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Abstract— In this paper, we propose a technique of learning
a noise pattern of visual odometry for accurate and consistent
6DOF localization. The noise model is represented by three
parameters of feature points as input: I) The number of
inliers among feature points, II) Average of distances be-
tween feature points, III) Variance of interior angles. The
correlation between these parameters and estimation error is
also described. To approximate the complicate noise model
accurately, our technique adopts Hybrid neural Fuzzy Inference
System (HyFIS) for a learning engine. The noise model is
created with HyFIS beforehand, and then the error of visual
odometry is estimated by the noise model and compensated
on the fly. Learning results of the noise model and results of
6DOF localization in untextured and dynamic environments are
presented, effectiveness of our technique is shown.

Index Terms— 6DOF Localization, Neuro-Fuzzy Learning,
Noise Model, Visual Odometry.

I. INTRODUCTION

THE ability of a mobile robot to know its position and

attitude, which is known as localization, is critical to

its autonomous operation and navigation. In recent years,

navigation methods mainly using vision sensors have gotten a

lot of attentions [1]-[3]. Because image sensors are relatively

inexpensive, compact, light-weight, and low-power. Above

all, the image sensors can represent a potential answer to

the need of new and improved perception capabilities for

mobile robots.

Visual odometry (VO) is a localization technique only

using vision sensors. VO estimates a 6 Degrees-Of-Freedom

(6DOF) pose of a robot with obtained images for each time.

VO can localize the robot in various environments where

are difficult to localize by general localization methods. For

example, a field where GPS data can not be obtained, rough

terrain, and sandy fields. A number of VO algorithms have

been proposed (e.g. using a single camera [4]-[6], using

stereo cameras[7]-[9]). These techniques enable to localize

accurately in various environments.

However, the VO might lead to fatal error from vari-

ous causes. For instance, being in untextured environments,

dynamic objects, inaccurate feature positions, outliers, and

rapid image alterations. The error would induce a crucial

localization error and spoil the accuracy and consistency

of VO. To solve these problems, several techniques have

been proposed: outlier rejection is achieved using preemptive

RANSAC [10] in [6], bundle adjustment is used to reduce

the accumulation error [8], and key frame adjustment is used

instead of the bundle adjustment [11]. These approaches

enable to localize accurately and stably only using image

sensors.

In this paper, we focus on pulsive noise of VO. For VO to

be suitable for practical use, it is important for the estimation

of VO to be stable and accurate. However, the pulsive noise

of VO often occurs when a robot is in untextured and

dynamic environments. The pulsive noise can result in fatal

error of localization. Even if the techniques described above

are used, it is difficult to cope with the pulsive noise. Because

enough feature points cannot be detected or observed feature

positions are inaccurate.

To solve the pulsive noise problem, in this paper, we

propose a technique to reduce the error of VO which is

different from the techniques described above. Especially,

the technique can reduce the effect of pulsive noises of

visual odometry. The technique detects a occurrence of the

pulsive noise using a noise model. The noise model of VO

which is represented by some parameters of feature points is

created, then is used for compensating the pulsive error. The

noise model has three parameters as input: I) The number

of inliers among feature points, II) Average of distances

between feature points, III) Variance of interior angles. These

parameters represent various situations of feature points and

express accuracy of VO. The noise model is obtained by

learning with Hybrid neural Fuzzy Inference System (HyFIS)

[12]. HyFIS can learn a nonlinear dynamical system and

obtain not only its optimal parameters but also its optimal

structure by a learning process. Finally, an error ratio of VO

is presented from the noise model on the fly, the estimation

error of VO is compensated using the error ratio.

Our technique is robust to variations in illumination.

Because the created noise model is only represented by geo-

metric parameters of feature points. Moreover, the technique

is low computational cost because the noise model is created

by the advance learning.

II. 6DOF LOCALIZATION WITH VISUAL ODOMETRY

In this section, our visual odometry method is described.

The visual odometry is a process of determining equivalent

odometry information using only camera images. Our VO

system has two calibrated cameras and they are used for

feature tracking to estimate a relative incremental motion

between two frames. The VO estimates a travel distance

as following steps. At first, feature points are detected in a

image by Shi-Tomasi feature detector [13] and Normalized

Cross-Correlation (NCC) is used for stereo matching. Then,
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Fig. 1. The flow of our visual odometry system.

the tracking of visual landmarks between consecutive frames

is performed by LK method using Gaussian pyramid. Next,

these feature points are triangulated at each frame based

on stereo correspondences. Finally, a motion parameter is

estimated using the framework of RANdom SAmple Con-

sensus (RANSAC) and 3-point algorithm [14][15][16]. They

help to reduce the number of outliers and make our system

more robust and accurate. Moreover, to keep accuracy and

consistency of VO in untextured and dynamic environments,

every image is segmented into squired grids. The most char-

acteristic feature point is chosen form the extracted feature

points in each grid. In order to reduce the accumulation error,

we use key frame adjustment [11]. Fig. 1 shows the flow

of our visual odometry. The details of our VO method is

described in [16].

III. HYBRID NEURAL FUZZY INFERENCE SYSTEM

Hybrid neural Fuzzy Inference System (HyFIS) is an

adaptive neural-fuzzy system for building and optimizing

fuzzy model [12]. Neural-Fuzzy system like HyFIS has two

advantages: the learning power of neural networks and the

defined structure of Fuzzy connection. Moreover, HyFIS has

a great learning engine which includes not only optimal

parameter learning but also optimal structure learning. The

details of HyFIS architecture and the learning engine are

described in following sections.

A. The architecture of HyFIS

Fig. 2 shows the architecture of HyFIS. HyFIS has five

layers for creating a fuzzy system. The structure eliminates

the disadvantage of a normal neural network which it’s

structure is indefinite. We use indices, i, j, k, and l for nodes

in layers 2, 3, 4, and, 5 respectively. The output from the

nth node of mth layer is denoted by y
[m]
n .

1) Layer 1: Nodes in layer 1 normalize each input to the

standard interval [−1 1] and transmit each input to the next

layer. In each parameter, a maximum absolute value of all

teaching data is used for the normalizing.

2) Layer 2: Nodes in layer 2 act as membership functions

to represent linguistic variables. In this paper, we use five

fuzzy sets for the Neural-Fuzzy model: Large Negative (LN),

Small Negative (SN), Zero (ZE), Small Positive (SP), and

Fig. 2. Architecture of HyFIS.

Large Positive (LP). We use following Gaussian functions

as the membership:

y
[2]
i = exp(−

(x − ci)
2

σ2
i

) (1)

Where i is a index of each membership function, c and σ
are the mean and the covariance of Gaussian distribution

respectively, and x is an input. Initially, the parameters of

membership function are spaced equally over the weight

space.

3) Layer 3: Each node in layer 3 represents a possible IF-

part of a fuzzy rule. The nodes perform the AND operation

as follows:

y
[3]
j = min

i∈Ij

(y
[2]
i ) (2)

Where Ij is the set of indices of the nodes which are

connected to the node j in layer 3.

4) Layer 4: Each node in layer 4 represents a possible

THEN-part of a fuzzy rule. The nodes perform the OR

operation to integrate the information leading to the same

output linguistic variables. Each node has a connection

weight wk,j of the node j in layer 3 to the node k in layer

4. The functions of this layer are expressed as follows:

y
[4]
k = max

j∈Ik

(wkjy
[3]
j ) (3)

Where Ik is the set of indices of the nodes which are

connected to the node k in layer 4.

5) Layer 5: Nodes in layer 5 act as a defuzzifier. A node

in this layer outputs a crisp output value. In this paper, Center

of Gravity method is used, the output is computed as follows:

y
[5]
l =

∑
l∈Il

y
[4]
k σlkclk

∑
k∈Ik

y
[4]
k σk

(4)

Where Il is the set of indices of the nodes which are

connected to the node l in layer 5.
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B. Hybrid learning algorithm

HyFIS has two kinds of learning algorithm; Structure

generation and Parameter learning. This section describes

both learning algorithms.

1) Structure generation: HyFIS generates a set of fuzzy

rules from teaching data to solve the conflict problem (e.g.

rules have the same IF-part but a different THEN-part) and

to delete redundant rules. This process consists of the two

steps. At first, maximum membership degrees are computed

to each input and output from teaching data. And then, the

linguistic pairs are selected from the result and generates

the fuzzy rules. If two or more generated fuzzy rules have

the same preconditions and consequents, the rule which has

maximum degree is used:

S = max
t∈IT D

(
M∏

n=1

µn,t(xn,t)) (5)

Where S is a set of pairs of IF and THEN part, ITD is a set

of indices of the data which has same rules, µt(xt) is each

membership degree, and M is the number of membership

functions of input and output.

2) Parameter learning: After the whole network structure

is established, HyFIS adjusts optimally the parameters of

membership functions (e.g. mean c and variance σ of Gaus-

sian distribution). In HyFIS, the gradient descent learning is

used to minimize an error function. The error function is as

follow:

E =
1

2

L∑

n=1

(dn − y[5]
n )2 (6)

Where E is an error degree, L is the number of teaching data,

dn and y[5] are a target and an actual output respectively. The

update rule is as follow:

Pt+1 = Pt − η
∂E

∂P
(7)

Where Pt is a parameter at the time t and η is the learning

rate. The details of the update process are described in [12].

IV. PARAMETERS OF NOISE MODEL

This section describes the parameters of noise model and

correlations between the noise parameters and estimation er-

ror. Our noise model estimates the accuracy of visual odom-

etry by three parameters. Other kinds of parameters (e.g.,

The maximum difference in height, average of Normalized

Cross Correlation for the stereo matching, and the number

of feature pairs when the number of inliers is maximum, etc)

have also been evaluated. From these results, we concluded

that the three parameters are important especially for the

VO accuracy. Fig. 3 is the simplified schematic of the noise

parameters.

A. Noise parameters

1) The number of inliers among feature points: The first

parameter is the number of inliers among feature points.

The number of inliers can be obtained using the framework

of RANSAC and 3-point algorithm in motion estimation

Fig. 3. Simplified schematic of noise parameters.

process [14][15][16]. Firstly, a hypothesis of motion pa-

rameter is generated from a set of 3 sample feature points

selected randomly from all points. And then, all feature

points observed before movement are reprojected into the

current image frame using the hypothesis. Next, we calculate

the reprojection error to each point. If the reprojection error

is smaller than a threshold (in this paper, 1.5 pix), the data is

regarded as inliers. Finally, we count the number of inliers.

2) Average of distances between two feature points: The

second parameter is the average of distances between two

feature points. Each distance is calculated with feature’s

locations in 3D space, and the average of distances is

computed as follows:

dave =
1

2N
(

N∑

i=1

dB,i +

N∑

j=1

dA,j) (8)

where dave is the average of distances, dA,j and dB,i are the

distance of each feature pair in a current stereo image (After

moving) and previous one (Before moving) respectively, and

N is the number of feature pairs. In this paper, N = 3 because

we adopt the 3-point algorithm for motion estimation.

3) Variance of interior angles of triangle: The third pa-

rameter is variance of interior angles of the triangle which is

made of selected 3 feature points. The variance is computed

as follows:

Vθ =
1

2N
(

N∑

i=1

(θ̄B − θB,i)
2 +

N∑

j=1

(θ̄A − θA,j)
2) (9)

where Vθ is the variance of interior angles, θA,j , θB,i and

θ̄A, θ̄B are interior angles and their mean values respectively.

The variance being close to 0 means that the triangle is close

to the regular triangle.

B. Correlations between noise parameters and estimation

error.

We conducted a experiment for showing the correlations

between each parameter and estimation error. The stereo

camera translated by 10 cm and images were obtained. Then,
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Fig. 4. Correlations between noise parameters and estimation error.

each noise parameter and estimation error were calculated.

The estimation error is a norm between an estimation dis-

tance and the true distance in 3D space.

Fig. 4 shows the results of the experiment. Each graph has

raw data plot and a cubic fitted curve of the raw data. The

fitted curves represent that there is a correlation between each

noise parameter and estimation error. The result shows that

the noise parameters can represent the estimation accuracy

of VO.

V. ERROR COMPENSATION WITH THE NOISE MODEL

This section describes an error compensation method with

the noise model. In this research, the noise model has 3

inputs and 1 output. The 3 inputs are the noise parameters

described above, the output is a noise ratio of VO in the

interval [0 1]. We use the noise ratio for the error compen-

sation. The error compensation uses the weighting addition

of two incremental motion hypotheses. The first one is the

hypothesis of VO and the second one is the hypothesis

of motion history and motion assumption. The conclusive

motion distance is the expected value calculated by the two

hypotheses and the noise ratio as follows:

dt = ptdvo,t + (1 − pt)dm,t , pt ∈ [0 1] (10)

where dt is the conclusive moving distance, pt is the noise

ratio, dvo,t is the hypothesis of VO, and dm,t is the hy-

pothesis of motion history and motion assumption. In this

paper, the dm,t is obtained from a previous motion distance

and assumption of plane motion. On the moving direction

along the x axis (Fig. 5) and rotation directions of each

angle, the previous motion distance is used as the second

hypothesis. On the horizontal direction along the y axis and

the vertical direction along the z axis, the second hypothesis

is 0 (no moving) with the plane motion assumption. Because,

considering our control system, structured pavement, and the

robot’s mechanical structure, we can say that the forward and

heading velocity don’t change rapidly and the robot hardly

Fig. 5. The mobile robot, named Infant and our stereo camera.

move vertically and horizontally. Therefore, each incremental

motion distance and rotation angle are computed from Eq.

10 by following equations:

dxt = ptdxvo,t + (1 − pt)dxt−1 (11)

dyt = ptdyvo,t (12)

dzt = ptdzvo,t (13)

dθt = ptdθvo,t + (1 − pt)dθt−1 (14)

where dx, dy, dz are incremental distances on each direction,

and dθ is a incremental rotation angle on each direction.@

VI. EXPERIMENTAL RESULTS

This section describes results of created noise model and

localization. We used a mobile robot platform named Infant

and a stereo camera for the experiments (Fig. 5). The cameras

were Qcam for Notebooks Pro (QVX-13NS) made by Logi-

cool. Our stereo camera was calibrated by Zhang calibration

method [17]. When observing a place about 5 m away,

distance accuracy was 10 cm (the error ratio is 2%). The

interface between the cameras and a computer was USB2.0,

and the resolution of images was VGA (640 480 pix). The

stereo image sequences were acquired by about 4 Hz, the

baseline of the stereo camera was 37 cm, and the depression

angle of cameras was 23 degrees. The experiments were done

by the system that the CPU is Intel Core2 Duo 2.33 GHz, the

RAM is 3.25 GB. OpenCV was used as an image-processing

library.

A. Creating noise model

Experiments were conducted for obtaining teaching data.

We translated the stereo camera by 10cm on the directions

along x or y axis, and obtained stereo images. Then, we

estimated moving distances with VO using the images and

calculated estimation error and the noise parameters for

teaching data. The estimation error is a norm between an

estimation distance and the true distance in 3D space. The

total number of the teaching data was 190.

Table I shows the results of structure learning. 16 rules

were selected from 625 of a total fuzzy rules. The maximum

degrees in the table were used for the weights of HyFIS

network wkj . Fig. 6 shows the learning results of parameters

of each membership function. The upper left figure shows the

initial distribution of all membership function, and the others

shows the learning results. The learning results of HyFIS was

used for the error compensation.
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TABLE I

RESULTS OF STRUCTURE LEARNING

IF THEN

Rules A B C y Degree

1 ZE SP ZE SP 0.450141

2 ZE SP SP SP 0.383080

3 ZE SP LP SP 0.212231

4 ZE LP ZE ZE 0.422216

5 SP ZE ZE SP 0.549189

6 SP ZE SP ZE 0.447151

7 SP SP ZE ZE 0.960294

8 SP SP SP ZE 0.878823

9 SP SP LP LP 0.792584

10 SP LP ZE ZE 0.806533

11 SP LP SP ZE 0.462327

12 LP ZE ZE ZE 0.578093

13 LP ZE SP SP 0.391987

14 LP SP ZE ZE 0.496780

15 LP SP SP ZE 0.636455

16 LP SP LP SP 0.397486
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Fig. 6. Learning results of member functions.

B. Localization result

In this section, we show experimental results of 6DOF

localization: x = [x, y, z, ψ, φ, θ]. Two test runs were con-

ducted in untextured and dynamic environments. Fig. 7

shows examples of tracking images in the experimental

fields. The most of the fields were made of untextured

pavement and had many moving objects (e.g. pedestrians). In

the experiments, the robot moved about 0.3 m/s , traveled

about 45 m in the first run, about 70 m in the second run.

Ground truth was obtained by a sensor fusion by Unscented

Kalman filter using DGPS, IMU, and wheel odometry [18].

Fig. 8 shows the 6DOF localization result at the first run

and Fig. 9 shows the result on the x-y surface. Fig. 8 and

Fig. 9 have three trajectories; Ground truth, VO, and VO with

Fig. 7. Feature tracking in an untextured and dynamic environment.
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Fig. 8. 6DOF localization result (Run1).

error compensation. The localization result of simple VO had

a big error. On the other hand, the accuracy of VO with error

compensation was improved as compared with the simple

VO. Especially, the error of the roll angle was reduced. Fig.

10 shows variations of roll angle as a function of time in the

first run. This figure shows that pulsive noises sometimes

occur when the robot starts to move and curve. This pulsive

noises resulted in a big error of the roll angle. However, the

figure also shows that the learned noise model can detect the

pulsive noises and the error compensation reduced the effect

of the pulsive noises. The result shows that the localization

accuracy is improved.

Fig. 11 shows the 6DOF localization result in 3D space

at the second run and Fig. 12 shows the result on the x-y

place. The result shows that the accuracy of VO with error

compensation is improved as well as the result at the first

run.

Fig. 13 is a comparison of resultant error of simple VO

and VO with error compensation as a function of time in both

experiments. In both results, we obtained precise results as

compared with the simple VO all of the time. Especially, the
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Fig. 9. Localization result on the x-y surface (Run1).

5194



0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

1.5

Time [s]

d
ro

ll
 [

d
eg

]

 

 

 VO

 VO + Error Compensation

Fig. 10. Variations of the roll angle (Run1).

−10
−5

0
5

−35−30−25−20−15−10−50

0

2

4

 

Y [m]X [m]

 

Z
 [

m
]

Ground Truth

Visual Odometry

VO + Error Compensation

Fig. 11. 6DOF Localization result (Run2).

final position error was reduced by half or more.

VII. CONCLUSION

In this paper, we proposed a technique for learning a noise

model of visual odometry for accurate and consistent 6DOF

localization. The technique learns the noise model repre-

sented by three parameters of feature points. To approximate

accurately the complicate noise model, our technique adopts

Hybrid neural Fuzzy Inference System (HyFIS) for a learning

engine. The noise model is learned on HyFIS beforehand,

and then the error of visual odometry is estimated with the

noise model and compensated on the fly. Learning results and

6DOF localization results in untextured and dynamic envi-

ronments were presented, the effectiveness of our technique

was shown.
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