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Abstract— This paper describes a visual odometry algorithm 

that deals with the nearly degenerated situation caused by a 

false motion vector generated by independently moving objects, 

repetitive patterns and wrong depth information that often arise 

in visual odometry for outdoor service robots. To filter out these 

false motion vectors, we use temporal and spatial motion vector 

filter. The temporal motion vector filter uses the previous 

motion models to filter out abruptly changed motion vectors, 

and the spatial motion vector filter uses the motion vector’s 

length information and the motion vector’s direction 

information.  The direction information of the motion vectors 

generated by independently moving objects are different from 

the direction of the vector generated by camera movement in 3D 

space, and the  length information of the motion vector caused 

by triangulation error is  different from the correctly 

triangulated points. We uses voting scheme to determine 

primary motion vectors. This algorithm has been tested on a 

service robot that works in outdoor environment. By using our 

method, we can deal with independently moving objects and 

problem caused by repetitive patterns and triangulation errors.  

 

I. INTRODUCTION 

OCALIZATION is an important ability of  autonomous 

mobile robots. Most mobile robots typically localize their 

position by using wheel odometry, inertial sensor 

(gyroscopes, and accelerometers) or GPS. However these 

approaches have some limitations. The result of localization 

using by wheel odometry is affected by ground conditions, 

and we cannot apply the wheel odometry technique to 

non-wheel type robots (walking robots, aero robots and 

underwater robots). Inertial sensors are prone to drift, and by 

using differential GPS, we can obtain accurate localization; 

however, this GPS is very expensive and has some error when 

GPS signals are blocked, which may occur in urban areas, 

forests and tunnels. Furthermore, GPS only provides location 

information, but it’s not sufficient for service robot. To 

navigate the service robot, the service robot needs to know 
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their pose information. Visual odometry, which estimates the 

ego motion from a sequence of images captured by moving 

cameras, provides the following advantages: it is not affected 

by ground conditions; it needs cameras but this method does 

not require any other sensors; it estimates full 6DOF motion; 

and it reduces error rates to levels lower than all but the most 

expensive IMU and GPSs. For this reason, visual odometry 

has received considerable attention in recent years. In most 

approaches [1][2][3][4] to visual odometry, a set of feature 

points is extracted from the images captured by cameras. 

Theses feature points are tracked over a sequence of images. 

In a stereo camera or multi-camera system, the 3D 

information of the feature points is calculated by triangulation. 

In order to detect and reject outliers in the matches and 

estimate the camera pose, the outlier removal methods are 

used, such as RANSAC [11] and LMedS[12]. To reduce drift, 

the iterative refinement technique is used. This approach 

assumes a static environment where the only moving object is 

the camera. However, in the area where the service robot 

navigates, there are independent moving objects, such as 

pedestrians, cars, and shadows. So if this approach is used in a 

dynamic environment like Fig.1, the error rate of this visual 

odometry approach will increase. This approach relies on an 

outlier removal method, but this is not insufficient to filter out 

an outlier caused by independently moving object. In [5], A. I. 

Comport et al. assumes that the frame rate of the images 

captured by cameras is sufficiently high to predict present 

frame image from the previous image by using estimated 

motion at previous frame. This predicted image of the present 

image is compared to the present image and this result, the 

difference between these two images, indicates an 

independently moving object. A robust M-estimator is used to 
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Fig.1 Independently moving object, the red ellipse indicates the 

motion vector that generated by independently moving object 
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reject outliers corresponding to moving objects within the 

scene. However, if the image changes abruptly between 

frames, such as when the robot moves abruptly or 

illumination changes between buildings, shadows, the 

difference between the previous images and predicted image 

is too big. Therefore, the stationary image area also detects 

independently moving object area, and the error of pose 

estimation increase as the visual odometry algorithm works.  

The error of the visual odometry algorithm has a tendency to 

accumulate. This may be a critical problem for visual 

odometry for outdoor service robots. 

 

To deal with this problem, we present a spatial filtering 

method that uses the direction of the motion vectors and the 

length of the motion vectors as well as temporal filtering. The 

motion vector is the vector that connects the feature point 

extracted from the previous image to the feature point 

extracted from the present image. The motion vector indicates 

the movement of the feature point from the previous image to 

the present image. We can obtain a motion vector group that 

has the principal direction and principal length of vectors that 

indicate the camera motion. However, when the 

independently moving object takes most of the image’s area 

(more than 50% of the image area), the obtained principle 

motion vector direction and length do not indicate the camera 

motion. These motion vectors are generated by an 

independently moving object. 

We present the robust temporal filtering method that detects 

the correct motion vector that contains camera pose 

information using the history of the motion model 

(               ) to complement the flaws of spatial 

filtering methods.  

In most approaches [1][2][3][4][5], researchers developed 

visual odometry for ground vehicles. So these algorithms use 

cameras that have wide baseline. (In [1], the camera base line 

is 21cm.) However, the size of outdoor service robots is 

limited, as service robots are required to co-exist with people. 

Therefore, we tested our algorithm using a small baseline 

stereo camera that can be installed on service robots. To 

minimize the effect of bad triangulation results, we use spatial 

and temporal motion vector filtering methods. 

It is generally admitted that getting a good precision in depth 

from stereo vision demands a large base lane. Therefore, if 

the baseline is small, the triangulation result is poor. If the 

baseline is wide, the triangulation result is good.  

To minimize matching errors, we use SURF [7]. Because the 

ground outdoors is uneven, for outdoor service robot 

application, rotations around the optical axis are generally 

large. If we cannot deal with these motions, the matching 

result will be poor; consequently, we use SURF. This feature 

is a scale and rotation invariant interest point detector and 

descriptor that also has good repeatability. By using this 

feature, we can deal with large motions around or along the 

optical axis and can also match points that locate far frame.  

 

II. VISUAL ODOMETRY FOR OUTDOOR SERVICE ROBOTS 

A. Dense stereo algorithm 

Our proposed visual odometry algorithm assumes that the 

outdoor service robot is equipped with a stereo camera. The 

motion of the robot determined from the disparity images 

processed by dense stereo matching algorithm. The dense 

stereo matching algorithm performs the following three steps 

on each new stereo pair: 

1) Low-pass filtering: A low-pass filter averages out 

rapid changes in intensity. Noise always changes rapidly 

from pixel to pixel because each pixel generates its own 

independent noise. To filter out this noise, we utilize the 

Laplacian-of-Gaussian filter. 

2) Rectification:  Lenses often cause distortions in raw 

images. For example, straight lines in the scene often 

appear curved in the raw images. This effect is 

particularly evident in the corners of the images. 

Furthermore, rectified images are corrected so that the 

rows of images digitized from horizontally displaced 

cameras are aligned. Without this feature, searching along 

the rows and columns will not produce the correct results.  

3) Stereo matching: The stereo processing module 

applies the Sum of Absolute Differences algorithm. 

 

The inputs for our algorithm are the pre-filtered stereo images 

and disparity images.  

 

B. Feature detection and matching 

The feature points extracted from images are used to 

estimate the robot pose. In the outdoor environment, the 

camera on the service robot rocks from side to side, and the 

camera rotates around the optical axis; therefore, the result of 

feature matching is not good. In urban environments 

repetitive patterns such as brick pavement, fences, etc. can be 

found. These repetitive patterns cannot be distinguished by 

correlation based methods, and this causes a bad match result. 

Although some of these correlation mistakes can be 

detected using techniques such as the mutual consistency 

 
Fig. 2 (Upper image) Stereo images captured by a stereo camera and (lower 

image) a disparity image calculated by the dense stereo matching algorithm.  
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check or the unique maximum criterion, the number of mis 

matched points will increase [8]. 

In order to match the stereo images robustly, the 

speeded-up robust feature (SURF, [9]) is adopted. By using   

SURF, we can handle these mismatched problems. SURF is 

robust to scale, viewpoint, and illumination changes. We 

extract SURF features from key-points and then match this 

feature to a feature on the other side of the image using the 

best-bin-first search algorithm [10], which is designed to 

efficiently find an approximate solution to the nearest 

neighbor search problem in high dimensional spaces based on 

the kd-tree search strategy.  

 

The error in the 3D reconstruction of these points is not 

large enough to be rejected by the RANSAC algorithm, so 

they will corrupt the final solution. 

C. Spatial and temporal motion vector filtering 

 

We detect correctly matched motion vectors based on their 

temporal and spatial information in estimating the robot 

motion model. Based on spatial and temporal information of 

motion vectors, we establish the spatial motion vector filter 

and temporal motion vector filter.  

1) Spatial motion vector filter: we detect spatially 

principle motion vectors based on their direction and 

length. 

  We can obtain the vector directional vector’s end point:  
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The directional vectors are normalized with their lengths 

and are moved to the origin. These points have the same 

length. As shown Fig. 3(a), the end points of directional 

vectors are on a sphere that has a unit length radius, so this 

directional vector has only the directional information of 

the motion vector. We use the voting method to obtain 

principle motion vector  group based on the directional 

vector,  so we can convert the 3D point into two angle 

values:  
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As shown in Fig.3 (c) ,   and   are two angles that 

represent the direction of the motion vector. 

  We use the voting algorithm to obtain the principle 

motion vector directions. We divide the angle into equally 

spaced bin, and we count the number of point included in 

each bin. The bin that has the maximum number of points 

is the principle bin, and the points included in this bin 

represent the principle direction of the motion vectors. 

These motion vectors represent the principle motion 

shown in the images, and if a static scene occupies most of 

the image area, these motion vectors represent the camera 

motion. 

 

We also use the length of the motion vector to obtain 

primary motion vectors. We didn’t use the voting method 

to obtain primary length of the motion vector. In this case, 

if we divide bins equally, we cannot filter out false match 

effectively. If the maximum length of motion vectors is 

too big, the size of the bin also increases, and the false 

motion vector filtering ability will be decrease, so we 

cluster the motion vectors by their length and we chose 

the bin that has maximum number of motion vectors.   

 

2) Temporal motion vector filter: We can obtain the 

motion vector group that has principal direction and 

principal length of vectors that indicate the camera motion. 

However, when the independently moving object takes up 

most of the image area (more than 50%), the obtained 

principle motion vector direction and length do not 

indicate the camera motion. These motion vectors are 

generated by the independently moving object. 

 We assume that the frame rate is sufficiently high, so the 

movements from each frame are small and the movement 

is smooth. The temporal filter uses previous motion 

models. We use a temporal filtering method that detects 

the correct motion vector that contains camera pose 

information using the history of motion model 

(               ) to complement the flaws of spatial 

filtering methods. 
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where Q is the group of previous motion models 

(            ) , obtained in the previous frame, and the 

(a)  (b)  

(c)  

 
Fig. 3 (a) The end points of directional vectors are located above the 
surface of the sphere that has unit length radius. (b) We can obtain 

the primary bin that indicates the principle direction of the motion 

vector. (c) The end points of the directional vectors are converted 
into two angle pairs (φ, θ) Stereo images are captured by a stereo 

camera and the disparity image is calculated by the dense stereo 

matching algorithm.  
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points   ,     are the matched points that is filtered by the 

spatial motion vector filtering method.(    is the matched 

point of     in the  previous frame)   
  is the error that 

represents the difference of the present point i and 

predicted previous frame point using the history of the 

motion model.(   
  is the error of motion vector i, obtained 

by Equation (3)). If   
  is greater than some fixed 

threshold, this motion vector is rejected, which means the 

selected motion vector is not related to the previous 

motion model. By using the temporal motion vector, we 

can reject the abrupt motion vector and obtain smooth 

motion vectors. 

 

By using spatial and temporal motion vector filters, we can 

obtain primary and smooth motion vectors. 

D. Motion estimation 

The input of our motion estimation algorithm is matched 

points computed by feature matching algorithms. These have 

matching points extracted from the left and right image and 

have   inter-frame matching points. By using these matches, 

our motion estimation algorithm estimates the pose of the 

stereo camera. Our approach uses RANSAC to estimate the 

camera pose. We select three points in the image. For each of 

the three points, we estimate H and evaluate H to obtain 

motion model H and inliers (the group of three 3D points).  

To minimize the error of H, a non-linear minimization 

method is applied for the inlier sets [2]. 

 

1) Select three points:  Three points are required to 

generate a motion hypothesis. To achieve reliable motion, 

we must ensure that these three points are spaced out well 

in the image. If these points are too close together in the 

image then the estimation results will be unsatisfactory. 

Therefore, we divide the image into equally spaced areas 

and select points in these different areas each time. By 

using matching information, we triangulate these three 

points, and we can obtain their 3D locations Pi and Pi' 

 

2) Estimate hypothetical motion model (H): H 

(Hypothetical motion model) represents the camera pose. 

We then seek an H that satisfies Equation (4). 

 

vr HPP  (4) 

 

   denotes the matrix of the three selected 3D points  

acquired at some time r and    denotes the matrix of three 

3D points acquired at some time v < r. We estimate H 

through a closed-form solution of the absolute orientation 

problem[9].  

 

3) Evaluate hypothetical motion model: For all matches 

M, we evaluate this hypothetical motion model H to find 

the inliers and H. These inliers refer to correspondences 

between the two sets of 3D points (  ,    ) that make 

re-projection error   smaller than the threshold that we 

have determined:  

 

212 )()( i

r

i

v

i

v

i

ri PHPHPP  (5) 

 Where, if the             than      else      
 

In Equation (5),   means re-projection error. We can 

determine inlier set I. The RANSAC is applied for a fixed 

number of samples. For each of the selected three points, 

we can estimate motion model H and the number of inliers 

calculated by H. The H that has the largest number of 

inliers is the best motion model. To obtain more accurate 

motion model, we correct H through a closed-form 

solution of the absolute orientation problem [10]. In that 

case, we estimate the motion model by using all inliers 

matches.  

 

4) Non-linear minimization: We use the Levenberg 

-Marquardt algorithm for nonlinear least squares 

minimization. The estimated H is used as the initial point 

for a non- linier minimization algorithm. For inlier set I, 

the object function to be minimized is given by Equation 

(3). 
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The non-linear minimization process converges to a local 

minima within  five iterations, because the initial points of 

the non-linear minimization process are good estimated 

values. 

III. EXPERIMENT 

As shown in Fig 4, our system consists of a 2 wheel mobile 

robot, which is equipped with stereo camera and a laptop PC. 

The primary vision sensor on this mobile robot is a downward 

looking stereo camera pair from Point Grey Research 

(Bumblebee 320X240 monochrome with 40 degree 

horizontal field-of-view and a baseline of 0.12m). 

 
In order to evaluate the performance of our visual 

odometry algorithm, we applied it to a set of collected video 

sequences. Specifically, each video sequence was recorded in 

real-time while a mobile robot was traveled along a 

predefined trajectory. 

 

  

 
Fig. 4  The experiment environment and the two wheel mobile robot  
used our experiment 
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To obtain the ground-truth trajectory, we utilize the 

trajectory measured by GPS and manually correct this 

trajectory based on a predefined location on the map.  

As shown Fig. 5(b), the experiment area is urban. There are 

many independently moving objects, such as cars, peoples 

and bicycles. In urban environments, repetitive patterns such 

as brick pavement, fences, etc. can be found. The feature 

points in these repetitive patterns do not match well, so the 

visual odometry in this environment is very challenging and 

practical problem. But most of other approaches test their 

algorithms in outdoor areas, such as plains and forest. These 

areas do not contain repetitive patterns, and the number of 

extracted feature points is also large. Therefore, the matching 

rate of the feature points extracted in these areas is better than 

that of the feature points of urban areas.  

 
To filter out false matches generated by repetitive patterns, 

independently moving objects, and triangulation errors, we 

developed the spatial and temporal filter algorithm. As shown 

Fig 6, our approach rejects falsely matched motion vectors 

and maintains well-matched motion vectors.  

Fig .7 shows the result of the visual odometry algorithm. 

We tested our algorithm on the sidewalk. The raw data was 

logged at a 320x240 resolutions at 30Hz.  The accuracy of the 

visual odometry is indicated by the estimation error, defined 

as the root-mean-squared distance between the estimated 

points and the key points of the ground truth. In Fig.7, we can 

see that the RMS error of the visual odometry is reduced from 

14.2624m to 6.037m. There are many independently moving 

objects and many bricks that create a repetitive pattern. The 

result of the spatial and temporal filtering method is better 

than the visual odometry algorithm, which does not apply our 

algorithm. The trajectory generated by the spatial and 

temporal filtering method is especially accurate.  

In Fig.8 we can see that the error rate of the spatial filtering 

method is increased at the front part and then drop to zero. In 

this area, because the number of extracted feature point is 

small. So the estimated robot trajectory is unstable. Besides 

the spatial filtering method also decrease the number of 

feature point. Therefore the estimated result is unstable in this 

area. But the error rate of the spatial and temporal method is 

smaller than that of original visual odometry approach, and 

the spatial filtering method also works well. The error 

increasing rate of our approach is slower than pure visual 

odometry. 

 
 

As shown in Fig.9 the maximum error is suppressed. The 

maximum error of pure visual odometry is 0.5, but the 

maximum error of spatial and temporal filtering visual 

odometry is 0.3. By using our algorithm, we can minimize the 

maximum error rate and also minimize the overall size of the 

error generated at each frame. Fig.9 shows us the size of the 

error occurring at each frame. We calculate this error by 

subtracting the previous error from the present error.  

  

 
Distance 150m Rate 10Hz 

 
Frame 1500 Resolution 320x240 

 

     

  Original Spatial Temporal 
Spatial 

& temporal 

RMS Error(meter) 14.2624 6.3522 13.6644 6.0737 

 

Fig. 7 Experiment results 

 

  

  
(a)                                           (b) 

 
(c)                                           (d) 
Fig. 6 (a) When we applied our approach, the spatial and temporal filtering 
method, the motion vectors of moving shadows are rejected.(b) The 

motion vectors of pedestrians are also rejected (c)  Although there are 

illumination changes , the matching result is good. (d) In an urban. Area 
our approach works well 

 

 
(a)                                           (b) 
Fig. 5 (a) our matching algorithm works well. (b)In an urban area, 

the matching result is unsatisfactory 
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IV. CONCLUSION 

We have presented a novel approach to stereo visual 

odometry that successfully deals with the problems 

encountered in outdoor visual odometry for service robots. 

The key component of our approach is a spatial motion vector 

filter and temporal motion vector filter. We obtain the 

spatially primary motion vector based on voting methods, and 

we obtain the temporally primary motion vector by using 

previous motion models. We implemented our filtering 

method and compared it to a normal visual odometry method 

that does not apply our method. 

By using our method, we can minimize the error 

occurrence in each frame and can deal with independently 

moving objects and problems occurring due to repetitive 

patterns. The stability of the spatial filtering method can be 

enhanced by applying the three-point algorithm [1]. And the 

accuracy of the presented system can be also improved by 

applying the three-point algorithm, by using landmarks to 

provide longer range constraints, and by using IMU or DGPS. 
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Fig.9 This graph indicates the difference between errors, error(t) and 

error(t-1)  

 

 
Fig.8 This graph indicates the error rate of the experiments. The 

pure visual odometry algorithm’s error rate increases very rapidly, 
but the error rate of the spatial filtering approach and spatial and 

temporal filtering increase slowly. 
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