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Abstract—Wheeled inverted pendulum (WIP) models have
been widely used in the field of autonomous robotics and
intelligent vehicles. A novel transportation system, WIP-car is
proposed in this paper, which is composed of a mobile wheeled
inverted pendulum system, a driven chair, an acceleration pedal
and a deceleration pedal, which are used to drive the chair
forward or backward such that the car can be accelerated or
decelerated. The neural-adaptive implicit control is designed
for dynamic balance and stable tracking of desired trajectories
of WIP-car. Neither the dynamics nor the dimension of the
regulated system is required to be known, while the relative
degree of the regulated output is assumed to be known. Under
the assumption that WIP-car is feedback linearizable, adaptive
neural network is introduced to cancel the inversion dynamics
error. Simulation results demonstrate that the system is able to
track reference signals satisfactorily with all closed loop signals
uniformly bounded.

I. INTRODUCTION

Wheeled inverted pendulum models have attracted a lot

of research attention recently [4], [5], [6]. Many practical

systems based on WIP models have been proposed, such

as JOE [4], B2 [9], Segway [8], etc. Among these systems,

the Segway PT has been proven to be a popular personal

transporter. The WIP system has been successfully applied in

Segway vehicles, however, one deficiency of Segway system

is that drivers can only stand on the Segway vehicles during

driving, which is not convenient for a long-time operation.

Therefore, it is more convenient that a seat can be mounted

on the vehicle such that the operation can drive WIP like a car.

Another limitation of Segway is that users need stand upright

during moving, especially when accelerating or climbing a

slope, such that the moving forward-to-backward will be

uncomfortable. To overcome these problems, a new mobile

wheeled transportation system called WIP-car in Figs. 1 and

2 is introduced in this study. A novel structure including a

WIP system and a driven chair by pedals is introduced into

the design of WIP-car system. The acceleration/decelleration

pedals are mounted under the human feet, and the pedals can

drive the chair forward or backward such that the WIP-car is

accelerated or decelerated.

This work is supported by the National Natural Science Foundation of
China Nos. 60804003 and 60935001, Shanghai Pujiang Program under grant
No. 08PJ1407000.

Z. Li, Y. Li and N. Ding are with the Department of
Automation, Shanghai Jiao Tong University, Shanghai, China,
200240. (Email:zjli@ieee.org), and C. G. Yang is with
Department of Bioengineering, Imperial College London, U.K.
(Email:c.yang@imperial.ac.uk)

It is apparent that the motion of a transportation system

based on wheeled inverted pendulum is governed by under-

actuated configuration i.e. the number of control inputs are

less than the number of degrees of freedom to be stabilized

[7]. This makes it difficult to apply the conventional robotics

approach for controlling the Euler-Lagrange systems. Al-

though wheeled inverted pendulums systems are intrinsically

nonlinear, it is often possible to obtain a feedback linearized

model of the system. If the system is operating around

an operating point, and the signals involved are small, a

linear model that approximates the nonlinear system in the

region of operation can be obtained. Several techniques for

the design of controllers and analysis techniques for linear

systems were applied. In [4], dynamics was derived using a

Newtonian approach and the control was designed based on

the dynamic equations linearized around an operating point.

In [10], dynamic equations of the inverted pendulum were

studied involving pitch and rotation angles of the two wheels

as the variables of interest, and in [11] a linear controller

was designed for stabilization considering robustness as a

condition. In [12], a linear stabilizing controller was derived

by a planar model without considering yaw. In [16], the exact

dynamics of two-wheeled inverted pendulum was investigated,

and linear feedback control was developed on the dynamic

model.

Neural Network systems have been credited in robotics

controls and applications as powerful tools capable of pro-

viding robust controllers for systems [15], [13], [19], [14].

In practical control applications, it is desirable to have

systematic methods of ensuring stability, robustness, and

performance of the overall system. Neural network implicit

control approaches have been developed in [17], [2], and [3].

However, the above mentioned papers concern little on the

under-actuated systems such as wheeled inverted pendulum

transportation systems with nonholonomic constraints, which

is to be investigated in the paper.

In this paper, we consider the implicit control for dynamic

balance and stable tracking of desired trajectories of WIP-

car, in which both the dynamics and the dimension of the

regulated system may be unknown. However, the relative

degree of the regulated output is assumed to be known. Under

the assumption that WIP-car is feedback linearizable, adaptive

neural network is introduced to cancel the inversion dynamics

error. Ultimate boundedness of the tracking error is shown

using Lyapunov’s direct method.
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II. SYSTEM STRUCTURE AND DYNAMICS

The transportation system studied in this paper, WIP-car, as

illustrated in Fig. 1, is obviously different from the Segway

system. Fig. 2 shows the principle of the WIP-Car system.

The following variables are in order to describe the system

(refer to Figs. 1 and 2): τl, τr: the torques of the left and right

wheels; α: the tilt angle of the pendulum; θ: the direction

angle of the mobile platform; r: the radius of the wheels; d:

the distance between the two wheels; 2l: the length of the

pendulum; m: the mass of the pendulum; M : the mass of the

chair and human; mw: the mass of each wheel; Im: inertial

moment of mobile pendulum; Iw: the inertia moment of each

wheel; g: gravity acceleration.

From Fig. 1, we see that the chair is controlled by the

acceleration/deceleration pedals. For the acceleration, the

acceleration pedal drives the chair forward to produce the

positive tilt angle of the pendulum, which can accelerate the

velocity of the WIP-car, conversely, the deceleration pedal

makes the chair backward to produce the negative tile angle

of the pendulum, which can deceleration the velocity.

Consider the following wheeled inverted pendulum dynam-

ics described by Lagrangian formulation:

M(q)q̈ + V (q, q̇)q̇ + G(q) + D(t) = Bτ + f (1)

where q = [q1, q2, q3, q4]
T = [x, y, θ, α]T ∈ R4 is the

vector of generalized coordinates with x, y as the position

coordinates, θ as the heading angle, and α as the tilt angle

as shown in Fig. 1. M(q) ∈ R4×4 is the inertia matrix,

V (q, q̇)q̇ ∈ R4 is the vector of Coriolis and Centrifugal forces,

G(q) ∈ R4 is the vector of gravitational forces, D(t) ∈ R4

is the vector of the bounded external from the environment,

B ∈ R4×2 is a full rank input transformation matrix and

is assumed to be known because it is a function of fixed

geometry of the system; τ ∈ R2 is the vector of control

inputs, f = JT λ ∈ R4 denotes the vector of constraint forces,

J = [Jv, 0]T ∈ R4 is Jacobian matrix with Jv defined later,

and λ ∈ R1 are Lagrangian multipliers corresponding to the

nonholonomic constraints, respectively.

If q is partitioned into qv = [x, y, θ]T and α, we obtain

M(q) =

[

Mv Mvα

Mαv Mα

]

, V (q, q̇) =

[

Vv Vvα

Vαv Vα

]

,

G(q) =

[

Gv

Gα

]

, D(t) =

[

dv

dα

]

, B(q) =

[

Bv 0
0 Bα

]

τ =
[

τv 0
]T

where Mv and Mα describe the inertia matrices for the

mobile platform and the inverted pendulum, respectively, Mvα

and Mαv are the coupling inertia matrices of the mobile

platform and the inverted pendulum, and Vv and Vα denote

the Centripetal and Coriolis torques for the mobile platform

and the inverted pendulum, respectively. Vvα and Vαv are

the coupling Centripetal and Coriolis torques of the mobile

platform and the inverted pendulum. Gv and Gα are the

gravitational torque vectors for the mobile platform and the

inverted pendulum, respectively. τv is the control input vector

for the mobile platform, and dv(t) and dα(t) denote the

external disturbances on the mobile platform and the inverted

pendulum, respectively [4].

Assumption 2.1: The WIP-car is subjected to known non-

holonomic constraints.

Remark 2.1: In actual implementation, we can adopt the

methods of producing enough friction between the wheels of

the mobile platform and the ground such that the assumption

of nonholonomic constraints holds.

Remark 2.2: The external disturbance is time-varying but

bounded, i.e., supt≥0‖D(t)‖ ≤ c, where c is a finite positive

constant.

A. Reduced Dynamics

The vehicle subjected to nonholonomic constraints can be

expressed as

Jv q̇v = 0 (2)

where Jv = [cos(θ), − sin(θ), 0] is the kinematic constraint

matrix. Assume that the annihilator of the co-distribution

spanned by the covector fields Jv is an 1-dimensional smooth

nonsingular distribution ∆ on R2. This distribution ∆ is

spanned by a set of smooth and linearly independent vector

fields H1(q) and H2(q), i.e., ∆ = span{H1(q), H2(q)},

which in the local coordinates satisfy the following relation

HT JT
v = 0 (3)

where H = [H1(q),H2(q)] ∈ R3×2. Note that HT H is of full

rank. Constraint equation (2) implies the existence of vector

ς̇ = [ω, v]T ∈ R2 with ω representing the component of the

angular velocity of the platform perpendicular to the line of

wheel centres and v representing the magnitude of the velocity

of the mid-point of the wheel centres, in other words, the

heading velocity of the platform, such that

q̇v = R(q)ς̇ . (4)

Considering (4) and its derivative, letting ζ = [ς, α]T , and

multiplying both sides of (1) by HT to eliminate JT
v , the

dynamics of wheeled inverted pendulum can be expressed as

M1(ζ)ζ̈ + V1(ζ, ζ̇)ζ̇ + G1(ζ) + D1 = B1τ (5)

M1(ζ) =

[

RT MvH RT Mvα

MαvR Mα

]

V1(ζ, ζ̇) =

[

RT MvṘ + RT VvR RT Vvα

MαvṘ + VαvR Vα

]

,

G1(ζ) =

[

RT Gv

Gα

]

D1 =

[

RT dv

dα

]

, B1τ =

[

RT Bvτv

0

]

.

By exploiting the physical properties of mobile wheeled

inverted pendulum embedded in the dynamics of M1(q),
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V1(q, q̇), and G1(q) building on Lagrangian approach, one

can design a controller delivering better performance than

without which will be explained below. According to the

structure of the dynamics of the wheeled inverted pendulum

by Lagrangian formulation, we know that:

M1(ζ) =





m11 0 0
0 m22 m23

0 m32(ζ3) m33



 ,D1 =





d1

d2

d3





V1(ζ, ζ̇) =





v11 0 v13

0 0 v23

v31 0 0



 , B1τ =





τ1

τ2

0





G1(ζ) =
[

0 0 g3

]

(6)

where m22, m33 are unknown constants, m11, m23,

m32(ζ3), v11, v13, v23, v31, g3(ζ3), and d1, d2, d3 are

unknown functions.

For clarity, define the tracking errors and the filtered

tracking errors as ej = ζj−ζjd, rj = ėj +Λjej , ζ̇j = ζ̇jr+rj ,

ζ̈j = ζ̈jr + ṙj , where Λj is a positive number, and j = 1, 3.

III. PROBLEM FORMULATION AND CONTROL DESIGN

It is observed that the dynamics of wheeled inverted pendu-

lum (5) can be represented by the nonlinear non-affine MIMO

form as followings:

ζ̇ = F (ζ, u), Y = H(ζ) (7)

where ζ = [ζ1, ζ2, ζ3] ∈ R3 is system states, Y ∈ R
n−l

with n = 4 and l = 1 denoting the system output, and it has

derivatives up to third order. A matrix of Y and its derivatives

is constructed as [Y, Y (1), Y (2)] ∈ R
(n−l)×3. The symbol u ∈

R
n−l denotes the system input, function H : R

3 → R
n−l is

a partially unknown function, and function F : R
3×(n−l) →

R
(n−l) is a partially unknown vector field with respect to input

u.

System (7) is a general description of the dynamics of the

nonlinear WIP-car, for which the control input is nonaffine.

We see that affine nonlinear systems and linear systems are

special cases of (7), such that by designing a controller for

(7), we actually include more general systems as well.

Define Θj(ζ) = Lj−1
f H(ζ) for j = 1, · · · , 3, where LfH

denotes the Lie derivative of the function H(ζ) with respect

to the vector field F (ζ, u). As n − l > 2, we see that the

system is input-output linearizable with strong relative degree

such that there exists function Θ4 independent of u and that

the mapping Θ(ζ) = [Θ1(ζ), Θ2(ζ),Θ3(ζ)] has a Jacobian

matrix which is nonsingular for all z ∈ Ωζ . Thus, Θ(ζ) is a

diffeomorphism on Ωζ . Let φ = [Θ1(ζ), Θ2(ζ),Θ3(ζ)] and

ϑ = Θ4(ζ), then system (7) can be expressed in the normal

form as follows:

ϑ̇ = Z(φ, ϑ)

φ̇j = φj+1, j = 1, 2

φ̇3 = N (φ, ϑ, u)

Y = φ1 (8)

where Z(φ, ϑ) = [φ,LfΘρ+1(ζ), · · · , LfΘn−l(ζ)],
N (φ, ϑ, u) = L3

fH is C1 for (φ, ϑ, u) ∈ R(n−l)×(n−l+1)

and ζ = Θ−1(φ, ϑ), for (φ, ϑ, u) ∈ V = {(φ, ϑ, u)|(φ, ϑ) ∈
Θ(Ωζ),U ∈ Ωu}.

The control objective is that the output Y can track a

desired output Yd(t) such that the tracking error converges

to a neighborhood of zero, i.e.‖Y (t) − Yd(t)‖ ≤ δ, with a

small δ, while all the states and the control are bounded. The

reference trajectory Yd(t) is given by the following reference

model

φ̇di = φd(i+1), 1 ≤ i ≤ ρ − 1

φ̇dρ = Fd(φd)
Yd = φd1

(9)

where ρ ≥ 3 is a constant index, φd = [φd1, φd2, · · · , φdρ] ∈
R

(n−l)×ρ are the state matrix of the reference system, Yd ∈
R

n−l is the system output and Fd : R
(n−l)×ρ → R

n−l is a

known function.

Assumption 3.1: The reference trajectory Yd(t) and its

third derivatives remain bounded.

Assumption 3.2: The zero dynamics of system (8) is estab-

lished by ϑ̇ = Z(0, ϑ) and they are exponentially stable. In

addition, there exist Lipschitz constants p1 and p2 for Z(φ, ϑ)
such that

‖Z(φ, ϑ) −Z(0, ϑ)‖ ≤ p1‖φ‖ + p2, ∀ (φ, ϑ) ∈ Θ(Ωζ)

Under Assumption (3.2), by the converse Lyapunov theo-

rem, there exists a Lyapunov function V0(ϑ) which satisfies

the following inequalities:

γ1‖ϑ‖
2 ≤ V0(ϑ) ≤ γ2‖ϑ‖

2 (10)

∂V0

∂ϑ
Z(0, ϑ) ≤ −λa‖ϑ‖

2 (11)

‖
∂V0

∂ϑ
‖ ≤ λb‖ϑ‖ (12)

where γ1, γ2, λa, λb are positive constants.

Lemma 3.1: [20](Global Implicit Function Theorem) As-

sume that f : Rn × Rm → Rm is a continuous mapping

and it is continuously differentiable in the second variable

u ∈ Rm. If |[∂f(x,u)
∂u

]ii| −
∑

j 6=i |[
∂f(x,u)

∂u
]ij | ≥ d, ∀(x, u) ∈

Rn × Rm, i = 1, · · · , m for a fixed constant d > 0, then

there exists a unique mapping g : Rn → Rm such that

f(x, g(x)) = 0. Moreover, this mapping g is continuous, then

the obtained g is also continuously differentiable.

Remark 3.1: By using the Global Implicit Function The-

orem, we take neural network as a function approximator

which emulates a given nonlinear function up to a small error

tolerance, where an analysis of Lyapunov functions for semi-

globally uniformly ultimate boundedness will be involved.

Define vectors φd and Υ as φd = [Yd, Y
(1)
d , Y 2

d ], φd ∈
R(n−l)×3, Υ = φ − φd, and define the filtered tracking error

as r = Υ[Λ, 1]T , r ∈ Rn−l, where the vector Λ = [λ1, λ2, ]
so that s2 + λ2s + λ1 is Hurwitz and as a result, Υ → 0 as
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r → 0. Then, the time derivative of the filtered tracking error

can be written as

ṙ = N (φ, ϑ,U) − Y
(3)
d (t) + Υ[0 Λ]T (13)

where r = [r1, r2, · · · , rn−l]
T .

Add and subtract N̂ (φ, ϑ, u) on the right hand side of

equation (13), we obtain

ṙ = N (φ, ϑ, u) − N̂ (φ, ϑ, u) + N̂ (φ, ϑ, u)

−Y
(3)
d (t) + Υ[0 Λ]T

= ∆ + ν − Y
(3)
d (t) + Υ[0 Λ]T (14)

where ∆ is modeling error: ∆ = N (φ, ϑ, u)−N̂ (φ, ϑ, u), and

ν is the pseudo control, which is defined as ν = N̂ (φ, ϑ, u).
According to [1], the pseudo control is chosen as

ν = −Kpr + Y
(3)
d − Υ[0 Λ]T + νdc − νad (15)

where Kp is diagonal positive, Y
(3)
d is the third derivative of

the reference output, νdc is the output of a linear dynamic

compensator, and νad is the adaptive control signal designed

to cancel ∆. Substituting (15) into the output dynamics (14),

we have

ṙ = −Kpr + νdc − νad + ∆ (16)

According to [1], the following linear dynamic compensator

is introduced

η̇ = Acη + bce(t), vdc = ccη + dce(t) (17)

where η ∈ Rn−1 and η needs to be at least of dimension

n− 1. We can obtain the augmented tracking error dynamics

Ẋ =

[

ṙ

η̇

]

= A

[

r

η

]

+ B[vad − ∆] (18)

A =

[

K −bcc

0 Ac

]

+

[

−bdc 0
bc 0

]

(19)

B =
[

b 0
]T

where

b =
[

0 0 0 . . . 1
]T

, cc =
[

0 1 0 . . . 0
]T

Theorem 3.1: [18] The LTI system ẋ = Amx is asymp-

totically stable if and only if, given any symmetric positive-

definite matrix Q, there exists a symmetric positive-definite

matrix P , which is the unique solution of the so-called

Lyapunov equation PAm + AT
mP = −Q.

A. Neural Network Approximation

In this paper, the following RBFNN [17] [18] is used to

approximate the continuous function hrbf (Z) : Rq → R:

hrbf (Z) = WT S(Z), where the input vector Z ∈ Ω ⊂ Rq ,

weight vector W = [w1, w2, ..., wl]
T ∈ Rl, the NNs node

number l > 1, and S(Z) = [s1(Z), ..., sl(Z)]T , with si(Z)

being chosen as the commonly used Gaussian functions,

which have the form

si(Z) = exp
[

−(Z − χi)
T (Z − χi)/β2

i

]

, i = 1, 2, ..., l
(20)

where χi = [χi1, χi2, ..., χiq]
T is the center of the receptive

field and βi is the width of the Gaussian function. It has been

proven that RBFNN can approximate any continuous function

over a compact set ΩZ ⊂ Rq to arbitrary any accuracy as [17],

[18] hrbf (Z) = W ∗T S(Z) + ε, ∀Z ∈ ΩZ , where W ∗ is

an ideal constant weight vector, and ε is the approximation

error. The stability results obtained in NN control literature

are semiglobal in the sense that, as long as the input variables

Z of the NNs remains within some pre-determined compact

set ΩZ ⊂ Rq where the compact set ΩZ can be made as

large as desired, there exists controller(s) with sufficiently

large number of NN nodes such that all the signals in the

closed-loop remain bounded.

Assumption 3.3: On the compact set Ωz , the ideal NN

‖W ∗‖ ≤ wm.

There exists an ideal constant weight W ∗ such that |ε| ≤ ε∗

with constant ε∗ > 0 for all Z ∈ ΩZ . The ideal weight vector

W ∗ is an artificial quantity required for analytical purposes.

W ∗ is defined as the value of W that minimizes |ε| for all

Z ∈ Ω ⊂ Rq , i.e. W ∗ = arg minW∈Rl{supZ∈ΩZ
|h(Z) −

WT S(Z)|}. In general, the ideal NN weight, W ∗, is unknown

though constant, while its estimate, Ŵ , is used for controller

design as will be shown later.

Considering the unknown continuous function ∆ can be

approximated by the neural network ∆ = WT S(x) + E(x),
where the input vector x = [φ, θ, u]T are the input variables

to the neural networks; S(Z) ∈ Rp is a vector of known

continuous basis functions, with p denoting the number of

neural nodes; W ∈ Rp is adaptable weights; and E(x) is the

approximation error which is bounded over the compact set

Ωx, i.e., ‖E(Z)‖ ≤ ε̄, where ε̄ > 0 is an known constant.

B. Control Design and Its Stability

In (18), the adaptive signal is chosen to be

νad = ŴT S(x) − η(t) (21)

where Ŵ is estimate of W ∗ that is updated according to the

following adaptation laws

˙̂
W = −ΓS(x)BT PX (22)

where P is the solution of the Lyapunov equation AT P +
PA = −Q for some Q > 0, and A can be found in (19), and

η(t) = −KX/‖X‖ (23)

with the positive constant K satisfying K ≥ ε̄. Consider

the following Lyapunov function candidate V = 1
2XT PX +

W̃T Γ−1W̃ , where W̃ = Ŵ −W , its time derivative is given

by

V̇ = −
1

2
XT QX + XT PB[νad − ∆] + W̃T Γ−1

i
˙̃W (24)
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Considering X = X̃ + X̂ , we have

V̇ ≤ −
1

2
λmin(Q)‖X‖2 + W̃T Γ−1

i
˙̃W

+XT PB[νad − W ∗T S(x) − E(x)]

≤ −
1

2
λmin(Q)‖X‖2 + XT PBW̃T S(x)

−XT PBE − XT PBη(t) + W̃T Γ−1
i

˙̃W (25)

Consider (22) and (23), we can obtain

V̇ ≤ −
1

2
λmin(Q)‖X‖2 + XT PBW̃T S(x)

+‖X‖‖PB‖‖E‖ − K‖PB‖‖X‖ + W̃T Γ−1
i

˙̃W

≤ −
1

2
λmin(Q)‖X‖2 + W̃T (Γ−1

i
˙̃W + S(x)BT PX)

≤ −
1

2
λmin(Q)‖X‖2 < 0 (26)

From the previous stability analysis, we know that φ is

bounded. We assume that

‖φ‖ ≤ ‖φ‖max (27)

where ‖φ‖max is a positive constant. For all the above,

because of the approximation of NNs, ‖X‖ converges to

a small set including the origin as t → ∞. According to

Assumption 3.2, there exists a Lyapunov function V0(ϑ).
Differentiating V0(ϑ) yields

V̇0(ϑ) =
∂V0

∂ϑ
Z(0, ϑ) +

∂V0

∂ϑ
[Z(φ, ϑ) −Z(0, ϑ)].(28)

Noting (10)-(11), and (28) can be written as

V̇0(ϑ) ≤ −λa‖ϑ‖
2 + λb‖ϑ‖(Lφ‖φ‖ + Lf ). (29)

Noting (27), we have V̇0(ϑ) ≤ −λa‖ϑ‖2 +
λb‖ϑ‖(Lφ‖φ‖max + Lf ). Therefore, V̇0(ϑ) ≤ 0,

whenever ‖ϑ‖ ≥ λb

λa

(Lφ‖φ‖max + Lf ). By letting

Lϑ = λb

λa

‖ϑ‖(Lφ‖φ‖max + Lf ), it can be shown that

ϑ is bounded.

IV. SIMULATION

The wheeled inverted pendulum shown in Fig. 1 is sub-

jected to the following constraints: ẋ sin θ − ẏ cos θ = 0.

Using Lagrangian approach, we can obtain the reduced dy-

namics for qv = [x, y, θ]T , α, J = [sin θ,− cos θ, 0, 0], and

ζ̇ = [ω, υ, α̇]T as

M1 =





m11 0 0
0 m22

1
2 (m + M)lcα

0 1
2 (m + M)lcα (m + M)l2 + Im



 ,

V1 =





1
2 (m + M)l2s2αα̇ 0 1

2 (m + M)l2ωs2αα̇
0 0 −(m + M)lsαα̇

− 1
2 (m + M)l2ωs2α 0 0





G1 =
[

0 0 −(m + M)glsα
]T

where cα = cos α, sα = sin α, m11 = d2

4r2 (2Mwr2 + 2Iw +
4r2

d2 Im +4 (m+M)r2l2

d2 sin2 α) and m22 = 1
r2 (2Mwr2 +2Jw +

(m + M)r2). In the simulation, we choose the parameters

Iw = 0.5kgm2, Mw = 0.2kg, Im = 2.5kgm2, M = 50.0kg,

m = 5.0kg, l = 1.0m, d = 0.5m, r = 0.5m, ζ(0) =
[−0.2, 0, π/18]T , ζ̇(0) = [0.0, 0.1, 0.0]T . The disturbances

from environments on the system are introduced as 1.0 sin(t),
1.0 cos(t) in the simulation model. The desired trajectories are

chosen as θd = 0.2t rad, αd = 0 rad, and the initial velocity

is 0.1m/s. The system state is observed through the noisy

linear measurement channel, and zero-mean Gaussian noises

are added to the state information. All noises are assumed

to be mutually independent. The noises have variances corre-

sponding to a 5% noise to signal radio. The neural-adaptive

network control is without any knowledge of system dynamics

under the random noise inputting to the controllers. The input

vector is Z1 = [ζ̈1r, ζ̇1r, ζ̇3, ζ3]
T ∈ R4. Neural networks

ŴT
1 S1(Z1) contains 32 nodes, with centers µl(l = 1, ..., l1)

evenly spaced in [−1.0, 1.0] × [−1.0, 1.0] × [−1.0, 1.0] ×
[−1.0, 1.0]. Neural networks ŴT

3 S3(Z3) contains 729 nodes,

with centers µl(l = 1, ..., l2) evenly spaced in Z3 =
[ζ̈3r, ζ̇3r, r3, ζ̇1, ζ̇3, ζ3]

T ∈ R6, [−1.0, 1.0]× [−0.1, 0.1]×
[−1.0, 1.0]×[−3.0, 3.0]×[−1.0, 1.0]×[−1.0, 1.0]. The design

parameters of the above controllers are: k1P = 200.0, Λ1 =
5.0, k2P = 6000.0, Λ2 = 10.0, γ11 = γ12 = 3000, γ31 =
γ32 = 3500, Ŵ1(0) = (0.1), Ŵ2(0) = (0.1).

The direction angles tracked by three control approaches are

shown in Fig. 3, and the input torques are shown respectively

in Fig. 6, the tilt angles for the dynamic balance and the

stable velocities under three control approaches are shown

in Figs. 4 and 5, respectively. From these figures, even if

without the prior knowledge of the system, we can obtain

good performance by the proposed neural network control.

V. CONCLUSIONS

In this paper, a transportation system consisting of a MWIP

system and a drivable chair is proposed and an adaptive

neural network implicit control design has been carried out

for dynamic balance and stable tracking of desired trajectories

of WIP-car, in the presence of unmodelled dynamics, or

parametric/functional uncertainties.
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Fig. 2. Mobile wheeled inverted pendulum with drivable chair
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Fig. 3. Tracking the direction angle by the neural-adaptive network
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Fig. 4. Tracking the desired tilt angle by neural-adaptive network
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Fig. 5. The stable velocity by the neural-adaptive network control
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Fig. 6. Input torques by neural-adaptive network control
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