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Abstract—When a camera is affixed on a dynamic mobile
robot, image stabilization is the first step towards more complex
analysis on the video feed. This paper presents a novel electronic
image stabilization (EIS) algorithm for highly dynamic mobile
robotic platforms. The algorithm combines optical flow motion
parameter estimation with angular rate data provided by a
strapdown inertial measurement unit (IMU). A discrete Kalman
filter in feedforward configuration is used for optimal fusion of
the two data sources. Performance evaluations are conducted
using a simulated video truth model (capturing the effects of
image translation, rotation, blurring, and moving objects), and
live test data. Live data was collected from a camera and IMU
affixed to the DAGSI Whegs mobile robotic platform as it nav-
igated through a hallway. Template matching, feature detection,
optical flow, and inertial measurement techniques are compared
and analyzed to determine the most suitable algorithm for this
specific type of image stabilization. Pyramidal Lucas-Kanade
optical flow using Shi-Tomasi good features in combination with
inertial measurement is the EIS algorithm found to be superior.
In the presence of moving objects, fusion of inertial measurement
reduces optical flow root-mean-squared (RMS) error in motion
parameter estimates by 40%.

I. INTRODUCTION

Electronic Image Stabilization (EIS) is the process by which
undesired motion is digitally removed from a video feed.
These are motion estimation, followed by motion compensa-
tion. In the motion estimation stage, the physical movement
of the video image pixels between image frames are defined
within the parameters of a particular motion model. Once a set
of parameter estimates is found frame to frame, compensation
is applied to counteract the perceived motion. this creates a
stable image feed.

The motivation for this work is non-GPS navigation [1]
on biologically inspired robotic platforms. Platforms like
the DAGSI Whegs [2], shown in Figure 1, are capable of
traversing stairs, large rocks, and other difficult terrain. This
versatile mobility incurs costs upon imaging sensors affixed

Fig. 1. The DAGSI Whegs Robot and Camera/IMU Setup.

to the platform. Large image displacement frame to frame,
image blurring, and moving objects in the scene make reliable
motion parameter estimates difficult to achieve. Thus a robust
EIS algorithm is necessary to perform accurate navigation
estimation in the presence of these effects.

This paper presents a novel EIS algorithm designed to
operate in the presence of large image displacement, image
blurring, and moving objects. Using the similarity motion
model, the algorithm fuses pyramidal Lucas-Kanade optical
flow using Shi-Tomasi good features with inertial measure-
ment motion estimation by way of a discrete Kalman filter.
Inertial measurement motion estimation is performed by sum-
ming angular displacements between frames of a MIDG II
inertial measurement unit (IMU) and multiplying the angular
displacements by a constant. The two motion estimates are
then optimally fused using a nine-state discrete Kalman filter.

A simulated video truth model and live test data are used
to compare the performance of several EIS algorithms. The
effects of image translation, rotation, blurring, and moving
objects are captured. Using the novel optical flow with inertial
fusion algorithm results in 40% less RMS error than the
best alternative algorithm. A video showing unstabilized and
stabilized performance is included.
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II. BACKGROUND AND RELATED WORK

Images are described in raster coordinates, (𝑚,𝑛), and
normalized Cartesian coordinates, (𝑥, 𝑦), as shown in Figure 2.
Aspect ratio is described as

aspect ratio =
1
a
=

H
W

(1)

where a is the inverse of the aspect ratio, H is the height of
the image, and W is the width [4].

Given an image pixel coordinate (𝑚,𝑛), the normalized
Cartesian coordinate pair is

x =
2m − W

S
and y =

2n − H
S

(2)

where S = max(W,H) [4]. The (𝑥, 𝑦) coordinate pair is
referred to in matrix form as c, where

c =

[
𝑥
𝑦

]
. (3)

The homogeneous representation for an untransformed image
point (x, y) is c̃, where

c̃ =

⎡
⎣ 𝑥

𝑦
1

⎤
⎦. (4)

The similarity transform [4], which describes image motion
involving translation, rotation and scale, is defined as

c+ =
[
𝜆R T

]
c̃− (5)

where

T =

[
T𝑥
T𝑦

]
(6)

is the pixel translation in the 𝑥 and 𝑦 directions, 𝜆 is the scale
factor for the transform, and the rotation matrix R is defined
as

R =

[
cos(𝛼) − sin(𝛼)
sin(𝛼) cos(𝛼)

]
. (7)

The 𝛼 parameter is the rotation angle of the image. The sign
of the angle 𝛼 is positive in the counter-clockwise direction.
The − and + superscripts refer to the pixel coordinates before
and after the transformation, respectively.

The coordinate frame for the system is shown in Figure 3.
Using Euler angular representation, the 𝜙, 𝜃, and 𝜓 angular
directions follow the right hand rule and coincide with the 𝑥,
𝑦, and 𝑧 directions, respectively. Observe that in the video
feed, positive 𝜙 displacement generates negative 𝛼 image
rotation, positive 𝜃 displacement generates negative 𝑚 pixel
movement, and positive 𝜓 displacement generates positive 𝑛
pixel movement.

Far field scenes are assumed, which means that perceived
scene movement is attributed to camera rotation only, and that
camera translation is of negligible significance.

EIS algorithms can be categorized into four main tech-
niques: template matching, feature detection, optical flow, and
inertial measurement. In template matching techniques, a small
template image is copied out of the image, and this location
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Fig. 2. Raster (left) and normalized Cartesian (right) coordinates.

is stored. On the next image, the template is translated and
rotated until a suitable match is found. The template movement
required for the match is the image displacement [3,5,6].

Feature detection techniques calculate frame displacement
by tracking prominent and unique image features in successive
frames [8,9,10,11]. In the previous frame, a feature pixel point
is found, and a vector of directional gradients is formed as
a descriptor. In the current frame, this descriptor vector is
compared against known features until a match is found. This
pair of matching features in two different images is called
a correspondence. Once several correspondences have been
found, the transformation matrix can be computed using a least
squares approach or an algorithm such as random sample and
consensus (RANSAC) [7].

Optical flow techniques determine image displacement by
calculating the spatial derivatives of the image at certain pixel
locations and the image time derivative. both sparse and dense
forms can be used. Sparse optical flow, in the form of the
Lucas-Kanade algorithm [12], is used in [13] and [14].

The final class of EIS methods is inertial measurement
[15,16]. In this technique, an IMU is used to provide angular
rate data, and these values are summed between image capture
times. A coefficient is then multiplied by the angular displace-
ment output by the IMU in between frames, and this results
in the motion parameter values.

III. OPTICAL FLOW WITH INERTIAL FUSION

Template matching, feature detection, and optical flow
methods all generate motion estimates directly from the video
feed. Inertial measurement does not require a video feed, and is
invariant to image anomalies like blurring and moving objects.
Optimally combining inertial measurement with an image-
based estimate will thus result in a better estimate than one
method alone.

In developing the novel optical flow with inertial fusion
algorithm, representative algorithms of the four main classes of
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Fig. 3. Platform Coordinate Frame.
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EIS are created. Template matching, feature detection, and op-
tical flow are compared in order to determine the most suitable
image based estimate for use with inertial measurement. These
three algorithms are tested against a truth model to identify
the technique that performs the best prior to inertial aiding.
The optical flow algorithm is shown to perform best, and is
then used in combination with inertial measurement in the final
algorithm.

A. Evaluation of Non-Inertial Algorithms

In order to select the best non-inertial algorithm for use with
inertial fusion, the non-inertial algorithms are presented and
evaluated according to a video truth model.

1) Non-Inertial Algorithm Descriptions:
Template Matching Algorithm. Following the process in

[3], the current image and the previous image are taken
from the video feed. Six templates evenly spaced within the
image, each of size 64 × 64 pixels, are copied out of the
previous image. These templates are then decimated, and a
four level template image pyramid is created. Similarly, the
current image is decimated, and a four level image pyramid
is created for the current image. Template searches are then
performed across the levels of the pyramids. At the highest
level, the search is constrained to 16 pixels, which amounts
to a 128 pixel displacement for the original image. Each
subsequent level then performs a more localized search, until
the final match is achieved. The search is for the 𝑚 and 𝑛
pixel displacements which bring the correlation value as close
to unity as possible.

Feature Detection Algorithm. Scale-invariant feature
transform (SIFT) [18] is performed on both the previous image
and the current image. Each feature has a particular pixel
location and a directional gradient descriptor vector. Feature
matching is performed by finding the descriptors which have
the smallest inverse cosine of the dot product between them.
RANSAC is then performed on these sets of correspondences,
and the output is the most probable transformation matrix.
From the transformation matrix, the 𝑚 and 𝑛 pixel displace-
ments and the image angle 𝛼 are found.

Optical Flow Algorithm. Shi-Tomasi good features [19]
are found in the previous image, and then Lucas-Kanade opti-
cal flow is performed on the current image. This provides sets
of feature correspondences between images, and RANSAC is
performed. The 𝑚, 𝑛, and 𝛼 displacements are then found
from the transformation matrix.

2) Performance of Non-Inertial Algorithms:
A video truth model is developed in order to rate the

anticipated performance of the image-based EIS algorithms on
DAGSI Whegs. The truth model allows for the observation of
the exact motion parameters between frames. Knowing these
values, errors associated with a given EIS algorithm can be
described.

The base image used for the truth model is a hallway
image from the live test data, shown in Figure 4. The input
parameters of the truth model generator function are the
maximum values for rotation, 𝜃, translation, T, blur angle, 𝛾,

Fig. 4. Base Image for Truth Model

and blur length, 𝜉. The function then generates random values
for these parameters according to a uniform distribution from
the negative maximum to the positive maximum. The function
takes a large image, 1024×1280, and rotates it by a random 𝜃.
The rotated image is cropped to match the original 1024×1280
size. A window of size 512×640 is then taken from the center
of the rotated image, plus the random horizontal and vertical
translation values T. This allows for a simulation of 𝑚, 𝑛, and
𝛼 for the duration of the video.

The effects of blur are captured by parameters 𝛾, and 𝜉. The
values of 𝛾 and 𝜉 are input into a point spread function (PSF)
which is applied to the image. When blurring is activated, each
image is given a 50% probability of experiencing a blur.

The determination of error between the EIS parameter
estimate and the true parameter value is accomplished by
subtracting the estimated frame to frame displacement vector
from the true frame to frame displacement vector. The residual
vector is the estimation error for the duration of the test.
Using the root-mean-squared (RMS) value of this error vector
is effective to compare the overall performance of an EIS
algorithm for a particular run.

Non-Inertial Results. Using the truth model, translation
testing is performed upon each of the three non-inertial al-
gorithms. The truth model is given a uniformly sampled 100
pixel maximum movement in the 𝑚 and 𝑛 directions, which
approximates the actual maximum pixel movement for the live
data set. The length of the video is 100 frames. The results
of the test are shown in Table I. Note that template matching
performs the worst, and both feature detection and optical flow
perform near perfectly. Because template matching performs
so poorly it is excluded from further analysis.

Next, the image undergoes a rotation of maximum 6∘

in addition to translation. Table II shows that both feature
detection and optical flow perform well. In the next test, an
additional blur function is added to the video. The maximum
blur length is set to 100 pixels, and the maximum blur angle
is set to 180∘. Table III shows that performance significantly

TABLE I. Translation Test Error.

m RMS n RMS 𝛼 RMS
Template Matching 27.67 63.84 N/A
Feature Detection 0.0 0.0 0.01∘

Optical Flow 0.67 0.67 0.01∘
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TABLE II. Trans. and Rot. Test Error.

m RMS n RMS 𝛼 RMS
Feature Detection 4.88 4.67 0.01∘

Optical Flow 4.76 4.69 0.01∘

TABLE III. Trans., Rot., and Blur Test Error.

m RMS n RMS 𝛼 RMS
Feature Detection 34.97 36.98 1.47∘

Optical Flow 4.99 5.19 0.21∘

degrades for the feature detection algorithm, whereas optical
flow maintains good accuracy. Finally, a moving object is
injected into the video scene in the form of a 300 × 300
black box moving at constant speed from left to right. both
algorithms face significant errors, as shown in Table IV. The
hallway scene with moving object are shown in Figure 5.

Both optical flow and feature detection are effective for esti-
mating large image displacements in translation and rotation.
However, the optical flow algorithm is more robust against
image blurring and is therefore selected for use in the final
EIS algorithm.

B. Inertial Image Stabilization Algorithm

The optical flow method is now combined with the inertial
measurement method. The algorithm follows the block dia-
gram shown in Figure 6. Motion estimation at the current
time requires both the current image frame and the last
captured image frame. The good features are found using
the Shi-Tomasi technique. Pyramidal Lucas-Kanade optical
flow is then performed. The algorithm uses the find good
features function and the pyramidal Lucas-Kanade optical flow
function provided by the OpenCV library [21].

The track error vector is used with the number of feature
correspondences to generate a detector value. The detector
value approximates the error in the EIS method and is required
for the Kalman filter to fuse the EIS and IMU results. The
detector yields values close to unity when there is significant
disturbance and differences between the current frame and the
previous frame, and close to zero when there is great similarity

TABLE IV. Trans., Rot., Blur, and Moving Object Test Error.

m RMS n RMS 𝛼 RMS
Feature Detection 38.20 26.01 3.33∘

Optical Flow 28.93 38.44 4.21∘

Fig. 5. Hallway With Moving Object Injection.
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Fig. 6. Optical Flow with Inertial Fusion Block Diagram.

between frames. The equation used to generate the detector
value is

D(T,C) = (
T

1000
)(1 − C

500
) (8)

where T is the average track error for the frame, and C is the
number of correspondences. The track error ratio, T

1000 , and
the correspondence ratio, (1 − C

500 ), are multiplied to calculate
the detector value. The number 1000 is used in the track error
ratio because the maximum track error value during testing
was approximately 1000. The value of 500 was selected for
the correspondence ratio because the maximum number of
correspondences allowed in the OpenCV pyramidal Lucas-
Kanade optical flow algorithm is 500. Multiplying the two
ratios, the final detector value gives insight into the reliability
of the motion parameter estimates found by optical flow.

Note that even though the detector value is correlated to
actual performance of the stabilizer, a high detector value does
not necessarily mean features could not be accurately matched.
It states only that there is significant pixel intensity difference
between the image.

The vectors of matched points in the image, output by the
Lucas-Kanade algorithm in raster coordinates, are converted
into Cartesian coordinates in order for RANSAC determination
of the transformation matrix. The motion parameter values are
then extracted from the transformation matrix. The 𝑥, 𝑦, and
𝛼 displacements are then fused with gyro sensor data from the
inertial device to generate the optimal motion estimate. This
fusion is accomplished by way of Kalman filtering.

Kalman Filter Development. The nine state discrete
Kalman filter uses a perturbation model to estimate the IMU
output errors. The IMU output errors are characterized and
modeled as a first-order Gauss-Markov process.

The state vector for the system is shown in Equation (9).
There are three angular displacement states, 𝜙, 𝜃, and 𝜓, three
angular rate states, p, q, and r, and three drift bias states b𝜙,
b𝜃, and b𝜓 . The translational states have negligible significance

1149



0 200 400 600 800 1000 1200 1400 1600 1800
−30

−20

−10

0

10

20

30

40

Time [s]

A
ng

ul
ar

R
at

e
[r

a
d

s
]

Angular Rate Drifts

φ Runs

θ Runs

ψ Runs

Fig. 7. Angular Rate Drift.

0 200 400 600 800 1000 1200
−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

R
φ

φ

Autocorrelation for φ, Run 1

ρφ = 0.08

βφ = 0.004

IMU Data
Curve Fit

Fig. 8. Example Autocorrelation and Parameter Determination.

because of the far field assumption and are ignored.

x =
[
𝜙 𝜃 𝜓 p q r b𝜙 b𝜃 b𝜓

]T
(9)

Characterization of IMU Error. The IMU errors affecting
the angular outputs are approximated as a first-order Gauss-
Markov process. This is described as a noise source whose
autocorrelation function is of the form

R(𝜏) = 𝜌−𝛽∣𝜏 ∣e (10)

and of differential form

ṅ(t) =
−1
𝜏

n(t) + wn(t) (11)

where n(t) is the current value of the noise, 𝜏 is the time
constant for the noise process, and wn(t) is zero-mean additive
white Gaussian noise of strength 𝜎2. The time constant 𝜏 and
𝛽 value are related by

𝜏 =
1
𝛽

(12)

To determine the values of 𝜌 and 𝛽 in Equation (10) for the
IMU used, the device was left motionless on a table and three
sets of data were collected, each of duration of at least 20
minutes. Each angular rate was affected by a random drifting
bias. These drifts are shown in Figure 7, which were arrived
at by cumulative summing of the angular rate vector provided
by the IMU.

TABLE V. Autocorrelation Parameter Values.

Run 1 Run 2 Run 3 Average
0.08 0.12 0.17 0.123 𝜌𝜙

4.0× 103 3.0× 103 3.0× 103 3.33× 10−3 𝛽𝜙
0.025 0.025 0.035 0.0283 𝜌𝜃

2.5× 10−3 1.5× 10−3 1.5× 10−3 1.83× 10−3 𝛽𝜃
0.15 0.045 0.035 0.04 𝜌𝜓

2.5× 10−3 1.3× 10−3 1.0× 10−3 1.115× 10−3 𝛽𝜓

Autocorrelations of the unsummed angular rate vector are
calculated, and 𝜌 and 𝛽 values determined by exponential
curve fitting. An example plot with its curve fit is shown in
Figure 8. The complete collection of Gauss-Markov parameter
values is found in Table V. IMU sensor noise is characterized
by using the averages of these values.

Dynamic Model Development. The general form for the
dynamic perturbation model of the platform is

𝛿 ẋk = F𝛿 xk + Buk + Gwk (13)

where 𝛿 xk is the perturbed state vector, uk is the deterministic
input vector, and wk is a vector of zero-mean additive white
Gaussian noise. F is the system dynamics matrix, B is the
control matrix, and G is the noise matrix. There is no control
mechanism for the system, so B = 0. The G matrix is the
identity matrix. The F matrix is

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝛽𝜙 0 0
0 0 0 0 0 0 0 −𝛽𝜃 0
0 0 0 0 0 0 0 0 −𝛽𝜓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

The state uncertainty matrix, Qk , is comprised of the
variances of the different states. The variances of the three bias
states, b𝜙, b𝜃, and b𝜓 , are found from using Equation (15) for
each run and averaging the results. The units for the variance
of the bias states are degrees squared. The three angular rate
state variances, p, q, and r, are found from the variance of
the output of the motionless IMU and averaging the results
from the three runs. The units for the variance of the angular
rates are degrees squared per second squared. The variance of
the angular displacement states, 𝜙, 𝜃, and 𝜓, are determined
by integrating the angular rates and averaging the variances
of the results from the three runs. The units of the angular
displacement variances are degrees squared. The final values
for Qk are found in Equation (16).

𝜎2 = 2𝛽𝜌 (15)
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Qk=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4.3𝐸−9 0 0 0 0 0 0 0 0
0 4.3𝐸−9 0 0 0 0 0 0 0
0 0 9.2𝐸−9 0 0 0 0 0 0
0 0 0 1.6𝐸−5 0 0 0 0 0
0 0 0 0 1.6𝐸−5 0 0 0 0
0 0 0 0 0 3.6𝐸−5 0 0 0
0 0 0 0 0 0 8.2𝐸−4 0 0
0 0 0 0 0 0 0 1.0𝐸−4 0
0 0 0 0 0 0 0 0 9.2𝐸−5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)
Measurement Model Development. The measurement

model is defined as

𝛿 zk = H𝛿 xk + vk (17)

where H is the observation matrix, zk is the measurement
vector, and vk is the measurement noise. The observation
matrix H defined as

H =

⎡
⎣ −55 0 0 0 0 0 0 0 0

0 1898 0 0 0 0 0 0 0
0 0 −1898 0 0 0 0 0 0

⎤
⎦. (18)

These values were found by performing parametric sweeps
and visually matching the output plots to a section of video of
known displacement. Note that for a perturbation measurement
model, the H matrix is the negative of the true observation
matrix.

The zk vector in the measurement model is comprised of the
frame to frame displacement estimates provided by EIS. EIS
is a particularly unique kind of measurement, because it offers
relative measurements and not absolute. The displacement is
given from the x

true
at the last time of frame capture, which is

estimated by x̂ in the Kalman filter. The perturbation model
must account for this. The new 𝛿 zk is found to be

𝛿 zkcf = zkcf − H

[
xkcf − x̂kpf

]
. (19)

where kcf is the current frame time and kpf is the previous
frame time. The full perturbation measurement model is then

𝛿 zkcf = H𝛿 xkcf − H x̂kpf + vkcf . (20)

To make the appropriate changes to the Kalman filter equations
in Figure 9, replace every occurrence of x̂k with 𝛿 x̂k , and
every occurrence of zk with 𝛿 zk , and proceed as normal.

Measurement Variance Determination. The Rk matrix
values define how much of EIS measurement is incorporated,
or how little. When the detector value is near zero, all of the
EIS measurement is desired. When the detector value is close
to unity, all of the IMU measurement is desired.

The data from one of the three stationary test sets is
used to determine the precise relationship between R and the
amount of EIS measurement to incorporate. The IMU was left
motionless on a table, thus the true values of the angular rates
are zero for all time. EIS measurements are simulated by a
zero vector. The state estimate x̂k of the filter should then be
close to zero if EIS is fully incorporated, and deviate from
zero if none of the EIS measurement is incorporated. This
corresponds to the total error. The state estimate will have

Kalman Gain:

K = P
−
k HT

[
HP

−
k HT+ Rk

]−1

Measurement Update:

x̂
+

k = x̂
−
k + K

[
zk − H x̂

−
k

]

Covariance Update:

P
+

k =

[
I − KH

]
P

−
k

Time Projection:

x̂
−
k+1 = 𝜙 x̂

+

k

P
−
k+1 = 𝜙P

+

k 𝜙
T+Qk

Fig. 9. Kalman Filter Equations [20].
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Fig. 10. R Value Error Plot.

minimum error if all of the EIS estimate is fully incorporated,
and maximum error if none of the EIS estimate is incorporated.

RMS errors were collected for values of R ranging from
1 × 10−5 to 1 × 1015. Maximum RMS error occurs when
no EIS information is incorporated into the measurement,
and minimum RMS error when EIS is incorporated into the
measurement. Figure 10 shows the normalized error to R value
relation. These complex curves are difficult to match with a
simple equation. However if the view is constrained to the
linear portions of the curves, as shown in in Figure 10, the
curves resemble exponential form. Thus the R(D) equations
should be of some exponential form

𝜂e𝛾D. (21)

The final values for the 𝜂 and 𝛾 coefficients are determined
by using parametric sweeps. These sweeps were conducted
during the moving object hallway test. The coefficients are
chosen so as to minimize the total RMS error for the run.
These values are thus optimized for the specific environment
of building hallways. Depending on the scene environment of
the platform, these values may be altered to provide better
results. The final R(D) equations are

R𝑚 = (1× 10−3)× 𝑒8D

R𝑛 = 0.1× 𝑒6D

R𝛼 = (1× 10−3)× 𝑒18D.
(22)
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TABLE VI. Hallway Test Error.

m RMS n RMS 𝛼 RMS
Feature Detection 12.52 9.03 0.71∘

Optical Flow 3.04 2.91 0.48∘

Inertial Measurement 23.76 23.43 1.00∘

Optical Flow with Inertial Fusion 2.58 5.62 0.79∘

Camera to IMU Bias Determination. A bias that separates
the image frame capture time from the IMU capture time exists
between the camera clock and the IMU clock. The bias must
be known in order to correctly fuse the data. This bias was
determined to be 0.13 seconds by matching up the known
displacement of the video feed to the calculated displacement
output by the IMU.

Referring to the block diagram in Figure 6, fusion of the op-
tical flow estimates and inertial data is achieved by the Kalman
filter. To determine the optimal frame to frame displacements,
sum the angular displacements in between frame times and
multiply the result by the appropriate coefficient specified in
the H matrix.

The motion parameter estimates of the video is then low
pass filtered, and the local motion extracted. Compensation
on the image is then accomplished by transforming the image
by the negative values of the local motion estimate. The result
is a stabilized video feed that maintains gross motion.

1) Inertial Algorithm Results:
The first test uses the video from the DAGSI Whegs as it

navigated through the hallway. Because of the lack of a truth
model for the IMU values, a manual determination of frame
movement is accomplished. After this process is conducted
on the video sequence, the resulting motion estimates are
used to create a new stabilized video. The parameters are
then fine tuned visually, correcting for any movement the
video appeared to undergo. After several iterations of this
process, a stable video is achieved, and the true frame to
frame motion parameter values well approximated. The results
comparing the algorithm to this manual truth model are shown
in Table VI. Optical flow, and optical flow with inertial fusion,
are comparable in performance.

The second test involves a simulated moving object in the
hallway video. A 300×300 pixel black box is sent left to right
across the scene. The results from the different algorithms are
shown in Table VII. Using optical flow with inertial fusion

TABLE VII. Hallway with Moving Object Test Error.

m RMS n RMS 𝛼 RMS
Feature Detection 18.01 31.03 2.92∘

Optical Flow 16.16 21.08 2.20∘

Inertial Measurement 23.76 23.43 1.00∘

Optical Flow with Inertial Fusion 11.82 14.47 0.78∘

results in a 27% reduction in RMS error in the 𝑚 direction,
a 31% reduction in RMS error in the 𝑛 direction, and a 63%
reduction in rotation RMS error, compared to the optical flow
algorithm. Averaging these values, optical flow with inertial
fusion is capable of 40% lower RMS error than the best
alternative in the presence of moving objects.

Algorithm Speeds. Algorithm speeds were also compared.
The mean required time for optical flow is 1.1 seconds for
each estimation loop. Feature detection requires 4.6 seconds.
Template matching requires 2.5 seconds per loop. Inertial
measurement required 0.6 seconds. The simulations were
conducted on a personal laptop running a 2.1 MHz processor.
With faster hardware and speed optimized code the algorithms
will run much faster, however these loop time values provide
insight into relative time requirements between the methods.

T-Significance Testing. To obtain further insight into the
fusion of inertial data, a T-significance test is conducted
between the error plots of the optical flow algorithm and the
optical flow with inertial fusion algorithm. The resulting p-
values are

𝑚 : p − value = 0.801

𝑛 : p − value = 0.762

𝛼 : p − value = 0.303

(23)

For the 𝑚 and 𝑛 directions, there is not much statistical
difference between the performance of the optical flow al-
gorithm and the optical flow with inertial fusion algorithm.
This can be directly interpreted from the plots in Figure 12.
Large spikes occur at the same frame transitions for both
algorithms. This occurs because both optical flow and inertial
measurement incur large estimation errors for these specific
frame transitions. The substitution of a bad IMU measurement
is made for a bad optical flow measurement. Use of a higher
grade IMU will improve the IMU measurements, resulting in
greater statistical difference between the optical flow algorithm
and the optical flow with inertial fusion algorithm. However,
even though both algorithms experience peak errors at the
same frame transitions, these errors are significantly reduced.

IV. CONCLUSIONS

For robust image stabilization, it is necessary to combine
the effectiveness of optical flow and inertial measurement.
Optical flow provides accurate estimation using the video feed
even in the presence of large image translation and image
blurring. Inertial measurement provides invariance against
moving objects. The novel algorithm presented in this paper,
optical flow with inertial fusion, combines these two methods,
and is capable of 40% reduction in RMS error compared to
optical flow alone in the presence of moving objects.
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Fig. 12. Hallway with Moving Object Test Error.

The main contribution of this paper is the novel EIS
algorithm, optical flow with inertial fusion. It uses Shi-Tomasi
good features and pyramidal Lucas-Kanade optical flow fused
with inertial data by way of a nine state discrete Kalman
filter. The second contribution of this work is an EIS algo-
rithm capable of effective stabilization on the DAGSI Whegs
robotic platform, for which an image stabilizer has not been
developed. The third contribution of this work is a numerical
analysis performed on the four main classes of EIS.
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