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Abstract— Machine vision represents a particularly attractive
solution for sensing and detecting potential collision-course
targets due to the relatively low cost, size, weight, and power
requirements of the sensors involved (as opposed to radar).
This paper describes the development and evaluation of a
vision-based collision detection algorithm suitable for fixed-wing
aerial robotics. The system was evaluated using highly realistic
vision data of the moments leading up to a collision. Based
on the collected data, our detection approaches were able to
detect targets at distances ranging from 400m to about 900m.
These distances (with some assumptions about closing speeds
and aircraft trajectories) translate to an advanced warning of
between 8-10 seconds ahead of impact, which approaches the
12.5 second response time recommended for human pilots. We
make use of the enormous potential of graphic processing units
to achieve processing rates of 30Hz (for images of size 1024-by-
768). Currently, integration in the final platform is under way.

I. INTRODUCTION

Currently, one of the major hurdles for the integration
of UAVs in the civil airspace is the detect, sense and
avoid capability (see [1][2]). A survey of potential tech-
nologies for unmanned aerial vehicle (UAV) detect, sense
and avoid is presented in Karhoff er al. [3]. Their analysis
concluded that the visual/pixel based technology offers the
best chances for regulator approval. To date, public domain
hardware implementation of vision-based detect, sense and
avoid systems have been limited to a small number, with the
most significant development made by Utt et al. [4], here
a combination of field programmable gate array chips and
microprocessors using multiple sensor, was tested in a twin-
engine Aero Comander Aircraft.

A challenge that faces any vision-based sense and avoid
system is the requirement of real-time operation. Motivated
by this fact, this paper exploits the capabilities of data-
parallel arithmetic architectures such as graphics processing
units (GPUs) which can outperform current CPUs by an
order of magnitude, and which have proven to be very
capable parallel processing systems as presented in Owens et
al. [5].

Over the last three decades, a two-stage processing
paradigm has emerged for the simultaneous detection and
tracking of dim, sub-pixel sized targets. Examples of this
two-stage approach include works by Gandhi et al. [6], [7],
Arnold et al. [8], Barniv [9] and Lai et al. [10]. These two
stages are: 1) an image pre-processing stage that, within each
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frame, highlights potential targets with attributes of interest;
and 2) a subsequent temporal filtering stage that exploits
target dynamics across frames. The latter is often based
on a track-before-detect concept where target information
is collected and collated over a period of time before the
detection decision is made. In the first category, specific im-
plementations of the morphological pre-processing approach
include the Hit-or-Miss filter by Schaefer and Casasent [11],
Close-Minus-Open (CMO) filter by Casasent and Ye [12],
and the Top-Hat filter by Braga-Neto et al. [13]. Although a
large proportion of research has focused on IR images, there
are recent examples by Carnie et al. [14], Gandhi et al. [6],
Dey et al. [15] of morphological processing and filters being
incorporated into target detection algorithms operating on
visual spectrum images.

In the second category, the temporal filtering stage that
follows the image pre-processing is designed to extract
image features that possess target-like temporal behaviour.
For this role, there are two particular filtering approaches that
have received much attention in the literature: Viterbi based
approaches [16], [17] and Bayesian based approaches [18].
In this paper, we extend our previous hidden Markov models
(HMM) approach [10] to implement it in a GPU. In this
paper, we specifically presents 1) a demonstration of coor-
dinated UAV flights performing a collision scenario, 2) an
application of HMM for detection of aerial targets and its
implementation of our algorithm in GPU-based hardware for
realtime detection, 3) analysis of the detection performance
in terms of range and sensitivity.

This paper is structured as follows. Section II describes
the morphological and temporal techniques definitions. Sec-
tion III provides a description of the GPU implementation.
Section IV presents the experimental setup and algorithm
evaluation. Finally, conclusions are presented.

II. DETECTION APPROACH

This paper considers an image pre-processing approach
that exploits grayscale morphological operations to highlight
potential targets, and a temporal filtering approach to detect
and track persistent features (targets). Next, we describe the
details of these two approaches.

A. Morphological Processing

In particular, we use the CMO morphological filter for low
level detection. The CMO method is based on operations
known as top-hat and bottom-hat transformations (see [19]
for more details) which at the same time are based in
two basic image processing operations called dilation and



erosion. Here, a pair of CMO filters using orthogonal 1D
structuring elements is implemented. One CMO filter op-
erates exclusively in the vertical direction, while the other
operates exclusively in the horizontal direction. The vertical
and horizontal structuring elements of the CMO morpholog-
ical pre-processing filter are given by s, = [1,1,1,1,1] and
sp = [1,1,1,1,1], respectively. Our implementation of the
CMO filter procedure can be summarised as follows:
for i =1 to n do

v = D(E(image;, $,), Sy)

h = E(D(image;, Sy), —Sy)

imgy =h —v

v = D(E(image;, sp), S)

h = E(D(image;, sp), —Sh)

imgp, =h—wv

result; = min(img,, imgp)

end for

where D and E are the two fundamental image processing
operation called dilation and erosion, respectively (see [19]
for more details).

B. Temporal Filtering

We consider the target detection as evaluating the likehood
of two complementary hypotheses, H; and Ho, where H; is
the hypothesis that there is a single target in the field of view
of the camera, and H is the hypothesis that there is no target.
Our filtering approach assume that under the hypothesis H;,
the target resides on a 2D discrete grid, that is the image
plane, such as I = {(i,j) | 1 < i < N,,1 < j < Np},
where N, and N, are the vertical and horizontal resolution
of the 2D grid (image height and width, respectively). Let
N = N, x Nj be total number of grid points, and the
measurements provided by the sensor be Y.

In our target detection problem, we represent a unique
HMM state by the target pixel location (4,7) in the image,
when present. Using a standard vector representation of an
image, let any HMM state m be represented as m = [(j —
1)N, + 4], when the target is at location (7, 7). In addition,
let zj, denote the state (target location) at time k. The HMM
transition probabilities (i.e likelihood between state transi-
tions) is described by A™" P(z41 = state ml|xy =
state n) Y(m,n) € [1, N]. In addition, initial probabilities
7™ = P(x1; = state m) Vm € [1, N] are used to specify
the probability that the target is initially located in state m.
Finally, to complete the parametrisation let the measurement
probabilities B™(Y) = P(Yy|xp = state m) Ym € [1, N]
be used to specify the probability of obtaining the observed
image measurements Y}, € [1, N] (see [20] for more details
about the parameterisation of HMMs )

The HMM detection is achieved propagating recur-
sively an un-normalised probabilistic estimate (o},
P(Y1,Ys,...,Yy|z, = state m)) of the i target state (z})
over time (see [21]). The procedure can be summarized as
follows:

for m=1to N do

initialisation: af* = 7 B™ (Y1)
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recursion: for k > 1

N
ot = |3 ai | e
n=1

end for
Two probability measures that facilitates the detection of the
target are used: 1) the probability of measurement up to time
k assuming H;

N
P(Y1,Ys, . Yi|Hi) = > aff (1)
m=1

and 2) the conditional mean filtered estimate of the state state
m given measurements up to a time k assuming H;

i = FElxy = state m|Yy,Ys, ..., Yy, Hy)
aj’
= 2)
N n
D n=1 0
where E[.|.] denotes the mathematical conditional expecta-

tion operation (see [22] for more details). Equation 1 may be
interpreted as an indicator of target presence and equation 2
as a indicator of likely target locations. For computational
efficiency, equation 2 can be evaluated directly from the
following expression (see [20] for more details):

Zp = NpBp(Yi)AZk_1 3)

where Ny, is a scalar normalisation factor; By (Y} ) isa N x N
matrix such as By(Yy) = diag(B™(Yy)) Ym € [1,N]; A
is a N x N matrix with elements A™"; and & isa N x 1
vector with elements ;" Vm € N. In addition, note the
following relationship between the normalisation factor Ny
and the probability of measurements up to time k assuming
H 1.

1

P(Y17Y2a"7yk|H1) = Hﬁl

=1

“4)

For the HMM filtering approach, let 7, the test statistic for
declaring the presence of a target, be given by the following
exponentially weighted moving average filter with a window

length of L:
) &)

—LT —i—Llo
M = L+l Tk—1 i1 g

Empirically, we found that L = 10 offered better results in
smoothing out the transient resulted from noisy behaviour in
the state transition. When 7, exceeds a predefined threshold,
the HMM detection algorithm considers the target to be
present and located at state v, = arg max,,(&}) at time
k. The definition of 7 and ~y; is motivated by the filtering
quantities discussed earlier.

A total of four independent filters operating over the
same pre-processed image data were implemented [10].
This filter bank approach is less well characterised than

1
N,



the standard single HMM filter, and its application has not
been prevalent in the context of dim-target detection from
imaging sensors. The transition probability parameters of
each filter in the HMM filter bank are designed to handle
a range of slow target motion. These type of target motions
correspond to transition probability matrices that only have
non-zero probabilities for self-transitions and transitions to
states nearby in the image plane (all other transitions have
zero probability). Furthermore, it is important to note that the
implemented HMM filter exploits the following probabilistic
relationship between target location z, and the pre-processed
measurements Yy :

P(Y™|x = state m)
B™(Y.) = k
(Ye) P(Y" |z # state m)’

m € [1,N] (6)
In equation 6, we can note that P(Y"|x, = state m)
and P(Y"|zy # state m) can both be determined on a
single-pixel basis (rather than requiring the probability of
a whole image, representing a computational advantage).
In order to construct the measurement probability matrix
By (Y3), estimates of the probabilities P(Y,F|z), = state m)
and P(Y,X|x), # state m) are required. The latter describes
the prior knowledge about the distribution of pixel values in
the absence of a target (i.e. the noise and clutter distribution),
while the former captures the prior knowledge about the dis-
tribution of values at pixels containing a target. The required
probabilities for By (Yy) are trained directly from sample
data. The probability P(Y% |z, # state m) is estimated as
the average frequency that each pixel value resulted from a
non-target location. Using a similar procedure, P(Y, |z =
state m) is estimated as the average frequency that each
pixel value measurement resulted from a target location.

III. ALGORITHM IMPLEMENTATION

As described in section II, the HMM filter is a two stage
filter; the morphological processing stage implementation
follows a mathematical compute-intensive task that requires
little flow control. The temporal filtering stage is again
compute-intensive however the implementation used here
required flow control. The HMM filter has been implemented
using a SIMD (Single Instruction, Multiple Data) approach
to allow flight ready real-time operation.

In our implementation, we have used the Compute Unified
Device Architecture (CUDA [23]) a Nvidia application pro-
gramming interface (API) that allows to exploit parallelism
of the GPU. The implementation flow is sequential and
begins with the CPU host transferring the current image to
process, to the GPU device memory. Then the GPU host
schedules a parallel set of operations.

After the GPU device operations have been scheduled the
CPU is free to perform other tasks while it waits for the
image processing operations to complete. During this CPU
’wait time’ the GPU executes the operations scheduled to it
in the order requested but performs the operations in parallel,
and therefore significantly faster than the CPU. Once the
GPU has completed its operations, the CPU then requests the
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resultant output and stores this in RAM. The program flow
for the HMM filter, as described above, has been included
in Fig. 1.
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i
(1) Image Transfer " i - )EE

Gray scale conversion and Bayer correction

(2) Schedule pre- | | eeeeeeeeeeed oo ——
processing stage | o

i HMM filter Morphological processing stage CMO

(3) Schedule I ; @ —
filtering stage H

1

'

I HMM filter Temporal filtering stage
'
Wait for device to finish \
'
'
'

T_‘

Store output for
next pass

Memory copy to
CPU

I
(4) Request Output data for | |
CPU memory

Fig. 1. HMM filter GPU implementation architecture.

In this paper, one important optimisation technique was
examined with the motivation of understanding the scalabil-
ity to future hardware and how to achieve real-time filter
implementation on cheaper graphics processing units.

Our implementation uses CUDA kernels, which are a
special type of C function that is executed N times in parallel
by N different CUDA threads [23]. Threads are grouped into
blocks, and should communicate only with threads in the
same block using quick access L1 cache type memory.

The block size, and therefore the number of threads per
block, is limited and can be optimised to suit the task, the
amount of cache memory required and the particular GPU
limit. Consequently, 1) to avoid un-utilised warps the number
of threads per block should always be a multiple of 32.
2) we should ensure at least an equal number of blocks
as multiprocessors. 3) Finally, the number of threads per-
block must chosen as high as possible, limited obviously by
compute capability and available registers.

Table I shows the appropriate optimisation choices and
also the performance increase over standard C implemen-
tation in a CPU (see Section IV-B) for 3 different CUDA
enabled GPU devices. We have approached the optimisation
in terms of trying to understand the working principles of
the GPU hardware and CUDA API parallelism to maximise
its potential for the task we are dealing with, instead of
shaping the HMM filter algorithm to ensure it is compute-
optimised and requires minimal control flow. Future, at-
tempts include methods to limit, for example, the use of
conditional branches in the temporal filtering stage.

IV. EXPERIMENTAL RESULTS AND SYSTEM EVALUATION

A. Experimental setup

Two fixed-wing UAVs were deployed to collect suitable
test data: 1) a Flamingo UAV (Silvertone UAV, 2.9m length
and 4m wing span) and 2) a Boomerang 60 model airplane



b)

Fig. 2. Deployed UAV platforms for data collection. a) Flamingo UAV with camera pod (used as own aircraft) and boomerang (used as target). b) Actual

moment of an encounter scenario showing both platfroms

(Phoenix Models, 1.5m length and 2.1 wingspan). The
Flamingo was powered by a 26cc 2-stroke Zenoah engine
and the boomerang by a O.S. 90 FX engine. The avionics
payload of the Flamingo included a MicroPilot® MP2128g
flight controller, Microhard radio modems, an Atlantic Iner-
tial ST IMUO4 inertial measurement unit (IMU) and a sepa-
rate NovAtel OEMV-1 GPS device (both housed together
with the camera), and an extensively customised PC104
mission flight computer. In contrast, the Boomerang only
possessed a basic setup that featured a MicroPilot® MP2028g
flight controller and Microhard radio modems.

In our experiments, the Flamingo served as the image data
acquisition platform and was further equipped with a fixed
non-stabilised Basler Scout Series scA1300-32fm/fc camera
fitted with a Computar HO514-MP lens with Smm focal
length. The camera could be turned on and off remotely from
the ground control station, and was configured to record 1024
by 768 pixel resolution image data at a rate of 15Hz with a
constant shutter speed to maintain consistent lighting in the
image frames. The captured image data was timestamped
during flight so that it could be later correlated with inertial
and GPS-based position logs from both aircraft in order to
estimate the detection range. A solid-state hard-disk was used
to store the recorded image data, as opposed to conven-
tional mechanical disk drives which may be susceptible to
vibrations during flight. Figure 2 shows the UAV platforms
configured for data collection.

B. System evaluation

We have evaluated the performance of the proposed algo-
rithm in terms of frame rate achieved processing 1024-by-
768 pixel images with 8 bits per pixel, and using two types
of signal-to-noise-ratio (SNR) quantities (defined later in this
section). To evaluate the performance in terms of frame rate,
we used as a baseline two software implementations in CPU,
MATLAB and standard C, respectively. Using a total of 300
image frames, we found that MATLAB took 896 ms/per
frame with an avg. frame rate of 1.12 fps and standard C took
133 ms/per frame with an avg. frame rate of 7.58 fps. These
results are still far from real time, but represent a benchmark
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to compare against the GPU implementations. Note that the
current scenarios and analysis were performed in sequences
with approximately 8000 frames each.

For the GPU case, we used a baseline system consisted of
a CPU Intel Pentium IV 3.2GHz, 1GB SDRAM @666Mhz,
NVIDIA GTX 280 1024MB running Linux Ubuntu. Using
this system we achieved processing rates of approximately
150Hz using the CUDA implementation. However, in order
to test the scalability and impact of the number of GPU
multicores, we tested the same implementation in two ad-
ditional GPU cards, a GeForce 8800GTS (medium range)
and a GeForce 9500GT (low range). Table I sums up the
experimental results for the proposed algorithm on each
GPU. It can be seen that power of the GPU can be measured
by the number of multiprocessors. The 9500GT when tested,
performed 1.5 times faster than a straight C implementation
displaying that very cheap GPUs can provide substantial
processing power in a compute-intensive operation and free
up the CPU for performing other tasks. It is clear that the
processing rates that can be achieved using GPUs are well
in excess of a common 30Hz frame-rate.

Currently, we are in the process of implementing a flight-
ready hardware using a mini-ITX computer based on an Intel
Core Duo 800Mhz, 2GB SDRAM running Linux Debian and
a low-power version GPU (Geforce 9600GT). This GPU of-
fers a good balance between processing performance, power
consumption and size. It has 8 multiprocessors, a compute
capability of 1.1, and consumes only 59 Watts of power. This
translates to an approximate processing rate of 28.5Hz (full
system tested in the lab). We highlight that there is still scope
for further improvement in processing speeds, as we have yet
to exploit advanced GPU code optimisation techniques (such
as pipelining and dynamic memory allocation methods). This
system is under testing on a Cessna 172.

The performance of the detection was evaluated in terms of
SNR using the amount of image jitter as an indicator. A low
amount of jitter is defined as involving apparent inter-frame
background motion of between 0 and 1 pixels per frame.
The metrics used to characterise the detection performance
are defined as: 1) a target distinctness SNR (TDSNR), and



GTX 280 | 8800 GTS | 9500 GT
Number of multiprocessors 30 12 4
Compute capability 1.3 1.0 1.1
Optimised threads per Block 1024 768 768
Optimised min. no. of blocks 60 24 8
Performance increase 20.5X 7.3X 1.5X
over C implementation
TABLE I

PERFORMANCE RESULTS IN THREE GPU HARDWARE VERSIONS

2) a false-alarm distinctness SNR (FDSNR). The TDSNR
provides a quantitative measure of the detection capabilitqy of
the algorithm, and is defined as TDSNR = 1010g10(£—N)2,
where PT is the average target pixel intensity and PV is
the average non-target pixel intensity at the filtering output.
In general, the more conspicuous the target is at the output
of the filter, the higher the TDSNR value. Complementary,
FDSNR measures the tendency of the algorithm to produce
false-alarms, and is defined as FDSNR = 1010910(5—2)2,
where PT is the average of the highest non-target pixel
intensity and PV is the average non-target pixel intensity at
the filtering output. Strong filter responses away from the true
target location will tend to increase the FDSNR value. For
convenience, we will let ADSNR =TDSNR—-FDSNR
denote the difference between the two SNR metrics.

Overall, the ADSN R values seem to provide a reasonable
indication of the detection algorithm performance. Using as
a baseline the value from the low jitter scenario, which
we denote by ADSNR,y, the results suggest that as a
rough rule-of-thumb successful tracking can be accomplished
under a particular jitter scenario x when: ADSNR, >
0.5ADSNRy, where ADSNR, is the ADSNR value
corresponding to jitter scenario X.

We used data from three engagement scenarios. For illus-
tration, we show only two encounter scenarios in Figures 3
and 4. Figures 3a and 4a show the trajectories of both
aircrafts, where the asterisks denote first detection. Similarly,
Figures 3b and 4b show the ROI of the frame (first detection)
where the target is highlighted in a square. Furthermore,
Table II shows the detection range results for the three
scenarios. Overall, we obtained detection ranges that are
generally consistent with the results reported in an earlier
study [14]. Considering that a boomerang is 6-7 times
smaller in size than a Cessna, the detection range of 6km
is roughly in proportion with the ones in Table II. While we
do not claim that a linear relationship exists between target
size and detection distance, this comparison of detection
range results reinforces the intuitive notion that larger targets
should be able to be detected at greater ranges. In our
final implementation we have made use of standard image
stabilisation approaches to minimise the induced jitter in
images.

We have used detection range as a metric for comparing
the performance of the detection algorithm. However, from
an operational point of view it is the time-to-impact from the
point of detection that is perhaps more informative. Based
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Scenario Detection Range (m) | ADSNR
1 412 38.04
2 562 31.94
3 881 19.55
TABLE II

TARGET DETECTION PERFORMANCE

on a combined closing speed of 51m/s in scenario 1, the
time-to-impact estimated was 8 sec. In scenario 2 , the time-
to-impact estimated was 10 sec (based on a combined closing
speed of 53m/s). It is clear that these times are below the
recommended 12.5 seconds [24]; however, our results must
be considered in the appropriate context.

V. CONCLUSION

This paper have described a detection and tracking al-
gorithm using morphological pre-processing and Hidden
Markov Model filters. The system is implemented in Graph-
ics Processing Units and tested using real data of encounter
scenarios taken from real UAV flights. This system clearly
represents a step forward with regards to visual/pixel based
sense and avoid technologies for aerial vehicles, bringing
this type of vehicles a step closer to its integration in
civilian airspace. Implementation of this detection system in
an unmanned aerial vehicle as well as in a Cessna 172 are
currently underway.
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