other robot:

S−

i,k = Si,k−1 ∪ {ui,k, Yi,k} (1)
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When communication occurs between robots i and j, they

will make their knowledge sets available to each other, and

the knowledge set of both robots will become identical:

Si,k = Sj,k = S−

i,k ∪ S−

j,k, (∀j)(d
j,i
k ≤ rcomm) (2)

From a practical and computation point of view, it is helpful

to apply the Markov property,

p (Xk|bel(X0), U1:k, Y1:k) = p (Xk|bel(Xk−1), Uk, Yk) ,

when performing state estimation, as it limits memory and

processing requirements and allows for recursive state esti-

mation. The difficulty is that in a decentralized framework,

the Markov property can only be applied once a robot obtains

sufficient information regarding other robots through com-

munication. Furthermore, each robot must ensure that other

robots will no longer require any of the past information that

will be discarded when applying the Markov property. Our

objective is for each robot to perform SLAM to estimate the

state of all robots and known landmarks (i.e., find bel(Xi,k))
in a decentralized manner, given that the robots are only

occasionally exchanging information with one another.

IV. DECENTRALIZED SLAM IN A DYNAMIC NETWORK

In this section, we will examine the decentralized co-

operative SLAM problem theoretically. We will show the

conditions under which a robot can obtain the centralized-

equivalent estimate and show how it relates to the de-

centralized cooperative localization problem. We will also

discuss the initial conditions necessary to guarantee that the

centralized-equivalent estimate is obtainable by all robots.

A. Obtaining the Centralized-Equivalent Estimate

The decentralized cooperative SLAM problem is very

similar to the decentralized cooperative localization problem,

with the difference being that in decentralized cooperative

SLAM, there are landmarks positions that need to be es-

timated in addition to the robot states. The concepts of

checkpoint and partial checkpoint were previously defined in

[2] for decentralized cooperative localization. The existence

of these events indicate that it is possible (in the decentralized

cooperative localization problem) for the entire team of

robots (and thus each single robot) to obtain the centralized-

equivalent estimate at the event occurrence time. We will now

examine how these events can be applied to the cooperative

SLAM problem.

Definition 1: A checkpoint, C(kc, ke), is an event that occurs

at the checkpoint time, kc, that first comes into existence at ke,

in which Si,ke
⊇ Sj,kc

, ∀i ∈ N, ∀j ∈ N .

Definition 2: A partial checkpoint, Cp(kc,i, ke,i), is an event

that occurs for robot i at time kc,i, that first comes into

existence at ke,i, in which Si,ke,i
⊇ Sj,kc,i

, ∀j ∈ N .

Using the above definitions, we want to define when it is

possible to obtain the centralized-equivalent estimate in co-

operative SLAM (under a sparsely-communicating network).

Lemma 1.1: In decentralized cooperative SLAM, all robots

can obtain the centralized-equivalent estimate, bel(Xkc
),

if and only if each robot’s knowledge set, Si,k, con-

tains {bel(Xkc
)} or {bel(Xj,ks,j

),uj,ks,j+1:kc
, Yj,ks,j+1:kc

},

where ks,j < kc, ∀j ∈ N .

Proof. Assume that the centralized-equivalent estimate is

obtainable by all robots. This implies that all robots can

calculate

bel(Xkc
) = p (Xkc

|bel(xj,0), {uj,1:kc
, Yj,1:kc

} , ∀j ∈ N)

= p
(

Xkc
|bel(Xj,ks,j

),
{

uj,ks,j+1:kc

}

,
{

Yj,ks,j+1:kc

}

, ∀j ∈ N
)

, if ks,j < kc

= p
(

Xkc
|bel(Xj,ks,j

), ∀j ∈ N
)

, if ks,j = kc.

In order for all robots to generate the above belief, each robot

must have the following information in its knowledge set:

Si,k ⊇







{bel(Xj,ks,j
),uj,ks,j+1:kc

, Yj,ks,j+1:kc
},

if ks,j < kc
{bel(Xj,ks,j

)}, if ks,j = kc

, ∀j ∈ N

⊇







{bel(Xj,ks,j
),uj,ks,j+1:kc

, Yj,ks,j+1:kc
},

if ks,j < kc
{bel(Xkc

))}, if ks,j = kc

, ∀j ∈ N.

This completes the first half of our proof because

Si,k contains the centralized-equivalent estimate at kc
or the centralized-equivalent estimate from robot j at

some earlier time ks,j with odometry and measure-

ment data up to time kc, ∀j ∈ N . Next we as-

sume that each robot’s knowledge set contains {bel(Xkc
)}

or {bel(Xj,ks,j
),uj,ks,j+1:kc

, Yj,ks,j+1:kc
}, where ks,j <

kc, ∀j ∈ N . This allows each robot to generate a probability

density function with the aforementioned information as

conditional dependencies:







p
(

Xkc
|bel(Xj,ks,j

),
{

uj,ks,j+1:kc

}

,
{

Yj,ks,j+1:kc

}

,

∀j ∈ N) , if ks,j < kc
p (Xkc

|bel(Xkc
)) , if ks,j = kc

= bel(Xkc
),

where both densities are equivalent to the centralized esti-

mate. This completes the second half of the proof.

Theorem 1.1: In decentralized cooperative SLAM, a check-

point, C(kc, ke), exists if and only if all robots can obtain the

centralized equivalent estimate, bel(Xkc
).

Proof. First, assume that C(kc, ke) exists, which by defini-

tion implies

Si,ke
⊇ Sj,kc

, ∀i ∈ N, ∀j ∈ N.

In other words, each robot’s knowledge set at time ke must

contain all robot’s knowledge sets at time kc. At a minimum,

the knowledge set of robot j must contain its own state
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estimate, as well as odometry and measurements from its

state estimate time, ks,j , to time kc. We can write this as

Sj,kc
⊇







{bel(Xj,ks,j
),uj,ks+1:kc

, Yj,ks+1:kc
},

if ks,j < kc
{bel(Xj,ks,j

)}, if ks,j = kc

.

Substituting this into the definition of a checkpoint, when a

checkpoint exists, we have

Si,ke
⊇







{bel(Xj,ks,j
),uj,ks+1:kc

, Yj,ks+1:kc
},

if ks,j < kc
{bel(Xkc

))}, if ks,j = kc

∀j ∈ N,

∀i ∈ N.

Using Lemma 1.1, this implies that all robots can obtain the

centralized-equivalent estimate. For the second half of the

proof, we assume that all robots can obtain the centralized-

equivalent estimate. By using Lemma 1.1, we know that this

implies

Si,ke
⊇







{bel(Xj,ks,j
),uj,ks+1:kc

, Yj,ks+1:kc
},

if ks,j < kc
{bel(Xkc

))}, if ks,j = kc

∀j ∈ N,

∀i ∈ N.

By our knowledge set update rules, this implies

Si,ke
⊇ Sj,kc

, ∀i ∈ N, ∀j ∈ N.

Or in other words, C(kc, ke) exists.

The following lemma and theorem relate to partial check-

points. Their proofs are similar to those in Lemma 1.1 and

Theorem 1.1 and will not be shown.

Lemma 1.2: In decentralized cooperative SLAM, robot i can

obtain the centralized-equivalent estimate, bel(Xkc,i
), if and

only if the robot’s knowledge set, Si,k, contains {bel(Xkc,i
)}

or {bel(Xks,j
),uj,(ks,j+1):kc,i

, Yj,(ks,j+1):kc,i
} where ks,j <

kc,i∀j ∈ N .

Theorem 1.2: In decentralized cooperative SLAM, a partial

checkpoint, Cp(kc,i, ke,i), exists for robot i if and only if robot

i can obtain the centralized equivalent estimate, bel(Xkc,i
).

We have shown that the existence of a checkpoint (and

partial checkpoint) indicates when all robots (and a single

robot) can obtain the centralized-equivalent estimate in de-

centralized cooperative SLAM. From this, theorems that ap-

ply to checkpoints and partial checkpoints from [2] can now

be applied to the decentralized cooperative SLAM problem.

These theorems include a practical method of detecting the

existence of a partial checkpoint (Theorem 2.2 in [2]), which

says that a partial checkpoint, Cp(kc,i, ke,i) exists for robot

i if and only if Si,ke,i
⊇ {uj,kc,i

or bel(Xj,kc,i
)}, ∀j ∈ N .

This will be used directly within our decentralized coop-

erative SLAM algorithm. It is of interest to note that we

are using partial checkpoints, and not checkpoints, because

checkpoints are only detectable by an outside observer of

our robot system (see [1] for more details).

Two other important theorems that we will use are The-

orems 3.1 and 3.2 from [2]. They tell us that a robot’s

decision to invoke the Markov property when it detects a

partial checkpoint has no effect on all other robots’ abili-

ties to obtain a partial checkpoint that occurs at the same

timestep. Hence, a robot is only required to consider its own

knowledge set when applying the Markov property. This is

a subtle, but an important aspect of our algorithm, as robots

do not need to keep track of what other robots know, or what

it has communicated with other robots.

B. Initial Knowledge of Robots

In this section, we will show that it is necessary for all

robots to know the total number of robots in the system

to obtain centralized-equivalent estimates in decentralized

cooperative SLAM. This may seem intuitive, but it is in

contrast to the decentralized cooperative localization prob-

lem, where it was shown that the number of robots does

not need to be known in advance to obtain the centralized-

equivalent estimate [2]. For a checkpoint, we will use the

term detectable to imply that an outside observer of the

system can determine the existence (or non-existence) of the

checkpoint based on information in the knowledge set of

all robots. For a partial checkpoint, we will use the term

detectable to imply that a robot can determine the existence

of the partial checkpoint based solely on information in

its own knowledge set. We will begin by showing that

checkpoints and partial checkpoints can only be detected if

and only if the number of robots is known to all robots.

We will then examine whether it is possible for robots

to (unknowingly) obtain the centralized-equivalent estimate

without detecting it (i.e., the number of robots in the system

is unknown), and show that there is no guarantee that this

will ever happen in decentralized cooperative SLAM.

Theorem 2.1: The existence of a checkpoint is detectable if

and only if the number of robots in the network is known by

all robots.

Proof. Assume that the checkpoint C(kc, ke) is detectable.

This implies that we can determine whether the checkpoint

exists. Theorem 1.2 from [2] indicates that a checkpoint

exists if and only if

Si,ke
⊇ {uj,kc

or bel(Xj,kc
)}, ∀i ∈ N, ∀j ∈ N

In order to apply this, each robot needs to know the number

of robots in the network, |N |. Now let us assume that the

number of robots in the network is known by all robots.

By the reverse logic, we can check whether the expression

shown above (of Theorem 1.2 from [2]) is true or false. This

implies that each robot can validate if a checkpoint exists.

In other words, if the expression above is true, each robot

can detect the existence of a checkpoint.

Corollary 2.1: It is possible to detect when the centralized-

equivalent estimate is obtainable by all robots if and only if

the number of robots in the network is known by all robots.

Proof. Theorem 1.1 tells us that the existence of a checkpoint

is equivalent to when the centralized-equivalent estimate is
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each experimental trial was then processed offline. The dura-

tion of each test ranged from approximately 20 minutes to 70

minutes, and we have collected and processed 250 minutes

of data for this paper. Additional information regarding our

dataset is available in [14].

VII. EXPERIMENTAL RESULTS

For the results shown below, the communication range

limit is 2m, and communication interval is 0.5s. The max-

imum observation range is 3m. The EKF is used as the

filtering method in our algorithm, which runs on all robots

for estimating the pose (x, y, θ) and position (x, y) of all

robots and landmarks respectively. The performance of our

algorithm is compared with that of the centralized EKF-

SLAM algorithm. In order for the centralized estimator to

work, we allow it to cheat by ignoring the communication

constraints (i.e., a fully connected network is assumed for

the centralized estimator). Data association is accomplished

using barcode identification as this is not the focus of our

work (performing real data association will only influence

how we obtain the beliefs on lines 5 and 8 of Algorithm 1).

The video attachment accompanying this paper contains

footage of our experimental setup, and an animation of our

decentralized cooperative SLAM algorithm in use. In pre-

senting our results, we can only show some specific results

from one trial (test 1) due to space constraints. Averaged

results from other test trials are summarized in Table I. Fig. 5

shows the result of our decentralized cooperative SLAM

algorithm at 30 minutes into test 1, in which the network

was fully connected only 21% of the time.

Fig. 5. A graphical representation of the results from test 1 after 1800[s].

Fig. 6 displays the memory usage of robot 1, and shows

how memory use is limited since our decentralized cooper-

ative SLAM algorithm makes use of the Markov property.

Temporary increases in memory use are caused by the loss of

connectivity in the dynamic robot network. These increases

are followed by sharp decreases which signal partial check-

point detections (i.e., invoking the Markov property). Similar

memory usage results are observed for all other robots. The

average and maximum memory usage (for all robots) in all

eight trials are shown under ‘Mem’ in Table I.

The decentralized estimate errors made by robot 1 on

several state components are shown in Fig. 7(a)–7(c) for

Fig. 6. Memory usage of Robot 1 in test 1.

test 1. Although we are only showing the errors of robot

1’s x-position estimate of itself, robot 3, and a landmark,

these plots are representative of a robot’s estimate of its own

pose (for which odometry information is always available), a

robot’s estimate of another robot’s pose (for which odometry

data is not always available), and a robot’s estimate of a land-

mark position. In each of the above plots, we also compare

with the centralized estimator error. It is important to remem-

ber that we are allowing the centralized estimator to cheat by

ignoring the communication restrictions. Large differences

observed between the centralized and decentralized errors in

Fig. 7(b) occur due to the loss of communication between

robot 1 and 3 for a long duration. During this time robot

1 assumes the last known velocity of robot 3 to calculate

an estimate. However, this estimate is only temporary as

discussed in Section V. The uncertainty regions shown on

each plot are projections of the 95% confidence ellipsoid for

the full-state decentralized estimate (i.e., including all robots

and landmarks). Errors that are similar to the above figures

are observed in the estimates of the other robots.

The difference between decentralized and centralized es-

timates from all 8 tests are shown in Table I for rcomm = 2,

where ex,rms, ey,rms, and eθ,rms are the root-mean-squared

differences for x, y position, and θ orientation respectively. In

general, for a robot’s decentralized estimate of its own pose,

there is very little difference compared to the centralized

estimate because a robot’s own odometry is always known.

For a robot’s estimates of other robots’ poses, however, there

is on average a greater difference between the centralized

and decentralized estimate because the latest odometry from

other robots is not always available for the current state

estimate (i.e., the network is not always fully connected).

Note, however, that the current state estimate is temporary

and can be updated when more information is available. Our

algorithm ensures that the centralized-equivalent estimate can

be obtained at a later time (when a partial checkpoint is

detected). As for landmarks, the average differences between

the decentralized and centralized estimates are relatively

small because landmarks are static. This small difference is

mainly contributed by a robot not having the latest measure-

ments from other robots. As a final note, one can expect

the differences between the decentralized and centralized

estimates to decrease as rcomm is increased.

VIII. CONCLUSIONS

In this paper, we posed the decentralized cooperative

SLAM problem, where it is necessary for all the robots
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(a) Robot 1’s estimate of its own x-position. (b) Robot 1’s estimate of robot 3’s x-position. (c) Robot 1’s estimate of a landmark’s x-position

Fig. 7. Components of robot 1’s decentralized estimates, which matches closely with the centralized estimates

Test
Self estimate Estimate of other robots Estimate of landmarks Mem [kB]

PC[%]
ex,rms [m] ey,rms [m] eθ,rms [rad] ex,rms [m] ey,rms [m] eθ,rms [rad] ex,rms [m] ey,rms [m] avg max

1 0.0698 0.0871 0.1143 4.7854 4.9774 1.5576 0.0620 0.0457 411 1606 20.70

2 0.1107 0.1604 0.1467 2.7331 2.5393 1.4111 0.1895 0.3032 162 747 40.14

3 0.1550 0.1595 0.1632 1.2900 2.0314 1.3689 0.0853 0.1027 134 491 45.10

4 0.0693 0.0492 0.0532 0.5838 0.9072 0.9871 0.0669 0.0520 53 269 57.76

5 0.1087 0.0760 0.0991 1.2826 1.4030 1.1762 0.0104 0.0080 75 335 44.61

6 0.1073 0.0675 0.0927 1.2104 1.0937 1.0198 0.0967 0.0284 89 442 51.82

7 0.0674 0.0320 0.0594 0.6641 0.7278 0.8566 0.0507 0.0219 44 285 63.79

8 0.1050 0.1233 0.1197 1.0813 1.2597 0.9881 0.0400 0.0247 75 531 49.91

TABLE I

RMS errors between the decentralized and centralized estimates, memory usage (Mem), and percentage of time that the network is fully connected (PC).

in a team to estimate the position of the landmarks in a

workspace, as well as the pose of all robots, in a network

where full connectivity is never guaranteed. We proved that

the conditions for which the centralized-equivalent estimate

can be obtained by a robot is analogous to when a partial

checkpoint exists, a concept previously applicable only to

the decentralized cooperative localization problem [2]. We

showed that robots can apply the Markov property based on

local knowledge (i.e., they do not need to track what other

robots know). Furthermore, we proved that it is necessary in

decentralized cooperative SLAM for each robot to initially

know the total number of robots in the network, which

was not necessary for the cooperative localization case. A

decentralized algorithm was presented that guarantees that

the centralized-equivalent estimate can be obtained by a

robot once it detects a partial checkpoint. To validate the

algorithm, we carried out over 250 minutes of experiments

and compared the result from our algorithm against that

from a centralized estimator (which we allowed to cheat by

ignoring communication constraints) and groundtruth data.

Our results show how memory usage is limited in our

algorithm due to use of the Markov property. The results also

show that the centralized-equivalent estimate can always be

recovered after a period of poor network connectivity.
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