
Online Smooth Trajectory Planning for Mobile Robots by Means of
Nonlinear Filters

Marcello Bonfè and Cristian Secchi

Abstract— The paper presents a nonlinear filtering technique
that can be adopted to generate smooth trajectories for mobile
robotic applications. The proposed trajectory planner can be
fully executed online by the robot control system, thanks
to its inherently discrete-time behavior and to its limited
computational requirement. The outputs of the nonlinear filter
used as a trajectory planner include the derivatives of the
desired position in the cartesian plane up to the third order. This
allows the implementation of feedback linearization control
schemes that can transform the dynamics of a mobile robot
in a double chain of three integrators, exploiting the highest
derivative of the filter’s output as a feedforward action. Finally,
the paper reports experimental results obtained by the full
implementation of the proposed trajectory planning and control
scheme on a real unicycle-like robot.

I. INTRODUCTION

The problem of smooth trajectory planning is a fun-
damental issue in robotics. When mobile robots subject
to nonholonomic constraints are considered, the planning
problem is complicated by the requirement on geometrical
admissibility of the paths, while smoothness is necessary to
keep the system within the conditions assumed for simplified
modeling (e.g. absence of wheels slipping). In general,
motion planning is usually separated into the geometric prob-
lem (path planning), whose solution may be a parametric
path depending on an unspecified timing law to become
executable, and the actual trajectory planning, in which the
timing law for a given path is designed.

If robot motion can be planned in advance, efficient, but
computationally expensive, interpolation methods (i.e. spline
curves [1]) can be easily adopted for path planning and
constrained optimization techniques can be used for timing
law specification [2] (Chap. 4 and 7). However, when the
robotic task is not fully known a priori, online adaptation
or even complete re-planning of the desired path/trajectory
is required [3]. Of course, online motion planning is much
more computationally demanding, since it must be executed
in real-time.

In mobile robotics, the geometric planning problem and,
in particular, the search for shortest admissible paths in
the configuration space have been intensively studied for
many years. In fact, this subject is covered by a number
of books and reviews [4] (Chap. 1), [5]. The avoidance of
obstacles in the operational space is another typical issue
of mobile robotics, whose solution may rely, for example,

M. Bonfè is with the Engineering Department (ENDIF), University of
Ferrara, 44100 Ferrara, Italy. E-mail: marcello.bonfe@unife.it

C. Secchi is with the Deparment of Science and Methods for Engineering
(DISMI), University of Modena and Reggio Emilia, 42100 Reggio Emilia,
Italy. E-mail: cristian.secchi@unimore.it

on Voronoi diagrams [6], Probabilistic Roadmaps [7] or
artificial potential fields [8]. Finally, the search for time-
optimal motion plans, either on specified paths [9], [10]
or directly in the configuration space [11], is the last task
required to allow a mobile robot to reach its goals with the
highest efficiency, provided that perfect trajectory tracking is
guaranteed by closed-loop control.

Many navigation strategies produce the desired path in
terms of a set of via-points, that have to be crossed by
the mobile robot in order to obtain a collision free motion
to a predefined goal in the workspace [5]. The path that
the robot has to track to cross the via-points has to be
computed by a low level navigation system that needs to
take into account the velocity and the acceleration constraints
of the robot. It has been shown in [12] that the minimum
length path connecting two points in a planar workspace is
a sequence of straight lines and circular arcs. Unfortunately,
such a kind of paths cannot be perfectly tracked because
they induce a discontinuity in the acceleration, which cannot
be achieved in practice. To avoid this problem, several path
smoothing strategies have been introduced (see e.g. [13],
[14], [15]). These techniques produce a path characterized
by a countinuous curvature that can be tracked with bounded
acceleration. However, path smoothing is an operation whose
computational burden can be high [16] and, therefore, not
suitable for low cost applications, where cheap computational
platforms are required. Velocity and acceleration bounds
have also been considered by [17], where the nonholonomic
deformation method is extended in order to take into account
kinematic constraints. With all of these approaches, only a
trackable path is generated, so that further computational
efforts must be spent to determine a feasible motion profile
(in terms of velocity and acceleration) through which the
robot can follow the geometric path. In summary, at the best
of the authors’ knowledge, most of the algorithms proposed
in literature for path planning and timing-law optimization
require a powerful computational platform, in order to be
effectively executed online.

In this paper, we propose a trajectory planning solution
for planar mobile robots that is designed for online execu-
tion, thanks to its limited computational demand and to its
discrete-time behavior. Moreover, the output of the proposed
trajectory planner is fully specified with respect to time.
The solution is based on a nonlinear filter that generates
a smooth trajectory, with continuous curvature, in cartesian
coordinates of the operational space. The path of the robot
does not need to be specified a priori, but it can be defined
by setting a number of fixed via-points or a reference point

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4299

moving along non-smooth paths. Both kind of references
may come from higher-level planning algorithms, running
at a slower sampling rate, implementing obstacle avoidance
or goal reaching tasks. The nonlinear filter will transform
these non-smooth references into trajectories that can be
perfectly tracked by a unicycle-like robot with bounded
linear/angular velocity and acceleration. Moreover, limitation
on the third order derivatives of generated trajectories makes
the approach suitable for autonomous wheelchairs or similar
applications, in which the comfort of humans is a prominent
issue.

The rest of the paper is organized as follows: Section II
introduces the basic theoretical framework of nonlinear fil-
tering for smooth trajectory generation, Section III describes
the proposed trajectory planning scheme for mobile robotics
applications, Section IV gives some details about unicycle-
like robot with feedback linearization, that theoretically
allows perfect trajectory tracking. The proposed algorithm
has been fully implemented on a low-cost DSP-based motion
control card and tested on a real differential-drive platform.
Section V reports the experimental results.

II. NONLINEAR SMOOTHING FILTERS

Several approaches to online trajectory generation have
been proposed in the literature on robotics. An interesting
solution is the one based on nonlinear filtering. Consider-
ing, for example, basic positioning tasks, it is clear that
a trajectory that reach a fixed set-point can be viewed as
the output of a low-pass filter, whose input is a step signal
with amplitude equal to the desired final position. Nonlin-
ear design of the filter is required to guarantee bounded
output derivatives. This principle has been exploited first
in [18],with a strong emphasis on algorithmic or decision-
tree based solutions. The approach proposed in [19], instead,
is soundly based on control theory, which allows formal
proof of its time-optimality and no-overshoot behavior. The
smooth trajectory generator designed in [19] is a Variable
Structure (VS) dynamic system that acts as a nonlinear
filter for rough (steps, discontinuous ramps, etc.) reference
position signals. Thanks to the design of the filter, perfect
tracking of the reference signal can be achieved in minimum
time, compatibly with constraints on the first and second
derivative of the filter output. The VS system is composed
by a chain of two integrators and a nonlinear controller that
guarantees the requirement on bounded output derivatives
(i.e. velocity and acceleration) and minimum time response.
The filtering method can be realized with either a continuous-
time or a discrete-time system. Since in robotics a digital
control system is generally expected, only the discrete-
time case, whose block diagram is shown in Figure 1, will
be recalled here. The two discrete-time integrators have a
different structure: this choice is necessary to guarantee the
same dynamic behavior of a continuous time system when
the control input is constant [19].

The VS controller receives at each sampling instant nT
the following inputs: the rough reference signal rn and its
derivative ṙn, the bounds U on the acceleration/deceleration

VARIABLE
STRUCTURE

CONTROLLER

T z
z - 1

x
.

n
x n

T (z + 1)
2 (z - 1)

r n un

U x
.

M

Fig. 1. Block diagram of a nonlinear filter for trajectory generation

and ẋM on the velocity absolute value, the current outputs
of the integrators: ẋn and xn. The control law proposed in
[19], designed according to the principles of Sliding Mode
[20], is the following:

un = −Usat(σn)
1 + sign[ẋn sign(σn) + ẋM − T U]

2
(1)

in which sat(.) and sign(.) are the standard saturation and
signum functions and, denoting with Int [.] the integer part
of a number:

σn = żn +
zn

m
+

m − 1
2

sign(zn) (2)

m = Int

[
1 +

√
1 + 8|zn|
2

]
(3)

zn =
1

T U

(
yn

T
+

ẏn

2

)
, żn =

ẏn

T U
(4)

yn = xn − rn, ẏn = ẋn − ṙn (5)

The function σ depends on the tracking error yn and
the velocity error ẏn, normalized into zn and żn by means
of the state-space transformation of Eq.(4). The condition
σ = 0 defines a sliding surface (i.e. an invariant and attractive
state subspace) in the error phase plane. The control law
guarantees that the trajectories in the error space approach
and reach in minimal time the sliding surface, keeping
bounded velocity and acceleration. Then, the sliding mode
brings the system towards a perfect tracking condition, which
is also achieved in minimal time. The role of Eq.(3) and of
the saturation in Eq.(1) is to ensure that the sliding surface
is reached without overshoot, while the last factor of the
control law is required to constrain the behavior of the filter
when the initial conditions lie in regions of the error phase
plane in which the velocity limit is not satisfied.

Remark 1: The output of the filter when rn is constant
is actually a standard trapezoidal velocity profile [2] (Chap.
4). The great advantage of the approach is that rn can be
changed abruptly at any time and the filter will simply gener-
ate, sampling instant by sampling instant, a time-optimal and
feasible trajectory to reach the newest set-point. Moreover,
rn need not to be piecewise-constant.

Remark 2: The execution of the filter requires only 10
multiplications/divisions, 10 additions/subtractions and the

4300

execution of a square root, for the control law, plus two
numerical integrations and few IF..THEN statements to
implement sign(.) and sat(.). This means that its real-time
implementation on even a standard low-cost DSP for motion
control would be executed within a few microseconds.

III. SMOOTHING FILTERS FOR MOBILE
ROBOTICS

The extension of the nonlinear filter proposed in previous
section to a multidimensional system is not straightforward.
In manipulation robotics, the approach can be directly ap-
plied in joint-space by simply decomposing the multidi-
mensional filtering problem into N (one for each joint)
independent one-dimensional problems. In mobile robotics,
instead, the trajectories must be planned in the operational
space, because of nonholonomy and obstacles. On the other
hand, direct decomposition of the filtering problem into
two separate one-dimensional problems for each cartesian
coordinate is not possible, since their derivatives are related
by nonholonomic constraints. In this section, we propose a
practical solution based on the generation with nonlinear
filters of the two components of desired velocity in carte-
sian coordinates, compatibly with kinematic and dynamic
constraints, and subsequent numerical integration of these
velocity components in order to obtain the desired position
vector.

We focus on the class of robots that can be represented
by the so-called unicycle-like kinematic model, subject to
rolling without slipping constraint:

ẋ sin θ − ẏ cos θ = 0 (6)

in which θ is the orientation of the robot w.r.t to the fixed
cartesian frame. The vector [x, y, θ]T generally defines the
robot configuration, subject to the following equations:

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(7)

in which v and ω, respectively driving velocity and steering
velocity, are in most applications assumed as the control
inputs. Considering only the first two rows of Eq.(7), it is
clear that the generation of two sufficiently smooth signals
v(t) and θ(t) and the integration of ẋ and ẏ would allow to
solve the trajectory planning problem in the cartesian plane,
compatibly with the kinematic model of the unicycle.

In order to design the nonlinear filter to generate v(t) and
θ(t), it is necessary to recall the following preliminaries.
The acceleration of a planar trajectory for the unicycle
is given by the sum of tangential and radial acceleration
orthogonal vectors, whose lengths are respectively at = v̇
and ar = v θ̇ = v ω. Both components must be bounded
to preserve from the presence of lateral slipping, which
invalidates the kinematic model, and to keep proportionality
between wheels velocity and driving velocity. Of course, if
the robot is not turning, v can be set to the maximum value
allowed by the actuators. Limiting radial acceleration by

reducing (without zeroing) the driving velocity when ω �= 0,
involves a limitation also on the scalar curvature of the path
(κ = ω/v = ω2/ar).

Since the main objective of trajectory planning is to reduce
as much as possible both time and space necessary to reach
a given target position, it seems reasonable to increase speed
up to the limit, when the robot is oriented towards the
target, and instead set the driving speed as the ratio between
maximum allowed radial acceleration and maximum steering
velocity, when the robot must change its orientation to put
the target within its “line of sight”. Next, it is necessary
to understand how to execute this change of orientation,
by means of nonlinear filtering. For this purpose, we can
recall the so-called planar pursuit-evasion equations, that
are typically used for missile-guidance algorithms design
[21]. Referring to Figure 2, in which [xt, yt]T is the position
of the target and vt its velocity, [xd, yd]T and vd are the
outputs at a given instant of the trajectory generator (i.e. the
position/velocity of the “missile”), pursuit-evasion equations
can be written as follows:

R =
√

(xt − xd)2 + (yt − yd)2

θe = ATAN2 (yt − yd, xt − xd)

θ̇e = 1
R [vd sin(θe − θd) − vt sin(θe − θt)]

(8)

v

θ

d

d

(x ,y)dd

θe

θ t

vt

(x ,y)tt

x

y

R

Fig. 2. Target interception geometry

From now on we will assume vt = 0 (i.e. fixed target
positions). However, the following remarks can be easily
extended to moving targets. If the orientation of the trajectory
generated by the filter is different from θe, then this value
should be set as the (time-varying) reference for the nonlinear
filter. During the turning phase necessary to align with
the target, the bound on steering velocity should be the
highest possibile, while the reference for driving velocity
must be set to maximum value that allows limitation of radial
acceleration. Once that target alignment is achieved and the
trajectory is pointing with maximum driving velocity towards
the final position, the latter can be reached without overshoot
by simply triggering a deceleration phase with zero final
velocity, as soon as the distance from the target becomes

4301

equal to the space required to stop with given bounds on v̇
and v̈.

Starting from these remarks, we can design a nonlinear
smoothing filter, to generate trajectories for a unicycle-like
robot, by means of the system whose block diagram is
described in Fig. 3. The filter is a discrete-time system, but
in the rest of the section explicit reference to the sampling
instant nT will be dropped, to simplify the notation, and we
will improperly refer to differentiation and integration in the
same way it is usually done for continuous-time operations.

VELOCITY
NONLINEAR

FILTER

U v

.

v

v M

v r

ORIENTATION
NONLINEAR

FILTER

θr

Uθ
θ

M

 x = v cos (θ)
y = v sin(θ)

 x = f (v,v, θ, θ)
y = f (v,v, θ, θ)

 x = f (v,v,v, θ, θ, θ)
y = f (v,v,v, θ, θ, θ)

.

..

...

.

..

...

1

2

4

3

.

.
.
.
.
.

..
....

.. .
.

v
..
v
.

θ

θ
..
θ
.

d

d

d

d

d

d

SWITCHING LOGIC

rθ
.

x

y

t

t

.

T z
z - 1

x
.

y
.

d

d

x

y

d

d

T z
z - 1

..
dx..
dy

...
dy

...
dx

Fig. 3. Block diagram of the nonlinear smoothing filter for mobile robotics

The blocks in Fig. 3 can be described as follows:

• Velocity nonlinear filter: a filter with the structure of
Fig. 1, but its output is a driving velocity vd (instead of
a desired position), that perfectly tracks the reference
velocity vr with bounds on first and second derivatives
(|v̇d| ≤ v̇M and |v̈d| ≤ Uv).

• Orientation nonlinear filter: a filter that differs from
the previous one only in the calculation of the tracking
error, since the difference between two angles must be
limited in the interval [−π;π] and its sign must take
into account the shortest distance. The output of the
filter is the desired orientation θd tracking at best θe

with bounded derivatives (|θ̇d| ≤ θ̇M and |θ̈d| ≤ Uθ).
• Switching logic: the reference signals vr, θr and θ̇r

(v̇r = 0 at any time) and the bounds of the orientation
filter are specified according to a target approaching
sequence that can be described by the state machine
shown in Fig. 4.
The state diagram refers to the following parameters:

– vM : maximum allowed driving velocity;
– ARM : maximum allowed radial acceleration;
– θ̇B: maximum allowed steering velocity;
– Rstop: distance required to decelerate from vr =

vM to vr = 0. This value can be easily calculated
since the output of the velocity filter, assuming
v̇r = 0,is a standard profile with trapezoidal first
derivative (i.e. acceleration, in this case). Integrat-
ing further this velocity profile, we obtain Rstop.

• Final calculation of derivatives and integration: the tra-

- TURNING -

θ = θ

θ = θ

v = A / θ

θ = θ

- STOPPING -

θ = θ

θ = 0
v = 0
θ = 0

- TURNING SPEED -

θ = θ

θ = 0
v = A / θ
θ = 0

- ALIGNED -

θ = θ

θ = 0
v = v

θ = A /v

R = R
v = A / θ

r

r

r

r

r

r

r

r

r

r
r

r

eθ = θd

eθ != θd

e

RM M

d

stop

d

d

e

M

B

MRM

M

M

M

RM B

RM

.

B

eθ != θd

B

()
&&

v > A / θRM B
()

eθ != θd()
&&

v <=A / θRM B
()

()
&&

θd()= 0
.

. .

.

.
.

.

.

.

.

.

.

.

.

.

Fig. 4. Switching logic for setting references and bounds of the proposed
nonlinear filter

jectory generated by the filter needs to be expressed in
cartesian coordinates. Therefore, the outputs of the two
nonlinear filters previously described must be combined
as follows:

ẋd = vd cos θd

ẏd = vd sin θd
(9)

Integrating Eq.(9) we finally obtain [xd, yd]T . Higher or-
der derivatives of the trajectory can be directly obtained
from the outputs of velocity and orientation nonlinear
filters, using functions resulting from differentiation of
the first two rows of Eq.(7).

Remark 3: Target position [xt, yt]T can be abruptly
changed at any time, causing the condition θd �= θe and,
therefore, forcing a reduction of driving velocity, set to
ARM/θ̇B before starting the turning phase. In this way, radial
acceleration is guaranteed to be bounded by ARM . Of course,
this abrupt change of [xt, yt]T may be executed by a higher-
level planning algorithm, that switches between different via-
points when [xd, yd]T is in their vicinity.

Remark 4: The second order derivatives of velocity and
orientation filters are bounded, so that also third order deriva-
tives of [xd, yd]T are limited. Moreover, since second order
derivatives are continuous, the curvature of the resulting
path is continuous. Therefore, the trajectories generated by
the filter are suitable for applications in which the comfort
of humans transported by a mobile robot (e.g. autonomous
wheelchairs) is of interest.

Now that the trajectory generator is fully specified, it
is useful to address the issue of perfect trajectory tracking
under closed-loop control. As is well-known in robotics, this
condition can be achieved by means of dynamic inversion or
feedback linearization techniques, provided that the model
of the controlled system is perfectly known. In particu-
lar, we can observe that the vector [xd, ẋd, ẍd, yd, ẏd, ÿd]T

corresponds to the desired value of the state (in normal
coordinates) of a unicycle-like robot controlled by a dynamic
feedback linearization loop, as described in [22]. In the
following section, we extend the approach of [22] in order
to obtain third-order feedback linearization of the unicycle
model, that allows for perfect tracking of the trajectory
generated by the proposed nonlinear filter.

4302

IV. DYNAMIC FEEDBACK LINEARIZATION

In [22] the kinematic model of Eq.(7) is I/O feedback
linearized by choosing η = [x, y]T as the output and adding
an integrator before the original input v, so that the I/O
decoupling matrix (see [23], Chap. 5) becomes nonsingular
(if the state of the integrator ξ �= 0). The integrator is part of
the dynamic compensator and its input a is part of the new
input vector u = [a, ω]T , which allows exact linearization
by means of a control law based on the inverse of the I/O
decoupling matrix. The final result of the procedure is that
η̈ = ν = [ν1, ν2]T (i.e. the system is transformed in a double
chain of two integrators).

This procedure can be extended in order to take care of
the dynamics of a unicycle-like robot, whose model can be
written as follows (see [2], Par. 11.4):

ẋ = v cos θ
ẏ = v sin θ
v̇ = F /m

θ̇ = ω
ω̇ = τ / J

(10)

in which F is the driving force, τ is the steering torque,
m is the total mass and J is its moment of inertia around
the vertical axis. Applying the linear input transformation
a = F/m and α = τ/J and adding an integrator before a,
such that:

a = ξ ξ̇ = j (11)

the I/O feedback linearization can be obtained by subsequent
differentiation of the output η = [x, y]T until a nonsingular
relationship with the input is obtained. This happens when
the third derivative of η is computed:

...
η = F (q) + B(q)u

q = [x, y, v, ξ, θ, ω]T , u = [j, α]T

F (q) = ξω

[− sin θ
cos θ

]
+ vω

[− sin θ
cos θ

]
− vω2

[
cos θ
sin θ

]

B(q) =
[
cos θ −v sin θ
sin θ v cos θ

]
(12)

Starting from Eq.(12), we can design the linearizing con-
trol law as:

u = B−1(q)(ν − F (q)) (13)

so that
...
η = ν. Notice that B(q) is invertible as long as

v �= 0, so that the remarks of [22] on this singularity must
be considered.

Remark 5: The state in normal coordinates of the lin-
earized system is z = [x, ẋ, ẍ, y, ẏ, ÿ]T . Given a reference
trajectory whose derivatives are known up to the third order,
the control input ν can be calculated as follows:

ν =
[...
xd...
y d

]
+ K (zd − z) (14)

in which K is any 2×6 constant matrix that stabilizes
the control-loop on the linearized system. This control law
achieves perfect trajectory tracking after a transient depend-
ing on the closed-loop eigenvalues, which can be arbitrarily
placed by means of a proper design of K.

V. EXPERIMENTAL RESULTS

The proposed nonlinear filter has been tested on a mobile
robotic platform completely in-house developed. The robot
has a differential-drive mechanical structure, with one castor
wheel and two wheels actuated by DC motors generating a
peak torque of 2 Nm at 2000 RPM. The structure is realized
in aluminium and its total weight m = 15 kg. Since the
robot has a rectangular shape (350x450 mm), the moment
of inertia has been estimated as J = 0.4 kg m2.

The trajectory planning algorithm and the closed-loop con-
troller described in previous sections have been implemented
on a motion control card specifically developed for the robot,
based on a dsPIC30F produced by Microchip Technology,
which is a 16-bit Fixed-Point Digital Signal Controller (DSC)
running at 30 MIPS. The nonlinear filter is fully computed
with 32-bit resolution by the DSC in less than 800 µs. As a
rough comparison, the path planner described in [16] requires
15 ms on a Pentium IV at 2.2 GHz. On the other hand, the
sampling time for both the nonlinear filter and the control law
has been set to T = 4 ms during the experiments reported
next, in order to apply a conservative choice.

The proposed trajectory planner has been tested on a
sequence of fixed via-points that were set around an hy-
pothetical square obstacle. Each time that the filter output
[xd, yd] was at a distance slightly larger than Rstop from the
current reference point, the latter was switched to a newer
entry in the list of via-points. Fig. 5 shows the output of
the nonlinear filter (green) in the cartesian space, obtained
setting vM = 0.25 m/s, v̇M = 0.4 m/s2, Uv = 2, ARM = 0.1
m/s2, θ̇M = 0.6 rad/s, Uθ = 2 rad/s2. The behavior of the
robot during the test sequence can also be observed in an
accompanying video. As can be seen, the speed of the robot
is actually limited with respect to its capacity. On the other
hand, these limits are quite similar to those mentioned in
[22]. Again, this choice is conservative and is motivated by
the requirement on wheel slippage avoidance.

The trajectory tracking is referred to the robot pose es-
timation (red line plus blue triangles showing orientation)
obtained only with standard encoder-based odometry. The
tracking error in cartesian coordinates is shown in Fig. 6. As
can be noticed also in the accompanying video, trajectory
tracking is affected by slight oscillations. This fact is not sur-
prising and is related to the presence of unmodeled dynamics
(DC motors) and mismatch in the dynamic parameters, which
means that feedback linearization is not exact.

VI. CONCLUSION AND FUTURE WORK

The paper has described an approach to trajectory planning
for mobile robots based on the theory of nonlinear smoothing
filters. The nonlinear filter designed in this project is able to
generate reference trajectories in the cartesian plane, with

4303

0 0.5 1 1.5 2

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

X (m)

Y
 (

m
)

Fig. 5. Experiment on a real differential-drive robot: trajectory planned
(green), trajectory tracked (red) and via-points (stars)

0 10 20 30 40 50 60 70 80
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time (s)

m

Tracking error (X coordinate)
Tracking error (Y coordinate)

Fig. 6. Tracking error in the cartesian space

known derivatives up to the third order and continuous
curvature, that are inherently compatible with kinematic
and dynamic constraints of a classical unicycle-like robot.
The trajectories obtained with the proposed approach can
be ideally tracked without steady-state error if the control
system is implemented by means of I/O linearization with
dynamic state feedback.

It is important to remark that full digital implementa-
tion of the trajectory planner can be executed even on a
standard low-cost microcontroller or DSP. Therefore, online
applications do not require any oversized computational
platform. Only a higher-level planning system, running at a
slower sampling rate, that outputs rough references by means
of fixed via-points or reference points moving along non-
smooth paths, is required to support the robotic platform
with obstacle avoidance or goal reaching capabilities.

In future works we aim to formalize the properties of the
filter, in terms of length of the generated paths and total
traveling time, and compare them with the results described
in the literature. Moreover, the implementation of dynamic

feedback linearization controller will be calibrated better, in
order to improve tracking performance.

REFERENCES

[1] C. DeBoor, A Practical Guide to Splines. Springer-Verlag, 1978.
[2] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: mod-

eling, planning and control, ser. Advanced Textbooks in Control and
Signal Processing. Springer-Verlag, 2009.

[3] S. Macfarlane and E. Croft, “Jerk-bounded manipulator trajectory
planning: design for real-time applications,” IEEE Trans. on Robotics
and Automation, vol. 19, no. 1, pp. 42–52, February 2003.

[4] J.-P. Laumond, Ed., Robot Motion Planning and Control. Berlin:
Springer-Verlag, 1998.

[5] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,

Computational Geometry: Algorithms and Applications. Springer-
Verlag, 2000.

[7] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566–580,
August 1996.

[8] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1, pp.
90–98, 1986.

[9] J.-Y. Fourquet and M. Renaud, “Time-optimal motions for a torque
controlled wheeled mobile robot along specified paths,” in Proc. of
35th Conference on Decision and Control, Kobe, Japan, December
1996.

[10] C. Guarino Lo Bianco and M. Romano, “Optimal velocity planning
for autonomous vehicles considering curvature constraints,” in Proc.
of IEEE Conference on Robotics and Automation, Roma, Italy, April
2007.

[11] M. Renaud and J.-Y. Fourquet, “Minimum time motion of a mobile
robot with two independent acceleration-driven wheels,” in Proc. of
IEEE Conference on Robotics and Automation, Albuquerque, New
Mexico, April 1997.

[12] J. Laumond, J. Jacobs, M. Taix, and M. Murray, “A motion planner
for nonholonomic mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 5, pp. 577–593, 1994.

[13] T. Fraichard and A. Scheuer, “From Reed and Shepp’s to continuous-
curvature paths,” IEEE Trans. on Robotics, vol. 20, no. 6, pp. 1025–
1035, December 2004.

[14] G. Parlangeli, L. Ostuni, L. Mancarella, and G. Indiveri, “A mo-
tion planning algorithm for smooth paths of bounded curvature and
curvature derivative,” in Proc. of 17th Mediterranean Conference on
Control, June 2009, pp. 73–78.

[15] M. Kanehara, S. Kagami, J. Kuffner, S. Thompson, and H. Mizoguhi,
“Path shortening and smoothing of grid-based path planning with
consideration of obstacles,” in Proc. of IEEE Int. Conf. on Systems,
Man and Cybernetics, October 2007, p. 991//996.

[16] N. Montes, A. Herraez, L. Armesto, and J. Tornero, “Real-time
clothoid approximation by rational bezier curves,” in Proc. of IEEE
Int. Conf. on Robotics and Automation, May 2008, pp. 2246–2251.

[17] M. Hillion and F. Lamiraux, “Taking into account velocity and
acceleration bounds in nonholonomic trajectory deformation,” in Proc.
of IEEE Int. Conf. on Robotics and Automation, April 2007, pp. 3080–
3085.

[18] J. Lloyd, “Trajectory generation implemented as a non-linear filter,”
University of British Columbia, Computer Science Department, Tech.
Rep. TR–98–11, August 1998.

[19] R. Zanasi, C. Guarino Lo Bianco, and A. Tonielli, “Nonlinear filters for
the generation of smooth trajectories,” Automatica, vol. 36, p. 439/448,
2000.

[20] V. Utkin, “Variable structure systems with sliding modes,” IEEE
Transactions on Automatic Control, vol. 41, no. 4, 1977.

[21] C. Lin, Modern Navigation, Guidance and Control Processing.
Prentice-Hall, 1992.

[22] G. Oriolo, A. De Luca, and M. Vendittelli, “WMR control via dynamic
feedback linearization: Design, implementation and experimental val-
idation,” IEEE Trans. on Control Systems Technology, vol. 10, no. 6,
pp. 835–852, November 2002.

[23] A. Isidori, Nonlinear Control Systems, 3rd ed. Springer-Verlag, 1995.

4304

