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Abstract— The authors present a new algorithm to compute
the forward Dynamics of n degrees of freedom serial kinematic
chains, which is faster than the classical approaches. This
algorithm was created rewriting the Lagrange equation in terms
of lines and points in the framework of conformal geometric
algebra, which allows having a new equation to compute the
dynamics with less number of products. This algorithm not only
performs less computations but it also takes the advantages of
the newest multi core architectures by computing the dynamics
in parallel.

I. INTRODUCTION

As demand of more computation power has grown, com-

panies which designs processor has chosen to develop mul-

ticore architectures to satisfy such needs. With each new

design of multicore processors it is usual that the number

of cores is increased and with this, the need of algorithms

which take full advantage of this highly parallel environment

also grows rapidly in importance.

On the other hand, in the field of robotics there is needed

to calculate the dynamics of serial robots for controlling,

identifying and simulating of robots. Currently there are a

large number of algorithms to calculate the dynamics but

most of them work sequentially. For example, the solutions

presented in [8] have a similar complexity of O(n3). In

this paper the authors introduce a new algorithm that allows

the computation of each matrix evolved in the computation

of robot dynamics in an independent way, reducing the

complexity to O(n) with the advantage that only a reduced

number of operations on each processor is performed.

This algorithm also allows the modification of the topol-

ogy of the robot, that is, the position and direction of the axis,

the mass centers, switch between prismatic and revoluted

joints, on the fly. Also, this algorithm can be used with

parallel robots following the procedure describe in [7]

II. THE GEOMETRIC ALGEBRA OF N-D SPACE

In this paper we will specify a geometric algebra Gn of

the n dimensional space by Gp,q,r, where p, q and r stand

for the number of basis vector which squares to 1, -1 and 0

respectively and fulfill n = p+ q + r.
We will use ei to denote the vector basis i. In a Geometric

algebra Gp,q,r, the geometric product of two basis vector is
defined as

eiej =











1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p+ 1, · · · , p+ q
0 for i = j ∈ p+ q + 1, · · · , p+ q + r.

ei ∧ ej for i 6= j
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This leads to a basis for the entire algebra:

{1}, {ei}, {ei ∧ ej}, . . . , {e1 ∧ e2 ∧ . . . ∧ en} (1)

Any multivector can be expressed in terms of this basis.
In the n-D space there are multivectors of grade 0 (scalars),
grade 1 (vectors), grade 2 (bivectors),... up to grade n. Any
two such multivectors can be multiplied using the geometric
product. Consider two multivectors Ar and Bs of grades r

and s respectively. The geometric product of Ar and Bs

can be written as

ArBs = 〈AB〉
r+s

+ 〈AB〉
r+s−2

+ . . .+ 〈AB〉|r−s| (2)

where 〈〉t is used to denote the t-grade part of multivector.

Ar ·Bs = 〈AB〉|r−s| (3)

Ar ∧Bs = 〈AB〉|r+s| (4)

Ar×̄Bs = 〈AB〉|r+s−2|. (5)

III. CONFORMAL GEOMETRY

The Geometric algebra G4,1 can be used to treat conformal

geometry in a very elegant way. The Euclidean vector space

R
3 is represented in R

4,1. This space has an orthonormal

vector basis given by {ei} and eij = ei ∧ ej are bivectorial

basis where e23, e31 and e12 correspond to the Hamilton

basis. The pseudo-scalar Ic = e1 ∧ . . .∧ e5 and E = e4 ∧ e5
are used to compute duals of multivectors.

The conformal geometry is related to a stereographic

projection in Euclidean space for R
1 the conformal maping

x is given by

x = 2
xe

x2
e + 1

e1 +
x2
e − 1

x2
e + 1

e4 + e5. (6)

From (6) we can infer the point at infinity and the origin

point as

e∞ = lim
xe→∞

{x} = e4 + e5, (7)

eo =
1

2
lim
xe→0

{x} =
1

2
(−e4 + e5), (8)

Note that (6) can be rewritten to

x = xe +
1

2
x2
ee∞ + eo, (9)

A. Line

Lines can be defined as circles passing through the point

at infinity (10),this is showed in the figure 1.

L∗ = x1 ∧ x2 ∧ e∞ = me∞ + nE, (10)

where n is a direction’s vector and m is the momentum.

The resulting line has six parameters so called Plucker

coordinates, but just four degrees of freedom.
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Fig. 1. Line projected to the unitary sphere.

IV. RIGID TRANSFORMATIONS

We can express rigid transformations in conformal geom-

etry carrying out reflections between planes.

A. Translation

The translation is the product of two reflections between

parallel planes

T = 1 +
1

2
ae∞ = e−

a
2
e∞ (11)

here a represents the translation vector, any geometric entity

can be translated doing x′ = TxT̃

B. Rotation

The rotation is the product of two reflections between

nonparallel planes

R = cos

(
θ

2

)
− sin

(
θ

2

)
l = e−

θ
2
l (12)

here l denotes the rotation axis. The screw motion called

motor M = TRT̃ represents the rotation related to an

arbitrary axis L defined on (10)

M = e−
q
2
L (13)

where q represents the rotation angle or the translation in

case of L at infinity. Any geometric entity can be rotated

doing x′ = MxM̃

V. KINEMATICS

The direct kinematics for serial robot arms is a succession

of motors and it is valid for points, lines, planes, circles and

spheres more information on [3].

x′
j =

j∏

i=1

Mixj

j∏

i=1

M̃j−i+1 (14)

similarly L′ is defined in terms of L as follows

L′
j =

j−1∏

i=1

MiLj

j−1∏

i=1

M̃j−i, (15)

Differential kinematics equation:

ẋ′
j =

j∑

i=1

[
x′
j · L

′
i

]
q̇i, (16)

is explained on [4]

VI. DYNAMICS

In this section we describe the equations of kinetic and po-

tential energy in terms of geometric algebra. Based on these

equations and using the Lagrange equation we synthesize the

dynamic model of any n-degrees of freedom serial robot.

A. Kinetic Energy

We introduce in our analysis the mass center in order to

formulate an expression that describes the kinetic energy of

a system of particles.
1) Kinetic energy of a system of particles.: We are con-

sidering a system with n particles showed in the figure 2.

The total relative kinetic energy K of the system is given by

K =

n∑

i=1

1

2
miV

2
i . (17)

Fig. 2. System of particles with their mass center.

Now we will rewrite (17) to introduce the mass center. Here

ri represents the distance to the particle, rc the distance to

the mass center and ρci the distance from the mass center to

the particle.

ri = rc + ρci. (18)

The time derivative of (18) is

ṙi = ṙc + ρ̇ci. (19)

Therefore, the velocity equation of the i-th particle (ρ̇ci) with

respect to the mass center is given by

Vi = Vc + ρ̇ci. (20)

By substitution of the equation 20 in the expression of kinetic

energy 17, we obtain.

K =

n∑

i=1

1

2
mi(Vc + ρ̇ci)

2 (21)

=
1

2

n∑

i=1

mi(Vc)
2 +

n∑

i=1

miVcρ̇ci +
1

2

n∑

i=1

mi(ρ̇ci)
2.
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As Vc is not related to the sum index i we can extract it.

K =
1

2
V 2
c (

n∑

i=1

mi) + Vc

d

dt

n∑

i=1

miρci +
1

2

n∑

i=1

miρ̇
2
ci. (22)

Being m =
∑n

i=1 mi the total mass of the system and

considering that
∑n

i=1 miρci is by definition equal to zero

K =
1

2
mV 2

c +
1

2

n∑

i=1

miρ̇
2
ci. (23)

As conclusion, we see Kinetic energy with respect to a

reference system could be considered as the sum of two parts:

(1) the kinetic energy of total mass moving respect to this

reference system at the same velocity, plus (2) the kinetic

energy of the particles moving respect to the mass center

(momentum of inertia).

2) The kinetic energy of a robot arm: We denote with xi

to the mass center i in its initial position and with x′
i the

mass center in function of joints variables. Similarly we will

denote the joints axis i as Li and the joints axis i in function

of the joints variables as L′
i.

Fig. 3. Brazo AdepdtSix600.

Recalling the direct kinematics equation 14 that relates

xi with x′
i and L with L′

i and are written using conformal

geometric algebras as.

x′
i = M1M2 · · ·MixiM̃i · · · M̃2M̃1, (24)

L′
i = M1M2 · · ·Mi−1LiM̃i−1 · · · M̃2M̃1. (25)

We have seen that the kinetic energy is equal to the sum

of the energy related to the velocity of mas center and the

energy related to the momentum of inertia. So the kinetic

energy of the link i is computed as

Ki =
1

2
miẋ

′
i

2
+

1

2
Ii




i∑

j=1

q̇j




2

. (26)

where Ii is the inertia of the link i and ẋ′
i represents

the velocity of the mass center x′
i. The velocity of the

mass center is computed using the equation of differential

kinematics 16 explained in the past section

ẋ′
i = x′

i ·




i∑

j=1

L′
j q̇j


 . (27)

Replacing the equation 27 in 26 we have the expression

of kinetic energy in conformal geometric algebra

Ki =
1

2
mi


x′

i ·




i∑

j=1

L′
j q̇j





2

+
1

2
Ii




i∑

j=1

q̇j




2

. (28)

The total kinetic energy on the arm is given by the expression∑n
i=1 Ki, where n is the number of degrees of freedom. In

order to simplify the explanation we will separate the kinetic

energy K = Kv+KI in two components Kv and KI defined

as

Kv =
1

2

n∑

i=1

mi


x′

i ·




i∑

j=1

L′
j q̇j





2

, (29)

KI =
1

2

n∑

i=1

Ii




i∑

j=1

q̇j




2

. (30)

We will attend firstly Kv and later KI . The objective is

simplify the expression of of total kinetic energy in the arm

Kv =
1

2

n∑

i=1

mi


x′

i ·




i∑

j=1

L′
j q̇j





2

. (31)

The square of the velocity’s magnitude is equal to the dot

product of the vector with itself

Kv =
1

2

n∑

i=1

mi




i∑

j=1

(x′
i · L

′
j)q̇j


 ·




i∑

j=1

(x′
i · L

′
j)q̇j


 . (32)

Evaluating the sums for j from 1 to i,

Kv = 1
2

∑n
i=1 mi (x

′
i · L

′
1q̇1 + · · ·+ x′

i · L
′
iq̇i)

· (x′
i · L

′
1q̇1 + · · ·+ x′

i · L
′
iq̇i) . (33)

Evaluating the sum for i from 1 to n, reorganizing the terms

and extracting q̇ it is possible by symmetry of the terms

rewrite (33) in matrix form to get a better compression of

this equation

Kv =
1

2

(
q̇1 · · · q̇n

)
Mv



q̇1
...

q̇n


 . (34)

where each element Mvij
of the matrix Mv is computed

doing

Mvij
=

n∑

k=Max(i,j)

mk(x
′
k · L′

i) · (x
′
k · L′

j). (35)
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The symmetric matrix Mv cold be separated in the

product of three matrix, two triangular and one diagonal

matrix

Mv = V TmV. (36)

Where the elements of the matrix V are vectors and the

elements of m are scalars those matrix are given by

m =




m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn


 , (37)

V =




x′
1 · L

′
1 0 · · · 0

x′
2 · L

′
1 x′

2 · L
′
2 · · · 0

...
...

. . .
...

x′
n · L′

1 x′
n · L′

2 · · · x′
n · L′

n


 . (38)

Which means that the contribution of kinetic energy pro-

duced due to mass displacements with respects to the refer-

ence frame could be easily computed as

Kv =
1

2
q̇TV TmV q̇. (39)

Now we follow a similar procedure for the component of the

kinetic energy KI

KI =
1

2

n∑

i=1

Ii




i∑

j=1

q̇j




2

. (40)

Evaluating the sums for i and j form 1 to n we get

KI =
1

2

[

I1(q̇1)
2 + I2(q̇1 + q̇2)

2+ · · ·

+ In(q̇1 + · · ·+ q̇n)
2
]

. (41)

Expanding the expression, extracting q̇ and writing in matrix

form.

KI =
1

2

(
q̇1 · · · q̇n

)
MI



q̇1
...

q̇n


 . (42)

Where

MI =




∑n
i=1 Ii

∑n
i=2 Ii · · ·

∑n
i=n Ii∑n

i=2 Ii
∑n

i=2 Ii · · ·
∑n

i=n Ii
...

...
. . .

...∑n
i=n Ii

∑n
i=n Ii · · ·

∑n
i=n Ii


 . (43)

The matrix MI can be written as the product of two matrix

δ and I if we define them as

MI = δI =




1 1 · · · 1
0 1 · · · 1
...

...
. . .

...

0 0 · · · 1







I1 0 · · · 0
I2 I2 · · · 0
...

...
. . .

...

In In · · · In


 . (44)

In such a way the component of kinetic energy due to the

movement of links around their mass center is given by

KI =
1

2
q̇T δIq̇. (45)

As conclusion, we have an expression to compute the total

kinetic energy of the serial robot using the axes of the robot

and the mass centers in conformal geometric algebra

K =
1

2
q̇T (V TmV + δI)q̇. (46)

Note that this expression allows us to compute the kinetic

energy without the derivatives.

B. Potential Energy

As opposite to kinetic energy the potential energy does

not depends of the velocity, but it depends of the position

of each link of the serial robot. Thanks to the equations of

direct kinematics 14 we can compute the position x′
i of each

link. In order to know the potential energy Ui, we compute

the dot product of this points and the force applied to each

point.

Ui = x′
i · Fi, (47)

here the potential energy is due to conservative forces such as

the gravity forces, then Fi = mige2. Also the total potential

energy of the system is equal to the sum of all Ui.

U =

n∑

i=1

x′
i · Fi. (48)

C. Lagrange’s Equations

The dynamic equations of a robot could be computed

based in the Newton equations, but the formulation becomes

complicated when the number of degrees of freedom in-

creases. For this reason we will use the Lagranges equations

of movement.

The Lagrangian £ is defined as the difference between the

kinetic and potential energy of the system.

£ = K − U. (49)

the Lagrange’s movement equation is given by

d

dt

[
∂£

∂q̇

]
−

∂£

∂q
= τ. (50)

Starting with the partial derivative of £ respect to q̇

∂£

∂q̇
=

∂K

∂q̇
−

∂U

∂q̇
=

∂K

∂q̇
. (51)

Note that the partial derivative of U respect to q̇ is always

zero since U does not depend of the joint’s velocity q̇.

Replacing K given by (46) in (51).

∂£

∂q̇
=

∂

∂q̇

(
1

2
q̇T (V TmV + δI)q̇

)
= (V TmV + δI)q̇. (52)

In order to simplify the notation the matrix M is defined as

M = Mv+MI = V TmV +δI and the equation 52 is now

written as

∂£

∂q̇
= Mq̇. (53)
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On the other hand the partial derivative of £ respect to q is

given by

∂£

∂q
=

∂K

∂q
−

∂U

∂q
=

1

2
q̇T
(
∂M

∂q

)
q̇ −

∂U

∂q
. (54)

Replacing 53 and 54 in the Lagrange equation (50) we get.

d

dt
[Mq̇]−

[
1

2
q̇T
(
∂M

∂q

)
q̇ −

∂U

∂q

]
= τ. (55)

The time derivative of the equation 55 give us

Mq̈ + Ṁq̇ −
1

2
q̇T
(
∂M

∂q

)
q̇ +

∂U

∂q
= τ. (56)

In order to simplify the expression we rename parts of the

equation as follows.

C = Ṁ −
1

2
q̇T
(
∂M

∂q

)
, (57)

G =
∂U

∂q
. (58)

Where C is the coriolis and centrifugal matrix and G is the

vector of gravitational components. Therefore we can write

the dynamic equation for a serial robot with n degrees of

freedom

Mq̈ + Cq̇ +G = τ. (59)

Now we analyze the G matrix, looking for an equation that

allows us to get it without partial derivatives. Using the

equation 48 we write

G =
∂U

∂q
=

∂

∂q

(
n∑

i=1

Fi · x
′
i

)
. (60)

Since the forces Fi = mige2 are produced by the gravity

they does not depend of the joints positions q.

G =

n∑

i=1

Fi ·

(
∂

∂q
x′
i

)
. (61)

Recalling the equation of differential kinematics 16 we know

∂

∂q
x′
i =




x′
i · L

′
1

x′
i · L

′
2

...

x′
i · L

′
i


 . (62)

Expanding the sum (61) from i = 1 to n and replacing
∂
∂q
x′
i by (62)

G =











x′

1 · L
′

1

0
...
0











F1 +











x′

2 · L
′

1

x′

2 · L
′

2

...
0











F2 + · · ·+











x′

n · L′

1

x′

n · L′

2

...
x′

n · L′

n











Fn. (63)

The equation 63 written as matrix.

G =




x′
1 · L

′
1 x′

2 · L
′
1 · · · x′

n · L′
1

0 x′
2 · L

′
2 · · · x′

n · L′
2

...
...

. . .
...

0 0 · · · x′
n · L′

n







F1

F2

...

Fn


 . (64)

As you can see this matrix is basically the transposed of the

matrix V given in equation 38. Calling F to the vector with

components Fi, we can finally write the equation.

G = V TF. (65)

Furthermore F is given by the product of two matrices

F =




m1 0 · · · 0
0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn







ge2
ge2

...

ge2


 = ma. (66)

Where a is a vector of accelerations. The equation 66 allows

us to separate the constant matrices and the variables of the

serial robot

G = V Tma. (67)

Finally we have a short and useful equation to compute the

vector G using the information of the joints axes. Now we

analyze the Coriolis matrix C. In fact there are many ways

to compute this matrix and there are many matrices C that

satisfies the dynamic equation 59. Although we already have

an equation to compute the matrix C (57), we will look for

a more simple equation to avoid the necessity of derivatives.

Based in the properties of the matrices M and C (see [1]),

it is known that.

Ṁ = C + CT . (68)

Recalling that M = V TmV + δI we will determine its

derivative.

Ṁ =
d

dt
M =

d

dt

(
V TmV + δI

)
, (69)

Ṁ =
d

dt
V TmV, (70)

Ṁ = V TmV̇ + V̇ TmV, (71)

Ṁ = V TmV̇ + (V TmV̇ )T . (72)

Taking into account the equations 68 and 72 we have a

short and clear equation to compute the matrix C without

derivatives.

C = V TmV̇ . (73)

The last sentence is true since we can compute the matrix V̇
without derivatives just in function of the joint’s values q, q̇
and the axes of the robot. In order to compute the element

V̇ij the time derivative of x′
i ·L

′
j is needed, using the equation

27.

V̇ij =
d

dt
(x′

iL
′

j) = ẋ
′

i · L
′

j + x
′

i · L̇
′

j ,

V̇ij =

i
∑

k=1

(x′

i · L
′

k) · L
′

j q̇k +
1

2

j−1
∑

k=1

x
′

i · (L
′

jL
′

k − L
′

kL
′

j)q̇k. (74)

Note that Vij = 0 whenever j > i reason why V̇ij = 0.

Perhaps these equations to get V̇ could be seen confused.
We will rewrite these equations as matrix to give a more
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clear explanation of the method to compute V̇ . It is possible
to write the matrix V as the product of two matrices.

V =











x′

1 0 · · · 0
0 x′

2 · · · 0
...

...
. . .

...
0 0 · · · x′

n





















L′

1 0 · · · 0
L′

1 L′

2 · · · 0
...

...
. . .

...
L′

1 L′

2 · · · L′

n











= XL, (75)

then V̇ = ẊL+XL̇ with

Ẋ =











ẋ′

1 0 · · · 0
0 ẋ′

2 · · · 0
...

...
. . .

...
0 0 · · · ẋ′

n











, L̇′ =











L̇′

1 0 · · · 0

L̇′

1 L̇′

2 · · · 0
...

...
. . .

...

L̇′

1 L̇′

2 · · · L̇′

n











.(76)

Compute ẋ′
i is simple using (16).



ẋ′
1
...

ẋ′
n


 = XLq̇ = V q̇. (77)

To compute L̇′
i that represents the velocity of the axis i

produced by the rotation around the previous axes we can

do



L̇′
1

L̇′
2
...

L̇′
n


 =

1

2







L′
1L

′
1 0 · · · 0

L′
2L

′
1 L′

2L
′
2 · · · 0

...
...

. . .
...

L′
nL

′
1 L′

nL
′
2 · · · L′

nL
′
n




−




L′
1L

′
1 0 · · · 0

L′
1L

′
2 L′

2L
′
2 · · · 0

...
...

. . .
...

L′
1L

′
n L′

2L
′
n · · · L′

nL
′
n





 q̇. (78)

Using the definition of ×̄ the matrix L̇′ could be wrote as



L̇′
1

L̇′
2
...

L̇′
n


 =




L′
1×̄L′

1 0 · · · 0
L′
2×̄L′

1 L′
2×̄L′

2 · · · 0
...

...
. . .

...

L′
n×̄L′

1 L′
n×̄L′

2 · · · L′
n×̄L′

n


 q̇. (79)

In conclusion using the equation 52 and 73, we have rewrit-

ten the dynamic equation of serial robot with n degrees of

freedom.

δIq̈ + V Tm(V q̈ + V̇ q̇ + a) = τ. (80)

This decomposition allows us to see the components of

inertia momentum, centrifuge forces and the gravity forces

and finally 80 is the dynamic equation of a n degrees of

freedom serial robot where the elements of the matrices are

multivectors of the geometric algebra G4,1,0.

Summarizing δ,m, I and a are constant and known

matrices. Only V and V̇ changes trough time and they are

computed in a parallel way, using a thread for each matrixs

component as we show in the Fig 4, in this way and having

n2 threads it is possible to get the V in O(Log2(n))
Similarly V̇ is computed using a thread for each matrix

component having this in O(n), this is performed as we show

in the Fig.5

Fig. 4. Computing V matrix

Fig. 5. Computing V̇ matrix

VII. CONCLUSIONS

The authors have shown how the equation of dynamics

can be rewritten using the conformal geometric to get

a new expression in terms of the robot axis. This new

equation not only is easier to implement but also it can

be easily parallelized to get advantages of the new parallel

architectures. This new expression could be also used for

systems identification since it has only three matrices: one

for the mass, one for the inertia values and one more with

the geometry of the robot. Finally using our approach with

parallel computing, it is possible to have a complexity O(n)
using n2 threads which makes our algorithm the fastest to

compute the dynamics of a serial robot having the advantage

of modifying the configuration of the robot, that is, the

geometry or topology on the fly without need to recompile

anything.
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