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Abstract— This paper describes the novel road surface anal-
ysis using reflectivity of a laser scanner in structured outdoor
environments. The proposed approach makes estimation of road
surface conditions robust by using information of remission
value as reflectivity of a laser that much less depends on
brightness of color or ambient lighting than passive camera.
Our method can be applied to various structured outdoor
environments by online estimating distributions of the remission
value from the road surface. This article shows that the method
is successfully verified with accuracy of approximately 99%
at both (i) the testing course of the 2009 Real World Robot
Challenge which is known as ”Tsukuba Challenge” and (ii)
our university campus.

Index Terms— Self-Supervised Learning, Reflectivity of
Laser, Robot Maps, Structured Environments.

I. INTRUDUCTION

RECENTLY, there are a lot of researches making a

vehicle autonomous whom objectives are to improve

safety of driving or detecting obstacles. Defense Advanced

Research Projects Agency (DARPA) of United States orga-

nized ”DARPA Grand Challenge” in 2004 and 2005 [1][2]. In

addition, ”DARPA Urban Challenge” was organized in 2007,

which is a competition for autonomous vehicles achieving

various predefined missions in urban environments [3]. On

the other hand, ”Real World Robot Challenge” which is

known as ”Tsukuba Challenge” has been organized since

2007 in Japan [4]. This challenge has required that robots

have to drive along a predefined course autonomously in

structured environments of Tsukuba city in Japan. Travel

distance of the course that robots have to go is approximately

1 km. Pedestrians and other mobile robots exist in the course,

because the course is not organized for this challenge. Robots

have to arrive at a predefined goal within 2 hours although

driving speed of robots is restricted at 4 km/h.

There are more difficult factors than that of DARPA Grand

Challenge or Urban Challenge to accomplish the mission

in the urban environments organized in 2009 Real World

Robot Challenge. The driving course consists of diverse

fields. In Urban Challenge, the area where robots drive is

mostly paved road, which is less changed basically. There-

fore, simple recognizing drivable surface algorithm such as

detecting curbs or centered line is enough to accomplish the

mission in the challenge. In Grand Challenge, recognizing

the terrain geometrical hazards of the road works well

in a desert environment. However, the conditions of the

driving course in Tsukuba Challenge are not constant as

Fig. 1. Structured outdoor environment in Tsukuba. Road surfaces where
a robot should go through are not uniform

shown in Fig. 1. A robot has to recognize hazardous object

that are vegetation, boulevard trees, structures and curbs,

which have non-uniquely shapes and are in various areas.

Especially, the environment shown in right top figure of

Fig. 1 makes the perception more complex problem. The

problem in this environment of the figure is that robots

are forbidden to drive into the vegetation. Drivable region,

which is defined as traversable by organizers, is only center

area. In this situation, it is difficult for a robot to recognize

boundaries by using like a laser scanner according to the

shape, because there are no clear boundaries such as steps

between vegetation and center drivable area. Additionally,

there are also drivable areas that have a lot of materials

or colors (like textured paving block) in the course, and

advanced decisions have to be required.

In this paper, novel road identification using a laser sensor

is proposed. The approach can classify drivable regions from

both of geometrical and non-geometric features by a laser. In

order to classify and estimate road surface conditions, range

measurement and remission value of a laser scanner are used.

This approach with probabilistic analysis allows to recognize

drivable region in uneven color fields like shown in left top

or right bottom pictures of Fig. 1 without supervised learning

or prior information. In addition, using remission value like

color information is able to reduce fatal error of map inte-

gration by road vibration noise in driving. This paper shows

road surface analysis results in the 1 km course of Tsukuba

Challenge 2009 as an outdoor structured environment to
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show effectiveness of the proposed approaches. Another

experimental result is shown in approximately 500 m course

of our university campus, and lower false positive error of the

road surface estimation is accomplished in both experimental

results in comparison to other road surface analysis methods.

II. RELATED WORKS

A lot of drivable road detection have been studied. Detect-

ing obstacles or map building using geometrical information

from 2D or 3D laser scanners is effective [5][6]. Generally,

3D laser scanner is used to detect low obstacles like curbs

in a road. However, estimating accurate road region con-

tinuously requires accurate robot pose estimation. Thrun et

al. have proposed Probabilistic Terrain Analysis (PTA) in

DARPA Grand Challenge. This algorithm is able to recognize

hazardous regions in spite of not requiring high accurate

pose estimation and to correct pose error affected by road

noise [10]. Considering error of pose estimation and laser

measurement probabilistically, it can remove estimation error

of false positive hazardous steps on road. In vegetation like

shown in Fig. 1, however, this approach cannot recognize

drivable road surface that has even height of road boundary

between vegetation and general road.

Therefore, low height vegetation recognition by a laser

range sensor has been researched [7][8][9]. [7][8] are classi-

fication approaches that analyze distribution of geometrical

information measured by laser sensors. [9] uses hidden

Markov model to separate vegetation and road surface from

variance of height information acquired from lasers. These

approaches have same problems of pose estimation error

while a robot drives. Therefore, they are done in a robot

stopping by using 3D laser scanner. There are researches

using both of vision sensor and laser scanner to detect not

only general obstacles but low vegetation [11][12]. Moreover,

H. Dahlkamp et.al have proposed a mapping technique by

integrated vision sensor and laser scanner [13]. The approach

has advantages of higher speed capturing 3D geometrical

measurements than stereo reconstruction with maintaining

advantage of vision system. However, it is hard to keep

reliability of image processing for recognitions, because

circumjacent brightness of a robot is easy to changes in

outdoor environments according to weather or time of day.

Moreover, a lot of factors, which have various color objects

such as tree, stack, curb, vegetation, structures and so on in

the outdoor environments dealt with this research, make the

reliability reduce.

In order to cover the shortcomings of vision sensor for

the brightness, several researches have introduced remission

value as a reflectivity of laser sensor to recognize road

surface conditions [14][15][16]. Remission value, which is

a reflectivity of laser sensor, has advantages that remission

value is hard to be affected from circumjacent brightness and

road surface condition such as night time or rainfall [14].

Therefore, the remission value can be used as more reliable

information than that of color information of vision.

In [14], SLAM algorithm utilizes a map based on the

remission value to perform map-closing loop. An approach

Fig. 2. Testbed Mobile Robot named INFANT. INFANT means INtegrated
Foundations for Advanced Navigation Technology.

using vision, laser measurement and its remission value has

been proposed, which analyze geometry and color informa-

tion of structured objects to classify the area into several

semantic labels [15].

The approach of [16] is closest to our approach has

been proposed. In this algorithm, surface terrain is classi-

fied into road or vegetation by this approach in structured

environment. The laser remission is modeled as a function

of distance, incidence angle and material with self-supervised

learning. However, road surface is classified into only two

labels that are road and vegetation by learning a model of

vegetation. The system uses Support Vector Machine to learn

the model, which needs off-line learning previously. In our

research, the system can classify the surfaces into several

classes with self-supervised learning while the robot drives.

Therefore, our system needs no prior information of the

environments or learning.

III. MAP BUILDING

In this research, road surface analysis of drivable region

is performed using geometrical 3D point information and

remission value as a reflectivity of a laser. In order to acquire

3D point cloud around a mobile robot, 3D points of road

surface are captured by a laser scanner fixed on the robot

and integrated by time series in the robot driving. The mobile

robot used in this research is shown in Fig. 2.

A. Remission Value of Laser Scanner and its Calibration

Reflectivity of a laser (remission value) is employed in

order to robustly recognize a road where low positioned

obstacles lie down such as vegetation or curbs neighbored

with even or lower step. Each beam of a laser returns not only

distance measurement but its remission value as a reflectiv-

ity. The remission value indicates observation according to

reflectivity of materials hit for the beam. Thus, the value

represents the object’s information closed to intensity of

color. Compared with vision, the remission value can be used

as more reliable information like intensity of color because

the value is hard to be affected from outdoor weather or

brightness [14]. Figure 3 shows an example snapshot of 3D

point cloud acquired at night. The color indicates remission

value of a point. The bright color shows strong reflectivity.
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Fig. 3. 3D point cloud acquired at night. The points are colored by the
laser remission value. Manhole is shown in the left of the robot.

It is shown that white line and manhole on the road can be

observed by the remission value even if in night.

The remission value has a characteristic of reduction of

the value in proportion to the distance. Therefore, the value

has to be calibrated by related to the observed distance. In

this paper, the value is calibrated by following expression

made from several experiments.

γi∗ =
γi

kγ exp(−ri/βγ)
(1)

Where, γi is a observed remission value, kγ and βγ are

positive constants. ri is a measured distance. We set kγ =
3500, βγ = 10000 as a result of sensor calibration in this

paper. This equation makes the remission value normalized

to [0 1].

B. Map Representation

Hazardous region, which means obstacles or where a robot

cannot entry, may be able to be detected by information

of the height or remission value. Though, it is difficult

to estimate condition of the point on road from acquired

3D points directly. In this paper, squared 2D grid map is

employed to deal with the area as an approximated patch at

x− y. The condition of the area at x− y is computed from

points that fall into the patch whom size is expressed as ǫ.

Each patch contains the height z at x− y, remission value γ
and updating time t. The representative remission value γ at

x − y is a mean of the values that falls into the patch. The

height z contains two values as maximum and minimal of

the heights of the points. In this paper, the size of a patch is

set to 15 cm × 15 cm.

IV. SELF-SUPERVISED ROAD IDENTIFICATION USING

REMISSION VALUE

A. Analysis for Drivable Road Surface

This section describes a classification method that road

surface is drivable or not by using both of distance and

remission value of a laser scanner. The drivable region can

be acquired at time t with a local map m as following

expression.

p(mxy = 1|m, zxy γxy, δ)
∫

p(mxy = 1|m, zxy γxy, δ)dδ
> πm (2)

Where, p(mxy = 1|m, zxy γxy, δ) indicates a probability

that the area at x−y is drivable for a robot when height zxy

and remission value γxy is observed. πm is a threshold of

the probability to decide that the area is drivable. mxy = 1
means that the patch mxy is drivable for a robot. δ is a

variable to decide mxy = 1. The denominator of left hand is

a constant value to normalize the left hand side equation. The

authors investigated structured outdoor fields where weaves

drivable even height area and undrivable area. As a result,

it is shown that the mixture fields can be divided effectively

as following definitions.

1) Difference of heights z of neighbors’ patches is larger

than a certain constant and the difference of neighbors

remission values γ is larger than a constant. Then, the

region is defined as undrivable, because the area is

made from differential materials and contains steps.

2) The region is able to be defined as undrivable but there

are no steps, when difference of neighbors remission

values γ is larger than a certain constant (this constant

value is larger than one of the first definition).

3) The remission value γ in a patch is not identified as

drivable by self-supervised learning, then, it is regarded

that a robot has not to entry the area. Therefore, the

area is defined as undrivable.

Under these definitions, numerator of left hand side of Eq. 2

is rewritten as follows.

p(mxy = 1 | m, zxy γxy, δ)

=
(

1 − p(∆zxy > δz, ∆γxy > δγα | m)
)

+
(

1 − p(∆γxy > δγβ | m)
)

+ p(mxy = 1 | m, γxy) (3)

Each term of right hand side of this equation corresponds

to above definitions. δz , δγα, δγβ are thresholds respectively,

and they are defined as δγα < δγβ . Then, it is very important

problem how to decide these thresholds as the parameters

for accurate recognition. If δγα and δγβ were defined as

constant values, wrong recognizing the area might occur on

the various textured road which means the road has colored

patterns. Additionally, when δz is set to large constant, low

obstacles such as curbs could not be detected, or if δz is

small, false positives would increase by pose estimation error

caused by road noise. In this research, we propose a novel

laser-based classification approach that is suited for decision

of the thresholds for recognizing road surface in various

outdoor environments by using self-supervised learning.

B. Geometrical Road Surface Estimation

The first term p(∆zxy > δz, ∆γxy > δγα|m) of right hand

side in Eq. 3 can be factorized as follows.

p(∆zxy > δz, ∆γxy > δγα | m)

= p(∆zxy > δz | m)p(∆γxy > δγα | m) (4)

Factorized probabilities of geometrical hazard and undriv-

able regions decided by remission value can be considered

independently. This paragraph describes the probability of

right hand side first term p(∆zxy > δz | m) that indicates

hazardous probability estimated by geometrical definition.
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A point that has lowest height in the area at x− y with ǫ
size is defined as (Xi

t , Y i
t , Zi

t). The relationship between

the point and the neighbors point (Xj
u, Y j

u , Zj
u) is focused.

Where, u is a time at a robot observing the data. ∆zxy is

defined as
∣

∣Zi
t − Zj

u

∣

∣. A condition that the area is forbidden

to entry for a robot is defined as following.
∣

∣Zi
t − Zj

u

∣

∣ > δz (5)

Thus, the area is decided to be undrivable when the differ-

ence of Z direction of neighboring points is larger than a

certain constant value δz , and if the difference were smaller

than the constant the region would be drivable.

However, a problem would be generated in detecting lower

steps on field such as between road and curbs. The problem

occurs due to error of robot’s pose estimation required to

integrate 3D points to make a local map. The bump esti-

mation error on ordinary positive road surface would cause

to take off robot navigation from drivable road surface. In

order to overcome this problem in this research, we employ

Probabilistic Terrain Analysis (PTA) proposed by Thrun et

al. [10]. PTA can prevent road hazard errors caused by pose

estimation error effectively by probabilistic approach.

Thus, probability that bump between neighbors’ points

with ǫ exceeds a threshold δz is able to be calculated with

normal distribution as

p
(
∣

∣Zi∗
t − Zj∗

u

∣

∣ > δz

)

> π. (6)

Where, π is the error probability threshold. We set δz = 3 cm

with π=0.05 (10%) in this research. This equation is detailed

in [10].

C. Road Surface Classification using Remission Value

Right hand side of Eq. 3 and right hand side of Eq. 4

contain terms calculated by remission value. However, each

distribution by remission value acquired from an outdoor

field is different definitely by depending on the environment.

For this reasons, it is hard for the classification to be adapted

to the changing environment when thresholds δγα, δγβ for

remission value in Eq. 3 and Eq. 4 are constant values.

Therefore, these thresholds have to be adaptable for changing

environment. In addition, it is desirable to be able to identify

low height hazard such as vegetation as undrivable region

only to use remission value. However, supervised learning

can not be employed to be adapted for massive situation of

changing environment for the road surface classification. We

propose the novel road surface classification method with

self-supervised learning for decision of the thresholds. This

approach can identify drivable road surface by analysis and

classification of the remission value distribution that a local

map includes.

Left picture (a) of Fig. 4 shows example snapshots of a

local map colored by remission values in vegetation and

road. White points indicate strong remission values, and

darker points mean weak values. Difference of remission

values appears clearly in this environment that consists of

only two elements vegetation and road. On the other hand,

environment shown in Fig. 4 (b) of right side consists of

Fig. 4. Example of ground surface map of remission value of laser.

Fig. 5. Histogram of ground surface of laser in the fields. Top histogram
is in field (a) and bottom is in field (b).

hedge, dirt, braille block and also fallen leaves. It is difficult

to detect positive road surface or definite boundaries from

like this environment including the complex distribution of

remission value. Figure 5 shows histograms of remission

value that the environments shown in Fig. 4 (a) and (b)

include. The histogram in top of Fig. 5 indicates definite

difference of remission values between vegetation and road.

Meanwhile, each distribution shown in histogram of field (b)

in bottom of Fig. 5 spreads widely around hedge, dirt, braille

block and fallen leaves. We note that it is not suit for the

distribution of remission value to be classified by constant

thresholds in like this environment. Therefore, we propose

that remission value distribution of a local map is analyzed

and classified into several distributions. In this approach, an

acquired distribution is approximated as mixture of gaussian

distribution by using Expectation Maximization (EM) algo-

rithm [17].

D. EM Algorithm

EM algorithm is a representative approach to search prob-

abilistic parameters to maximize log likelihood of probabilis-

tic variables for observations. In this research, EM algorithm

is used to estimate probabilistic variables of the distribution

of remission value that a local map has as a mixture of

gaussian distribution. Thus, remission value distribution Γt =
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{γ1 . . . γj} of a map m that a robot has at time t is defined

as following:

p(Γt | α, µ, Σ) =
K

∑

k

αkN(Γt ; µk, Σk) (7)

Where, K is a number of gaussian distribution to approx-

imate. α = {α1 . . . αK} is a mixture proportion of the

distribution but there is constrained condition
∑K

i αi = 1.

µ = {µ1 . . . µK}, Σ = {Σ1 . . . ΣK} means mean and

variance of approximated gaussian distribution, respectively.

Using maximum likelihood estimation, parameters to maxi-

mize following log likelihood function are estimated for EM

algorithm.

log p(Γt | α, µ, Σ)

=

N
∑

n

log

K
∑

k

αk
1√

2πΣk

exp
{−(γn − µk)2

2Σk

}

(8)

Where, N is a number of observation data. This estimation

is computed by two steps, which are E-Step and M-Step, for

estimating maximum likelihood.

a) E-Step: E-Step computes conditional expectation

of likelihood function on the parameters now estimated.

Expectation Q(θ) for parameters θ = {α, µ,Σ} is to

Q(θ) =
N

∑

n

K
∑

k

p(k | γn; θ) log N(γn; µk, Σk). (9)

Where, p(k | γn; θ) means posterior probability of parameter

k. The probability is given by following expression based on

Bayes’ theorem.

p(k | γn; θ) =
N(γn; µk, Σk)αk

∑K
k N(γn; µk, Σk)αk

(10)

b) M-Step: From solved posterior probability

p(k | γn; θ), means µ, variances Σ and mixture proportion

α of mixture of gaussian distribution are solved. Means µ,

variances Σ and mixture proportion α are respectively given

by:

µk =

∑N
n p(k | γn; θ)γn

∑N
n p(k | γn; θ)

Σk =

∑N
n p(k | γn; θ)(γn − µk)2

∑N
n p(k | γn; θ)

αk =
1

N

N
∑

n

p(k | γn; θ). (11)

E. Road Surface Classification

Distribution of remission value that a map has is classi-

fied into K gaussian distributions from estimated mixture

of gaussian Θ = {θ1 . . . θK}. Fig. 6 shows an example

result of mixture of gaussian approximating the histogram

of distribution shown in top of Fig. 5. Here, a number of

classes to approximate the distribution is set to K = 3. This

classification approach and each distribution of remission

value are used to compute Eq. 3.
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Fig. 6. Histogram of remission value of laser in field (a). The red dashed
line shows fitted mixture of gaussian function.

First, the drivable probability p(mxy = 1 | m, γxy) of

the third term in Eq. 3 is estimated from classified each

distribution. The condition mxy = 1 is defined as area where

a robot currently drives. Mean of remission value in the patch

currently occupied by the robot is expressed as γro, and the

probability p(mxy = 1 | m, γxy) is computed by

p(mxy = 1 | m, γxy) = p(γxy = µro | Γt, γro, θ)

= exp
{−(γro − µro)

2

Σro

}

. (12)

Where, µro and Σro indicate mean and variance of drivable

region class selected from γro. The drivable class is decided

by γro using maximum likelihood estimation.

Secondly, it is shown to compute p(∆γxy > δγ | m) of

second term of Eq. 3 and right hand side in Eq. 4. When

remission values in nearby area belong to same class, the

difference of the value is modeled as following.

γi∗
t − γj∗

u ∼ N
(

0,Σ1/2

γ

)

(13)

Thus, the probability that the values in nearby area belong

different class is given by

p
(

γi∗
t 6= γj∗

u

)

> πγ (14)

Where, πγ is an error probability of remission value error.

In this research, p(∆γxy > δγα | m) is set to πγα =
0.159(68%). p(∆γxy > δγβ | m) is πγβ = 0.05(10%).
Therefore, δγα and δγβ are expressed as δγα = 1σγ and

δγβ = 1.64σγ , and expressed as follows.

p(∆γxy > δγα | m) ∼ (γi∗
t − γj∗

u )2 > Σγ

p(∆γxy > δγβ | m) ∼ (γi∗
t − γj∗

u )2 > 1.642Σγ

(15)

Where, Σγ indicates variance of remission value of the

drivable region class computed by EM algorithm, and σ2

γ =
Σro.

Σro is computed by executing analysis of remission value

distribution by EM algorithm at every calculation step in

driving. The classification and the thresholds are decided

adaptively in the environment. In this paper, a number of

classification is set to K = 3. This classification number

was decided by experimental investigation, and it is enough

to represent the distribution. Initial values of means and

variances at time t = 0 are set to {0.0, 0.5, 1.0} and

{0.05, 0.05, 0.01}, respectively. Initial mean and variance
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Fig. 7. Example snapshots of experimental fields in our university campus
(A) and Tsukuba Challenge course (B).

Fig. 8. Comparison of false positive rate of PTA and our approaches.

at time t to compute EM algorithm use the previous value

calculated at time t − 1 assumed as that the distribution of

remission value of a local map would not abrupt change.

After computing Eq. 3, the area is judged as drivable or not

by Eq. 2. In this paper, πm in right hand side of Eq. 2 is

defined as 0.55 (55%).

V. EXPERIMENTS

Our approach has been implemented and evaluated in

several environments in order to show the effectiveness.

The experiments are demonstrated in two outdoor structured

environments, our university campus (Field A) and whole

course of Tsukuba Challenge (Field B). Figure 7 shows

example snapshots of experimental fields. Field A in our

university campus includes paved road, curbs and little

vegetation. Another experimental Field B has hedge, dirt,

braille block, also fallen leaves and low vegetation, which

indicates diverse textured environment. A robot that is used

in this experiments goes at approx. 0.5 m/s speed. Total travel

distances of the robot in both of our university and Tsukuba

course are 533 m and 1037 m, respectively.

Figure 8 shows false positive rate detected on the drivable

region by road surface classification in our approach and

other methods. Other approach results as comparisons that

are computed by PTA that we implemented but no parameter

training (hand tuning) [10] and approach with constant

thresholds (δγα = 0.08, δγβ = 0.15) are also shown. Failure

rate in the figure is defined as a ratio of false positive for

total area where a robot travels. The false positive means

phantom obstacles in originally traversable area.

The result shows that the rate of PTA approach has a

larger error of 2.2% than the other approaches in Field

A that has hazardous low curbs. This result indicates that

it is hard to separate pose estimation error by road noise

vibration and detecting low centimeters curbs even if PTA is

introduced. On the other hand, analytical result of constant

threshold approach using constant thresholds is given lower

false positive of 1.5% than that of PTA approach. Because

the experimental field consists of uniform paved road make

the remission value analysis easy even if our self-learning is

not introduced. In Field B, however, it is difficult to classify

the road surface that is not uniform condition using constant

threshold method as constant thresholds for remission value

analysis. Thus, the false positive of the result increases to

2.2%. Moreover, false positive of PTA approach in Field B

including a few low curbs tends to decrease to 1.3%. Each

advantage for environments can be shown in these results of

PTA or constant threshold method. However, it is shown in

Fig. 8 that lowest false positives in these approaches are able

to be given by our approach with self-supervised learning.

This result shows that our approach is adaptable for the road

identification in the outdoor environments.

Figure 9 shows sample snapshots of classification results

in Field A of our university campus. Red patches mean un-

drivable area for a robot, and blue patches indicate drivable.

Figure 9 (a) indicates 3D point cloud colored by remission

value acquired from laser data. Figure 9 (b) and (c) represent

road surface analytical results by constant threshold methods

and our self-supervised approach, respectively. Figure A1 (b)

(center top picture) in Fig.9 shows that false positive of

undrivable region is generated vertically on road by pose

estimation error. On the other hand, accurate road surface

analysis is accomplished in the figure A1 (c) without false

positive even if pose estimation would be caused. In the

results shown in figure A2 (b) and A3 (b) in Fig. 9 where

both sides of the robot are vegetation area, only boundary

lines can be detected by constant threshold method. However,

our approach results shown in figure A2 (c) and A3 (c)

achieve accurate road surface estimation that left side whole

area returning strong remission value is able to be recognized

as undrivable area.

Figure 10 shows sample snapshots of classification results

in Field B of the course of Tsukuba Challenge. Figure

B2 (b) shows that only boundary lines can be detected by

constant threshold method in the field where both sides of

the robot are vegetation area (Fig. 7). Our approach result (c)

indicates that appropriate road identifications, which whole

vegetation area is classified as undrivable region, are able to

be achieved. In addition, figure B3 shows accurate estimation

in the area where has a lot of fallen leaves is also given

by our approach even if the fallen leaves makes. There are

a lot of fallen leaves or dirt area in the figure B3, which

makes the distribution of remission value not uniform. The

results of the figure B3 (b) shows a lot of false positives

caused by detecting wrong region with different remission

value from that of road due to constant thresholds of constant
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(a) 3D point cloud (b) constant threshold (c) self-supervised

Fig. 9. Comparison of terrain analysis result in Field A

(a) 3D point cloud (b) constant threshold(c) self-supervised

Fig. 10. Comparison of terrain analysis result in Field B

threshold method. However, analytical results B3 (c) shows

effectiveness of our approach that fewer false positive is

generated than results of B3 (b) by calculating distribution

of the remission of road including fallen leaves.

VI. CONCLUSION

In this paper, we proposed novel approach to road surface

classification using the remission value of a laser scanner.

Our approach using a laser is able to detect hazardous regions

including not only geometrical hazard such as structures or

curbs but undrivable area without geometrical information

such as vegetation. The approach accomplished accurate road

classification with fewer false positive using self-supervised

learning of the distribution of the remission value of a map.

This paper shows that the method is successfully verified

with accuracy of approximately 99% at both our university

campus and the testing course of Tsukuba Challenge.
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