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Abstract— In this paper we propose a new method for
on-line object segmentation through human-robot interaction.
Particularly, we define three types of human gestures for object
learning by the size of target objects; holding small objects,
pointing at medium ones and contacting two corners of large
ones. The regions of interest where objects are likely to be
located are interpreted from those gestures and represented
as rectangles in captured images. For object segmentation, we
suggest a marker-based watershed segmentation method which
segregates an object within a region of interest in real-time
performance. Experimental results show that the segmentation
quality of our method is as good as that of the GrabCut
algorithm, but the computational time of ours is so much faster
that it is appropriate for practical applications.

I. INTRODUCTION

In order to navigate and perform service tasks in natural
human environments, robots need to learn and recognize
objects. For example, objects like wall frames or sofas can
be used as visual landmarks for localization [1][2] or a user
may wants his or her robot to search for an object which
was taught during human-augmented mapping [3].

However, most researches on object recognition [4][5][6]
assume that objects are already annotated or segmented in
training images. This assumption is not valid in robotic
applications because it is inconvenient for common users
to label objects in captured images by hand. Therefore, it
is required for robots to be able to automatically recognize
what their users want them to learn in the environments.

Technically, this kind of interactive object learning can
be divided into two procedures: human-robot interaction
and object segmentation. Then, the scenario is normally as
follows. While a user naturally interacts with a robot, he or
she attracts the robot’s attention and gives a hint about the
object position in an environment. The robot, on the other
hand, recognizes the region of interest through interpreting
the user’s gesture and segments the target object in the
captured image.
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II. RELATED WORK

A. Human-Robot Interaction for Object Learning

In general, multi-modal interaction systems which utilize
speeches and gestures together are employed for interactive
object learning. Ghidary et al. [7] developed a home robot
positioning system(HRPS) for robot navigation. Particularly,
in order to generate an object-based environmental map, they
proposed a multi-modal interaction using natural language
and hand gestures like saying “This is a TV”, while pointing
at that TV. Haasch et al. [8] also proposed a multi-modal
object attention system(OAS) for a mobile robot. When a
user is pointing at an object and tells what color it is, the
robot recognizes the context area and segments the object.
In addition, they employed a finite state machine to detect
unknown objects.

In the meantime, pointing or hand gestures are usually
used for human-robot interaction for object learning. Kahn
el al. [9] proposed the Perseus system for interpreting
pointing gestures. To do that, they specially defined five
object representations: person, background, floor, light and
small-isolated-object. Roth et al. [10] applied a Maximally
Stable Extremal Region(MSER) tracker to detect changes in
scenes and segment hand-held objects. In addition, Arsenio
[11] proposed an active and interactive object system which
detects an event when a user is waving his or her finger on
an object, showing an object, or slapping an object in front
of the robot.

B. Object Segmentation

Traditionally, there have been many attempts to the
feature-space based segmentation which maps each pixel
of an image into a color space and clusters those point
clouds. Pappas [12] generalized the k-means algorithm [13]
by including spatial constraints and accounting for local
intensity variations in an image. Comaniciu and Meer [14],
on the other hand, applied the mean-shift algorithm [15]
to image segmentation. It is a non-parametric procedure
for detecting modes while a kernel is moving toward the
direction of maximum increase in the density. However, those
clustering algorithms suffer from difficulties that the number
of clusters should be determined a priori and the clustering
results depend on the initial set of clusters, which fails to
gain desirable results.

Recently, many researches have been devoted on the
graph-based image segmentation method which represents an
image as a graph, where each node corresponds to a pixel in
an image and the weight associated with each edge is pro-
portional to the pixel affinity. Shi and Malik [16] viewed the
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Fig. 1. Our multi-modal interaction framework for object learning

image segmentation problem as a graph partitioning problem
and proposed the normalized cut with an eigenvector-based
approximation method. Boykov and Jolly [17] introduced
user interactions to image segmentation which designate
object and background parts of an image. They solved the
max-flow/min-cut problem between source and sink nodes
in directed graphs. Rother et al. [18] expanded this approach
by replacing the histograms of a gray image with Gaussian
Mixture Models(GMM) for colors and adapting an iterative
procedure for energy minimization. However, those graph-
based approaches are usually so time-consuming that it is
not appropriate for many practical applications.

Finally, watershed segmentation algorithm [19] has an
analogy to punch holes in local minimums of a basin and
immerse it under water to find watershed lines. Since it
normally leads to over-segmentation of an image, addi-
tional pre-/post-processings are needed. Meyer [20] proposed
a marker-based watershed segmentation for color images
which prevents over-segmentation and reduces computational
time.

C. Our Approach

Fig. 1 shows the flowchart of our multi-modal interaction
framework for object learning. When a user speaks a com-
mand, the robot pays an attention to him or her and interprets
the order. For an object learning case, the object modeler
ignites the interactive object learning process. Then, the
robot recognizes the user’s gesture and segments an object
from captured images. Next, visual features are extracted and
learned for object recognition. Finally, the object modeler
anchors the symbol from the command to the visual features
from the training images and stores them to the ontology-
based knowledge base.

Particularly, since it is too much to cover the whole
framework in this paper, we only deal with the interactive
object learning parts of the framework which are marked
gray in Fig. 1. For the first part, human-robot interaction, we
expand our previous work [21] and propose three types of
gestures according to the size of target objects; holding small
objects, pointing at medium ones and contacting two corners
of large ones. And for the second part, object segmentation,
we suggest a marker-based watershed segmentation method
which is appropriate for interactive applications. In addition,
we demonstrate our method and compare it with the GrabCut

TABLE I
THREE TYPES OF HUMAN GESTURES FOR OBJECT LEARNING

Size Objects Gesture # of Views

Small
book, pencil sharpener,

holding
1-view,

table clock, mug cup, doll, multi-views
etc.

Medium
wall clock, wall frame, TV,

pointing
1-view,

juice dispenser, dishwasher, 2-views
etc.

Large desk, table, bed, sofa, contacting multi-viewsrefrigerator, etc.

Fig. 2. Holding a pencil sharpener (small object) on the user’s hand

algorithm on the same conditions.

III. HUMAN-ROBOT INTERACTION
FOR OBJECT LEARNING

In this section, we define three human gestures according
to the size of learning objects, as shown in Table I. You
might think that one unified gesture would look simple and
consistent, but it is advantageous to divide cases and specify
appropriate gestures for better segmentation performance.
This is also because the purposes of learning objects differ
according to the size; small objects will be used for find-
and-fetch, while medium and large objects for vision-based
localization and obstacle avoidance.

When a user selects which gesture will be applied for
human-robot interaction, face and hand detection is per-
formed first. Here, we apply a cascade of boosted classifiers
with Haar-like features [22][23] for face detection. With
the color histogram of the detected face, the user’s hand is
extracted from the back projection image. Those face and
hand detection is an initialization process for all three types
of gestures in this paper. Note that the result of human-
robot interaction for object learning is a rectangular region
of interest, and it will be given to the object segmentation
process with captured images.

A. Holding Small Objects

Small objects like books, pencil sharpeners, table clocks,
mug cups and dolls are easy to lift up. That is why we
decided to hold a small object on one’s hand and show it to a
robot, saying “this is the object you have to learn.” Pointing
an object on a desk is not suitable for our case, because
we assume that a robot is not fixed but moving around the
environment, and there can be no desks to put objects on.
Also, note that we decide not to wave a small object in front
of a robot nor to shake a hand to indicate it since the scene
may be dynamic.
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(a) 1-view: the user and the wall clock in one view

(b) 2-views: the user in one view and the wall frame in another view

Fig. 3. Pointing at medium objects

Fig. 2 shows the result of interpreting a holding gesture.
The region of interest is determined by those pixels which
have similar disparity values with the user’s hand. One thing
to be noticed here is that the views of small objects can vary
dramatically rather than medium or large objects. Thus, we
turn the object on the hand and capture several images for
better recognition results.

B. Pointing at Medium Objects

Medium objects like wall clocks, wall frames, TVs, juice
dispensers and dishwashers are usually attached on the wall
or placed on something flat. Thus, we decide to employ
pointing gestures for medium objects, saying “that is the
object you have to learn.”

Pointing is the most common and intuitive gesture for
humans to refer an object in environments. But for a robot it
is not that easy; the only thing a robot can be informed by a
pointing gesture is a direction (a vector from the face point
to the hand point in 3D space). In order to exactly identify
what the user is pointing at, another information is required:
the distance along the direction.

By the way, sometimes the user and the object can be seen
in one view as in Fig. 3(a), but other times the robot needs to
pan its head to see the object as in Fig. 3(b). Here, we apply
different methods for each case to estimate the distance along
the pointing direction. For the 1-view case, we build a 3D
virtual cube along the pointing direction and find where the
most of point clouds are located from the disparity image.
After estimating where the object is located, the 3D virtual
cube is projected on the image and its bounding box becomes
the region of interest. The details is explained in our previous
work [21].

For the 2-view case, it is realistically impossible to pan
the camera along the direction continuously and estimate the
distance in every captured image like in the 1-view case. But,
in most of real situations the distance was between 0.8m and
1.3m, and so we set the distance to 1m. If it fails to find a
region of interest in 1m, the robot is supposed to look at
another view of 2m. How to find a region of interest in a
disparity image is the same for two cases.

Fig. 4. Contacting two corner points of a sofa(large object) for multiple
views; the robot captures four images and merges them into one

C. Contacting Two Corners of Large Objects

The main problem of this case is that a large object itself
is too big to be seen in one view. Thus, we decide to capture
multiple images and combine them into one single image to
apply the same object segmentation method as the previous
cases. Particularly, since large objects like desks, tables, beds,
sofas and refrigerators are usually placed on the ground,
we define contacting two upper corners of a large object
to designate how big it is, saying “the object you have to
learn is from here to there.”

As shown in Fig. 4, first of all, the robot considers the
position of the user’s hand as the top-left corner point in
the world coordinates. Then, the bottom-left corner point
is calculated by projecting the top-left corner point to the
ground. After tracking the user while he or she moves to the
other side of the object, same thing happens to the top-right
and bottom-right corners. Given the intrinsic and extrinsic
parameters of a camera, a robot can compute how much to
pan and tilt and how many images to capture to cover those
four corners. Finally, the region of interest is constructed by
projecting the four corner points from the world coordinates
to the image coordinates.

IV. OBJECT SEGMENTATION

Now, we have an image and a rectangle on it where an
object is expected to exist through human-robot interaction.
In this section, we explain how to segment an object in the
given image with the region of interest.

Of course, you can stop the process here and consider
the whole rectangle as an object because for localization,
for example, it still works as a visual landmark. However,
since the region of interest is a rough approximation, refined
segmentation is better for object recognition.

As mentioned earlier, we adopt a watershed segmentation
approach for a real-time performance, since it is critical
in human-robot interaction. Fig. 5 describes the overall
flowchart of our object segmentation method. Note that the
original image of Fig. 5(a) is composed with four views as
you can see the break lines on the border of each image.
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Fig. 5. The Overall Flowchart for Our Object Segmentation Method

A. Gradient Magnitude

As shown in Fig. 5(b), we compute the gradient magni-
tude, G to detect meaningful discontinuities in an image:

G(x, y) =

√(
∂I(x, y)

∂x

)2

+

(
∂I(x, y)

∂y

)2

, (1)

where I(x, y) is the intensity of each pixel.
Here, we employ the CIELAB color space which is a

perceptually uniform color space that has proven to perform
better than RGB for color texture analysis [24]. Thus, we
calculate the gradient magnitudes in L*, a* and b* spaces
and merge them into one. In addition, since a noisy gradient
introduces over-segmentation, we take the maximum gradient
over all color spaces:

Ĝ = max{ωLGL, ωaGa, ωbGb}, (2)

where Ĝ is the final gradient magnitude, while GL, Ga, and
Gb correspond to the gradient magnitudes, and ωL, ωa and
ωb are the weight coefficients for each color space.

B. Closing

But, there is still noise in the gradient image; some
boundaries are double-lined or broken. Thus, we perform
a morphological transformation, closing which is a combi-
nation of the dilation and erosion to remove noise further
in the gradient image. Fig. 5(c) shows the result of closing
operation to the gradient image.

The result grayscale image is considered as a topographic
relief of which each pixel stands for the elevation at that
point. Of course, you can perform watershed transformation
with this result image. But we make a major enhancement
here to prevent over-segmentation and to specify which parts

should belong to the foreground; control markers. How to
generate markers automatically will be explained in the
following subsections.

C. Back Projection

The watershed transformation partitions the image into
two different sets, catchment basins and watershed lines.
As a result, you have to group some catchment basins to
designate an object in postprocessing. Instead, you can set
different markers for different regions which play roles of
starting points for flooding.

Fortunately, we have a clue to segregating the foreground
from the background; the region of interest. We assume that
the outside of the region of interest completely belong to the
the background. Thus, we build two 2D color histograms
from the inside and outside of the region of interest in the
CIELAB color space and estimate the foreground histogram
by subtracting the latter from the former:

hf (i, j) = max
(
hin(i, j)− hout(i, j), 0

)
, (3)

where hf , hin, and hout represent the estimated foreground,
inside and outside color histograms, respectively, and i and
j denote the indices of the a* and b* bins, respectively.

Another assumption is that the object lie in the middle of
the inside. Thus, we create a back projection image with
the estimated foreground histogram and apply a distance
transform as a weighting factor:

D(x, y) = min
(
|x− x1|, |x− x2|, |y − y1|, |y − y2|

)
, (4)

where D(x, y) represents the distance map at each pixel
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Fig. 6. Experimental Results of Our and GrabCut Algorithms Given the Same Images and Regions of Interest

(x, y) in the region of interest, and (x1, y1) and (x2, y2) are
the top-left and bottom-right points of the region of interest.

Fig. 5(d) shows the back projection image multiplied by
the distance map. As you can see, the outside of the region of
interest is completely black, but some parts of the sofa look
bright. Note that the intensity goes higher from the border
to the center of the region of interest in general, which is
caused by the distance transform.

D. Threshold and Markers

In order to make a decision for the foreground in the region
of interest, we reject those pixels whose intensity values are
below a threshold. The remained pixels in Fig. 5(e) become
the foreground markers, while the outside of the region of
interest is filled with the background markers in Fig. 5(f).
In the next step, the watershed transformation will mark the
unknown regions which are not labeled as foreground nor
background.

E. Marker-driven Watershed Segmentation

Fig. 5(g) shows the result of the marker-driven water-
shed transformation [20] from the topographic relief, Fig.
5(c) and the foreground/background markers, Fig. 5(f). The
highlighted region stands for the segmented object. As you
can see, most of the sofa including a cushion is successfully
segmented, but some parts around the top-left corner are
missing.

V. EXPERIMENTAL RESULTS

Fig. 6 shows the experimental results of object segmen-
tation, given captured images and their regions of interests.

In order to evaluate the performance of our method, we also
tested the GrabCut algorithm (number of GMM models: 3)
in the same conditions.

As you can see, in most of cases like Fig. 6(a), (c), (d), (e),
and (f) the results are almost similar. But in some cases like
6(b) and (h) our method shows better performances, while in
the other one like Fig. 6(g) GraCut outperforms our method.

In general GrabCut was good at color-featured objects
and produced elaborated segmentations, while our method
was good at achromatic objects and showed robust results.
However, in time complexity two algorithms shows big
differences. Our method took about 30 milliseconds for
320×240 images and about 150 milliseconds for 960×480
images, while GrabCut algorithm took about 2 seconds for
320×240 images and about 5 seconds for 960×480 images
on a desktop PC with a 2.4GHz dual-core CPU and two 2GB
RAMs.

In conclusion, our method more suitable for interactive
object learning since the user usually wants to check whether
the robot has segmented well after referencing objects.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a new method for interactive
object learning from the view point that it is an integration
of human-robot interaction and object segmentation.

For human-robot interaction, we defined three types of
human gestures by the size of the target object; holding,
pointing and contacting two corners for small, medium and
large objects, respectively. As a result, the region of interest
where the object is likely to be located in the environments
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was estimated and expressed as a rectangle in the captured
image.

For object segmentation, on the other hand, we suggested a
marker-based watershed segmentation of which uses a noise-
filtered gradient image and forground/background markers
estimated from the color histograms of the region of interest.
Experimental results showed that the segmentation quality of
our method is as good as that of the GrabCut algorithm, but
the computational time of ours is so much faster that it is
appropriate for practical applications.

In this paper, extracting visual features for object learn-
ing and recognizing learned objects in the environments is
thought as a straightforward process and not included, but it
is necessary to evaluate interactive object learning as a whole.
In the meantime, registering learned objects to environmental
maps and localizing with them is another issue to be solved.
For example, large objects can be expressed as occupied
areas on occupancy grid maps for localization and path
generation. We think that our method can play a basis for
those researches in the future.
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