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Abstract— Future normally-unmanned oil platforms offer
potentially significantly lower commissioning and operation
costs than their current manned counterparts. The ability to
initiate and perform remote inspection and maintenance (I&M)
operations is crucial for maintaining such platforms. This
paper presents a system solution, including key components
such as a 3D robot vision system, a robot tool and a control
architecture for remote I&M operations on processes similar
to those on topside oil platforms. In particular, a case study
on how to automatically replace a battery in a wireless process
sensor is investigated. A novel robot tool for removing and
re-attaching the sensor lid has been designed. Moreover, a
robot control architecture for remote control of industrial-type
robot manipulators is presented. A 3D robot vision system for
localizing the sensor lid and the battery has been developed. The
system utilizes structured light, using an off-the-shelf projector
and a standard machine vision camera. A novel, robust and fast
vision algorithm called 3D-MaMa has been adapted to work
for object localization and pose estimation in complex scenes, in
our case the process equipment in our lab facility. Experimental
results from our lab facility are presented which describe a
series of battery replacement operations for various unknown
positions of the wireless sensor, and we report on accuracies and
success ratios. The experiments demonstrate that the described
vision system is able to recover the full pose and orientation
of an object, and that the results are directly applicable for
controlling advanced robot contact operations. Moreover, the
custom-built lid operation tool demonstrates successful results.

I. INTRODUCTION

Offshore oil and gas platforms are remote and isolated
places, and pose a challenging environment for their hu-
man operators due to the unsheltered maritime environment,
heavy weather and unfriendly, often explosive, toxic and
corrosive atmosphere [1]. Normally-unmanned automated
topside platforms may be an alternative to subsea installa-
tions through increased accessibility for large maintenance
operations. In addition, topside platforms may statistically
recover up to 22 percent more of the oil or gas in a reservoir
than a subsea alternative [2], [3]. Costs related to sound
insulation, footbridges and hand-rails may be significantly
reduced since there is less need for personnel.

Robot solutions for offshore inspection and maintenance
(I&M) tasks have traditionally been designed for subsea tasks
and performed by Remotely Operated Vehicles (ROVs) or
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Fig. 1. The Mesa Verde Platform concept.

Autonomous Underwater Vehicles (AUVs). More recently,
the idea of using mobile service robots in topside offshore
applications have been introduced [4], and results on au-
tonomous navigation in such unstructured environments have
been presented [1], [5], [6].

Similarities to remote operated I&M operations with
robots offshore can be found in remote control of operations
for, e.g., teleassisted surgery [7], subsea [8], in space [9],
and in remote intervention tasks in nuclear facilities [10],
[11]. However, there are also noticeable differences. I&M
operations on oil platforms often involve manipulation of
heavier objects than in other teleoperation scenarios and
this requires, e.g., industrial robot manipulators. Such robots
traditionally operate as preprogrammed machines and allow
for very little online control. Thus, new control modes and
communication infrastructure must be developed in order to
facilitate remote I&M on offshore oil platforms.

Object and pose estimation of known objects in an unstruc-
tured scene is important for robot interaction applications.
Existing methods in this field can be grouped into coarse
and fine registration methods [12]. The goal of coarse
registration methods is to compute an initial estimate of the
rigid motion of the object, which eventually can be refined
by more precise methods later. These later methods – like
ICP [13] – are typically slow and show bad convergence
properties, requiring an initial step for object detection.
Methods for coarse registration include PCA, local feature
based approaches like harmonic shape contexts [14], spin
images [15], RANSAC-based approaches like DARCES [16]
and genetic algorithms [17]. A drawback with many of the
popular algorithms (like spin images) is that they require
the presence of local features, i.e. sufficient local variations
in geometry, in order to generate robust, local shape de-
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scriptors. Our approach is motivated by the fact that many
industrial parts typically consist of large planar or evenly-
curved surfaces, resulting in point signatures that can not
discriminate well among different object poses. Instead of
using local point signatures, our method is based on the
search for two points a given distance apart, and with a given
correspondence between their surface normals.

Salvi et al [12] found the DARCES method [16] to be
the most robust method for range image registration, and
DARCES is also the closest published method to the one
we are using in this paper. The most important differ-
ence between DARCES and the presented method is that
DARCES is based on the presence of three points, while our
method only requires two points. This makes our method less
computationally expensive and less vulnerable to occlusions.
However, our method requires the presence of precalculated
normals. See [18] for a more comprehensive review of 3D-
MaMa and differences and similarities with DARCES.

In this paper we present a 3D vision system, a robot tool,
and a robot control architecture employed to automatically
perform robot contact operations on objects with unknown
positions in unstructured environments. We present and
demonstrate a system solution for an important challenge
within remote maintenance on offshore oil platforms. This
system including its key components (i.e., a 3D vision
system, a robot tool, and a robot control architecture) con-
stitute the major contribution of this paper. A case study
maintenance operation involving replacing a battery in a
wireless sensor is chosen and presented in this paper. Both
the battery lid and the battery are detected and localized using
our robust 3D object and pose detection algorithm which we
call 3D-MaMa [18]. The algorithm has been adapted and the
accuracy has been improved by adding a fine alignment step
using the ICP algorithm. A custom designed novel tool for
performing the challenging task of automatically removing
and re-attaching the sensor lid has been developed. This tool
is the first of its kind and can be employed for a large
range of sensors. A robot control and supervision architecture
for remote control of I&M operations is also presented.
The proposed architecture enables an onshore operator to
perform and monitor I&M operations offshore. The system
for remote maintenance is demonstrated through battery
replacement operations in a lab facility which resembles an
unstructured industrial environment and experimental results
are presented.

There is an ongoing research activity on taking the pre-
sented operations and tools offshore and this is thus beyond
the scope of this paper. Still, the general approaches (e.g.,
the vision methods) are also applicable for other physical
instruments than the ones used in this paper and can therefore
also be applicable for outdoor conditions, but special care has
to be taken regarding environmental disturbances, which has
not been addressed in this paper.

This paper is organized as follows. In Section II we
give an introduction to the concept of normally-unmanned
oil platforms and an overview of a lab facility used to
demonstrate this concept. Moreover, a vision system used
in the lab facility is described. In Section III a description
of the vision methods and robot tool presented in this paper

is given. Experimental results are presented and discussed in
Section IV and conclusions are stated in Section V.

II. SYSTEM OVERVIEW
In this section a short introduction to the concept of remote

I&M on future normally-unmanned offshore oil platforms is
given. Moreover, a lab facility is presented which is used
to implement and demonstrate relevant I&M operations for
such oil platforms. In particular, we detail a structured light-
based vision system used in the lab to, e.g., localize objects
in order to perform robot contact operations on them.

A. Background and Challenges of Remote Operations
A novel remote I&M concept for offshore oil and gas

platforms was presented in [19] as an alternative to tra-
ditional offshore platforms. The platform concept is based
on separating the work area accessible by human operators,
and a closed permanently unmanned area (PUA) that is only
serviced by robots as in Fig. 1.

The production process in the PUA is not intended to be
operated by robots, but will be built on concepts developed
for subsea production platforms. Its topside location will
allow for easier access during I&M operations. The remotely
operated platform concept is designed on the premise that
robots may replace humans for the most important scheduled
I&M operations inside the PUA such as gauge readings,
valve and lever operations and monitoring gas levels, leak-
ages, acoustic anomalies and surface conditions [1].

Remote offshore I&M operations pose many significant
challenges, e.g.: 1) Operations must be performed on a
structure subject to wind, dirt, ice and structural changes.
2) No-one is offshore to intervene if something fails. Hence,
a robust and adaptable I&M system is necessary. 3) Onshore
operators must be able to monitor and control I&M opera-
tions with a large range of level of detail. This requires new
and versatile operator interfaces.

B. Lab Facility
A lab facility has been built in Trondheim, Norway, in

order to develop, test, and demonstrate solutions for next-
generation I&M operations for normally-unmanned oil plat-
forms. An overview of the facility is given in the following.

The lab facility consists of a process structure simulating
parts of a production process on a real oil-platform and

Fig. 2. Robots and process equipment in lab facility.

5100



two robot manipulators used for I&M tasks on the process
structure using available tools and sensors. See Fig. 2 for
a 3D model of parts of the lab facility. All necessary
information (video feeds, audio, sensor data, etc.) is relayed
to human operators via the Internet.

Both robots are standard 6-axes manipulators (Kuka KR-
16). One is mounted on a 3-axes Güdel gantry. The main
tasks of the gantry-mounted robot (GR) is to perform I&M
operations on the process equipment. This robot can connect
automatically to custom-built tools and sensors such as
vibration-measurement sensors, a valve-operating tool, and
a lid operation tool (see Section III-B). A structured light
system is installed at the top of the (black) base of the GR
(see Section II-C). The floor-mounted robot (FR) is used for
monitoring and assisting the GR.

The process equipment is used to simulate an offshore
production process. It consists of water tanks, valves to
control the water flow, and various sensors to validate the
measurement readings performed by the robots. In particular,
Rosemount wireless pressure and temperature sensors from
Emerson are installed. A battery replacement operation on
such sensors is performed automatically by the GR and the
FR and this is detailed throughout this paper.

The lab facility can be remote controlled from any location
via the Internet. Live video streams and continuously updated
3D models of the facility provide a remote operator with
awareness of the lab operations. The remote operator can
initiate high-level commands for automatic I&M routines
from a graphical representation of the process equipments, or
control the robots with off-the-shelf joysticks either directly
or via 3D models. A model-based collisions detection system
is used to ensure safe operations. See [19] for further details
on the lab facility.

C. Vision System

Our structured light based 3D vision system is used for
creating a 3D model of the process equipment in the lab. This
is advantageous for close contact operation in a changing
environment. Structured light is a relatively fast, accurate
and flexible optical method for measuring 3D shapes of
objects. The result is a dense cloud of points that accurately
describes the shape of the illuminated surface. The custom
made structured light software in our lab works with non-
expensive, off-the-shelf components, in this case consisting
of a BenQ multimedia projector and a Basler Scout Gbit
Ethernet camera with 1280× 960 resolution (see Fig. 3).

The structured light algorithms are based on a combination
of Gray code and phase stepping fringe projection [20]. A
measurement is performed in about 5 seconds, and the result
is a dense point cloud consisting of approximately 1.2 million
3D points with sub-millimeter accuracy. Due to limited depth
of focus in the camera and the projector, the measurement
range for our set-up was limited to around 1 m in the z-
direction.

Structured light was selected for convenience and works
well in indoor testing environments. For offshore environ-
ments, however, structured light may not be the optimal tech-
nology due to strong ambient lighting and limited robustness
and lifetime of the projector system. However, our data anal-

Basler Scout Camera

BenQ
Projector

Lid Tool

Pan-Tilt Camera

Fig. 3. KUKA robot manipulator hanging upside down from the Güdel
gantry. The structured light vision system is mounted on the base and the
sensor lid operation tool is mounted on the end effector.

ysis algorithms (see Section III-C) work with generic point
clouds, so other commercially available 3D sensors (e.g.
laser scanners) may be used as well. Addressing additional
outdoor challenges specific for an offshore environment will
then of course also be important, but this is beyond the scope
of this paper.

III. METHODS AND TOOLS

In this section a control and supervision architecture for
remote control of I&M operations is presented, in addition
to a specialized tool – called a lid operation tool – to be
used for battery replacement operations on wireless sensors.
Moreover, we present a novel, robust and fast 3D object
detection and pose estimation algorithm used for detecting
almost arbitrary objects in complex scenes.

A. Robot Control Architecture and Sensor Integration

In the following we outline the control architecture and
a sensor integration system as a step toward a complete
system for remote control and monitoring of I&M operations
on normally-unmanned offshore oil platforms. Both the
control architecture and the sensor integration system are
implemented in the lab facility described in Section II-B.
Fig. 4 shows an overview of which modules that are placed
“offshore” (i.e., in our lab facility) and “onshore” (i.e., at a
remote location with an Internet connection).

An onshore operator may initiate and monitor I&M op-
erations from a user interface called Process Viewer. The
user interface gathers available high-level robot commands
(e.g., “Measure vibration” or “Change sensor battery”) from
a Structured Query Language (SQL) database on start-up.
Each command has a corresponding robot motion routine
which is stored and carried out offshore. The operator may
point-and-click on an illustration of the offshore process
equipment displayed in Process Viewer in order to initiate
I&M operations. Process Viewer also displays sensor data
readings obtained during I&M tasks.

All robot commands and sensor data are relayed through a
central server called Robot Server. This server transfers I&M
commands from an operator to the robots via TCP/IP and an
open interface standard called OPC. Moreover, Robot Server
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Fig. 4. Control architecture for remote inspection and maintenance. All
transmission lines that are not marked use TCP/IP.

also acts as a sensor integration system in that all robot data
such as tool states, robot-mounted sensor data and process-
mounted sensor data are transferred to Robot Server and
relayed to, e.g., Process Viewer. Robot Server communicates
with a custom-designed program called CRASH used for
model-based collision checking. The CRASH system will
be important in order to avoid damage to the robots and is
located offshore to increase speed and reliability.

Object detection, pose estimation and control of the
structured light instrument are carried out by the Process
3D Analyzer. This module is located offshore to decrease
the necessary amount of data traffic (e.g., high-resolution
images) between offshore and onshore. The Process 3D
Analyzer transfers object coordinates via Robot Server to
the robots in order for them to perform, e.g., a lid operation
or battery-replacement task.

Camera Server distributes live images from the offshore
installation to an onshore control room. The frame rate
of the live video feed transferred from Camera Server is
automatically adjusted based on the available bandwidth.

B. Robot Tool Design and Operation

Wireless sensors offer a cost-effective, simple and versatile
approach to process monitoring. In particular, there is a
growing interest for such sensors in the offshore industry due
to, e.g., reduced system weight (i.e., less cables, connection
boxes, etc). Our lab facility is equipped with Rosemount
wireless sensors from Emerson which are typical wireless
sensor in use by the offshore industry. In this section we
present a novel robot tool – called a lid operation tool –
for removing and re-attaching the battery lid on Rosemount
wireless sensors. In addition, parts of the operation required
to replace a sensor battery which is located underneath the
sensor lid will be described. The complete battery replace-
ment operation is described in Section III-B.

Rosemount sensors are intrinsically safe and have a battery
lid with a diameter of 85 mm. The lid is externally threaded
and has a rubber gasket. Moreover, the top of the lid has a
circular set of concavities. A battery is located behind the lid
and can be removed by pulling it straight out. A new battery
can then pushed straight in.

Tool changer
system

Transmission

Gear

Locking 
structure

Connector cup

Shaft spring

Springs

Guiding tube

Motor

Fig. 5. CAD model of the lid operation tool.

Three main requirements regarding the battery replace-
ment operation were defined before designing the lid oper-
ation tool: 1) The Rosemount sensors shall not be modified
in any way. 2) Profibus shall be used for communication
with the lid operation tool. 3) Two robots can be used for
the task. The main tool challenge for this operation was
how to remove and re-attach the sensor lid. Several different
solutions were considered until a final design was ready.

The lid operation tool is used by the gantry-mounted robot
in our lab facility in order to unscrew, keep and re-attach
the lid. The floor-mounted robot replaces the battery using a
standard gripper tool.

The main concept for the lid operation tool (see Fig. 5
for a CAD-model) is based on the use of spring-loaded
connections together with a locking structure, a guiding
tube, and a connector cup with a circular arrangement of
convexities. The cup and its convexities are fitted to the shape
of the sensor lid which has a corresponding circular set of
cavities on the top. A lid removal procedure is initiated by
the gantry-mounted robot pressing the lid operation tool in a
longitudinal movement against the sensor. Then the springs
and the guiding tube ensure that the lid operation tool is
situated at a suitable angle relative to the sensor lid. The
shaft spring in the guiding tube ensures that the connector
cup and its convexities grip into cavities on the sensor lid
once the connector cup is rotated. The shaft spring allows
the lid to be screwed in and out without having to move the
robot during the operation.

The tool is placed in a correct position and used for
removing and re-attaching the sensor lid by control of the
speed and torque of the motor via Profibus. While maximum
torque is used to unscrew the lid, a reduced torque is used
to re-attach the lid. The position feedback from the motor
is used to count the number of rotations. The number of
rotations and the torque are used in an error detection and
retrial algorithm.

The main challenge is to re-attach the lid. The challenge
partly arises from that the pitch (the distance from the crest
of one thread to the next) is very low (i.e., fine threads).
When the tool is in position, then the operation starts with
turning the lid counter clockwise (off) in order to get the
lid correctly seated on the threads of the sensor. Then it
is turned clockwise (on) with a suitable torque. If the lid
gets stuck before a minimum number of clockwise rotations
have been completed, then the re-attaching operation has
temporarily failed. However, in order to achieve a successful
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re-attachment, the lid is automatically turned counter clock-
wise (off) again and then turned clockwise (on) once more.
The springs in the tool design are crucial for fine-positioning
the tool relative to the sensor when re-attaching the lid.

C. 3D Object Localization and Pose Estimation

The 3D-MaMa algorithm introduced in [18] is a method
for estimating the position and orientation of one or more
known 3D objects in a scene. The algorithm was originally
developed by the authors for random bin picking, where the
goal was to pick multiple, identical objects, each with an
arbitrary position and orientation, out of a container. In this
paper, we describe how the same algorithm can be applied
in order to search for specific objects (in our case a sensor
lid and a battery) in a point cloud of a complex scene
containing process equipment for an offshore oil platform.
The accuracy of the position and pose estimation is improved
by subsequent application of the Iterative Closest Point [13]
(ICP) algorithm for fine alignment.

The main design goal for the 3D-MaMa algorithm was
that it should be suitable for industrial parts with little local
texture and be robust towards missing data points. Both of
these criteria make current algorithms like spin images [15],
where local surface patches are used to recognize subparts of
the object, less suitable for the objects we have been working
on.

The input for the 3D-MaMa algorithm is a template in
the form of a CAD model or a 3D mesh of the object
to search for, along with a set of two points with two
corresponding surface normals (hereafter referred to as the
search parameters) on the surface of the template. These
points can be selected either automatically or by the user,
and this needs only to be done when the system is trained to
handle a new object. We refer to the first selected point-
normal pair, (pr, n̂r), as the reference plane, while the
second point-normal pair, (ps, n̂s), is termed the search
plane. The reference and the search plane should preferably
be two distinct pairs of points and surface normals that are
somehow characteristic for the object. Note that we use the
term plane to refer to a local plane or manifold defined on
a small neighborhood around a point on the 3D model, and
that the reference plane and the search plane may be located
on e.g. a convex or a concave surface, not necessarily on a
larger, planar surface.

The first step of the algorithm is to estimate surface
normals for all the points in the input point cloud. This is
done by performing local plane fits to small neighborhoods
around each point in the input 3D image (typically by
considering a neighborhood of 5× 5 points).

The second step of the algorithm is to search for candidate
planes, i.e. pairs of points with a similar distance, and
with corresponding surface normals having a similar relative
orientation to each other as the specified reference plane and
search plane.

Each plane, (Pi, n̂i), in the input 3D image is checked
against every other plane, (Pj , n̂j), and a score is calculated
by comparing their center-to-center distances and the scalar
product of their surface normals. This initial matching pro-
cess is illustrated in Fig. 6, where two local planes (P1, n̂1)
and (P2, n̂2) are being evaluated. In order to tolerate a certain
amount of displacement, the vector d⃗ = P1P2 is checked
whether it points into the parallelogram drawn in Fig. 6.
The scalar product of the surface normals, n̂1 ⋅ n̂2, is also
checked whether it is close to the scalar product n̂r ⋅ n̂s of
the search parameters.

If the preceding tests are satisfied, it is possible to calculate
a transform, T , that represents the best possible alignment
of the reference and the search plane of the template with
the candidate planes (P1, n̂1) and (P2, n̂2). This transform
is marked as a candidate for further evaluation.

In the final step of the algorithm, a cost that represents how
well the transformed template points match with the scene
is calculated (see [18] for details). Along with the cost for a
particular position and pose, we also calculate the number of
scene points, Ns, that fall within the transformed template,
and a coverage ratio, R = Ns/Nmax, where Nmax is the
maximum number of scene points that could be sufficiently
close to the transformed template given a perfect match.

In the case of random bin picking [18], a threshold was
set based on the cost and the coverage ratio. In our case,
we are only interested in the one transform that provides
us with the best match between the template and the scene
points, hence we only keep the transform T that provides the
minimum cost and with a sufficiently high coverage ratio.

The alignment using 3D-MaMa is usually accurate down
to a few millimeters, which was not sufficient for the robotic
operation of the battery. In order to obtain the best possible
alignment of the template with the scene, we added a fine
positioning step to the algorithm using the ICP algorithm,
which is a standard algorithm for fine alignment of point
clouds. We use a bounding box based on the result of
registration with 3D-MaMa to select only those points from
the scene that are believed to have a corresponding point on
the CAD model. Note that the ICP algorithm needs a very
good starting point in order to end up in the global minimum,
providing us with the position and pose of the template that
minimizes the mean-square error of distances between the
points in the scene and their closest point on the template.
If the starting point is too far off, the ICP algorithm might
get stuck in a local minimum.

As described in [18], the registration algorithms have
been highly optimized and parallelized, and position and
pose estimation is usually performed within a few hundred
milliseconds.

IV. EXPERIMENTS AND RESULTS

In this section the steps of action in the selected mainte-
nance case are detailed. In addition, three sets of experiments
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are presented to validate the operation and the results are
discussed.

A. Case Study and Process Flow Description

The lab facility consists of, as described in Section II-B,
two robots; a floor-mounted robot (FR) and a gantry-mounted
robot (GR). These robots co-operate using information ob-
tained from the structured light instrument in order to replace
a battery in a Rosemount wireless sensor.

The process flow in the case study is as follows: 1) The
battery-replacement operation is initiated by an operator who
selects this operation in Process Viewer. This is the only
necessary user interaction. 2) The GR moves the structured
light instrument (SLI) in front of the wireless sensor and
signals the Process 3D Analyzer (P3DA) that that the SLI is
in position. 3) The P3DA uses the SLI for finding the position
and orientation of the sensor lid. 4) The position of the sensor
is transmitted from the P3DA to the GR. 5) The GR connects
to the custom-built lid operation tool and unscrews the sensor
lid if the sensor lid has been successfully localized (if not,
then the operation is aborted). 6) The GR moves the SLI
back in front of the sensor and signals the P3DA that it is
in position. 7) The P3DA uses the SLI in order to find the
position and orientation of the sensor battery which is no
longer hidden by the battery lid. 8) The coordinates of the
lid are transmitted to the FR. 9) The FR connects to a two-
finger Schunk gripper and removes the battery based on the
received coordinates if the battery is successfully localized (if
not, then the lid is re-attached and the operation is aborted).
The FR then picks up a new battery and inserts it into the
sensor. 10) The GR uses the lid operation tool in order to re-
attach the sensor lid. A short video of parts of the complete
operation is available together with this paper.

All communication between the robots and the P3DA goes
via Robot Server (see Fig. 4). All robot motions are pre-
programmed with a teach pendant based on an initial wireless
sensor position. Feedback from the P3DA is employed in
order to update the robot paths when the wireless sensor has
moved from its original position.

In order to detect both the sensor lid and the battery two
3D models were used as input to the vision algorithm (see
Fig. 7). Since we did not have access to CAD models of
the sensor lid and the battery, we obtained their 3D models
by 3D digitization with a commercial ATOS structured light
sensor by GOM GmbH.

Search plane

Ref. plane

Search plane

Ref. plane

Fig. 7. 3D models used to detect position and pose for sensor lid (left) and
battery (right) with indicated reference plane (red) and search plane (green)
for the 3D-MaMa algorithm.

B. Experimental Results
In order to test our vision algorithm and the lid operation

tool’s suitability for robotic maintenance operations, three
experiments have been conducted.

The first experiment was performed in order to verify the
repeatability of the vision algorithms. A series of ten 3D
images was captured of the sensor lid, and the result of the
position and pose estimation along with mean values and
standard deviations are given in Table I. The columns Tx,
Ty and Tz display the detected center point of the sensor lid
(in millimeters), while the columns , � and � display the
Euler angles (in degrees) corresponding to rotations around
the z, y and x axes (ZYX convention). The RMS column
shows the RMS distances in millimeters after ICP alignment
between the points that were considered in the scene and
their closest corresponding point on the 3D template. The
point density for the input 3D templates was around 0.3 mm.
This implies that the RMS error is not expected to drop
significantly below this value, even when we have a perfect
alignment between the template and the measured points.
The final column displays the coverage ratio R, which was
calculated as explained in Section III-C.

TABLE I
REPEATABILITY EXPERIMENT FOR LID

# Tx Ty Tz � �  RMS R
1 90.9 -32.8 -161.3 0.0 -0.2 48.1 0.41 0.56
2 90.9 -32.7 -161.3 0.3 0.2 167.9 0.39 0.54
3 90.9 -32.7 -161.3 0.2 0.3 167.4 0.40 0.56
4 90.8 -32.8 -161.4 0.2 0.2 167.2 0.39 0.53
5 90.8 -32.8 -161.4 0.5 0.1 -132.5 0.38 0.54
6 91.0 -32.8 -161.4 0.2 0.2 167.3 0.42 0.54
7 90.9 -32.8 -161.4 0.2 0.1 168.5 0.40 0.55
8 90.7 -32.8 -161.4 0.5 0.1 -132.6 0.38 0.53
9 90.7 -32.8 -161.4 0.6 0.2 -132.3 0.39 0.50

10 90.8 -32.8 -161.4 0.2 0.2 168.2 0.41 0.53
� 90.8 -32.8 -161.4 0.3 0.1 65.7 0.40 0.54
� 0.10 0.04 0.05 0.19 0.13 141.66 0.01 0.02

The results in Table I suggest that the vision algorithm is
very repeatable. The detected position of the center of the
sensor lid has a standard deviation of less than a 0.1 mm
for the ten trials. The standard deviation in the Euler angles
is less than 0.2 degrees for rotations around the x and y
axes. The standard deviation in the detected rotation around
the z axis () is very high for the battery lid. This is
due to the rotational symmetry of the lid, something that
makes it impossible to determine the exact rotation around
its symmetry axis. This is, however, not necessary in order
for the lid operation tool to unscrew the sensor lid.

In the second experiment, the complete battery replace-
ment operation as described in Section IV-A was evaluated.
A movable sensor holder was used in order to steadily
support the sensor in different positions (by sliding it up and
down along a metal bar on the process equipment). In all the
ten trials of this experiment, the robot was able to correctly
detect and unscrew the sensor lid, detect and replace the
battery and re-attach the sensor lid.

As can be seen in Table III, the angle  for the battery also
varies significantly, even though the battery is only partly
symmetric. We have seen that this has been due to a lack
of measured points on the bottom and on the sides of the
battery (due to our rigid sensor setup on the robot base). The
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TABLE II
FULL OPERATION – RESULTS FOR SENSOR LID

# Tx Ty Tz � �  RMS R
1 91.3 -32.5 -161.6 0.1 0.2 160.0 0.40 0.53
2 90.9 -19.8 -161.7 0.2 0.1 -147.9 0.35 0.54
3 90.4 82.7 -162.0 0.2 -0.1 -180.0 0.43 0.58
4 90.1 69.1 -161.9 0.5 0.1 -114.4 0.37 0.57
5 90.3 56.0 -162.1 0.3 -0.1 -150.2 0.41 0.55
6 90.5 40.6 -161.6 -0.0 -0.1 94.9 0.40 0.55
7 90.7 26.7 -161.8 0.3 0.1 158.0 0.38 0.52
8 90.6 16.0 -161.8 -0.0 0.2 117.2 0.35 0.51
9 90.9 3.1 -161.7 0.6 -0.1 -136.4 0.45 0.56

10 90.9 -11.4 -161.6 0.3 -0.1 39.9 0.44 0.52

TABLE III
FULL OPERATION – RESULTS FOR BATTERY

# Tx Ty Tz � �  RMS R
1 90.8 -32.1 -225.6 1.7 0.2 -2.0 0.57 0.49
2 90.5 -19.1 -225.7 2.2 0.6 5.1 0.53 0.52
3 90.5 83.3 -226.1 1.8 -0.0 2.4 0.46 0.52
4 90.2 69.6 -226.1 2.2 0.7 9.3 0.76 0.45
5 90.5 56.6 -226.0 2.2 -0.5 4.2 0.54 0.49
6 90.0 41.3 -226.0 2.0 0.7 -5.3 0.75 0.54
7 90.6 27.4 -225.9 1.9 -0.1 1.2 0.60 0.50
8 90.2 16.6 -225.9 2.0 0.9 -2.6 0.55 0.55
9 90.7 3.5 -225.8 2.0 -0.4 8.0 0.71 0.53

10 90.4 -10.7 -225.8 2.3 0.4 6.2 0.66 0.52

remaining points (on the front and on the top of battery) fit
well with the template even when it is rotated around the
z axis. The detected center position, however, seems to be
less affected by this rotational symmetry, and the estimated
position of the battery was good enough for the robot to
successfully replace it for every one of the 10 trials.

In addition to Table III, we also generated 3D models for
presentation on the screen for each of the experiments. A
screenshot of such 3D models are shown in Fig. 8 for the
sensor lid and in Fig. 9 for the battery. In these figures, the
measured points from the scene are shown in gray scale,
the points taken into account when calculating the RMS
value are shown in green and the input 3D models (used
as templates for the 3D-MaMa algorithm) are annotated on
the point clouds with their detected position and pose.

Fig. 8. Detected sensor lid on Rosemount sensor in full operation trial
number 1. The 3D model of the sensor lid is annotated in red and the
corresponding scene 3D points in green.

Due to lack of degrees of freedom in the sensor holder, we
were not able to change the orientation of the sensor in the
second experiment. Thus a third experiment was conducted
in order to evaluate the robustness to different orientations.
The Rosemount sensor was then attached to the process
equipment in 10 different random positions and orientations

Fig. 9. Detected battery in full operation trial number 2. The 3D model
of the battery is annotated in red and the corresponding scene 3D points in
green.

by using plastic tie wraps, and 3D images were captured by
the structured light sensor on the robot. Table IV summarizes
the results of the random orientations experiments. We see
that most of the experiments give an RMS error of less than
0.6 mm after alignment. That is in the same range as the first
experiment and thus probably sufficient for the lid operation.

In trial number 5 and 10 the RMS error is a bit higher. It
turns out that the ICP had converged to a local minimum
giving a slightly wrong rotation around the axis passing
perpendicularly through the center of the lid. In these two
cases, the circular convexities of the measured sensor lid
were not properly aligned with the circular convexities of
the 3D model, giving rise to a bias on the RMS error. The
estimated position of the center point and the remaining two
degrees of freedom seem, however, to be quite good, and we
believe that the lid operation tool would be successful even
in this case (this has to be tested though after rebuilding the
sensor holder and doing more refined experiments).

For all the 10 trials with the robot, convergence was
reached by the ICP algorithm. By visual inspection of the
3D model shown on the screen, and by looking at the RMS
values in Table II and III, the position and pose of the
template seems to be correctly detected with average point
distances of just a few tenths of a millimeter. In order to
successfully replace the battery, a plastic tap on the backside
of the battery has to fit in a connector socket which is less
than a millimeter wider than the diameter of the tap. The fact
that we successfully performed a series of 10 full operations
with the robot also clearly indicates that we have achieved
sub-millimeter absolute accuracy in the position and pose
estimation.

Note that there is an ongoing activity on taking the
presented operations and tools offshore. Since the accuracy
in the position and pose estimation algorithms is expected to
drop under more realistic and hazardous conditions, we are
currently developing tools that are less vulnerable to small
errors in the absolute positioning.

V. CONCLUSIONS AND FURTHER WORK

A system solution for remote inspection and maintenance
(I&M) operations on normally-unmanned oil platforms has
been presented and validated. In particular, a robot tool,
a 3D vision system, and a robot control architecture have
been detailed. We have demonstrated the performance and
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TABLE IV
ORIENTATION AND POSE EXPERIMENT

# Tx Ty Tz � �  RMS R
1 118.4 152.9 -172.0 -4.9 20.9 -87.0 0.36 0.59
2 93.1 138.8 -208.9 -30.7 7.7 158.7 0.40 0.51
3 112.4 48.5 -170.1 -1.2 27.0 -95.6 0.34 0.51
4 143.6 54.4 -147.3 -30.1 -9.5 -160.2 0.37 0.56
5 110.0 86.8 -217.9 -5.9 18.4 77.0 1.06 0.47
6 110.6 87.7 -238.8 -21.3 11.2 68.0 0.59 0.45
7 109.0 95.5 -261.7 -30.6 40.0 77.0 0.40 0.64
8 103.5 124.4 -250.4 -28.7 17.0 82.8 0.59 0.47
9 101.1 113.6 -238.1 -21.4 8.9 85.9 0.42 0.57
10 115.7 70.6 -207.7 6.3 -2.4 -152.0 1.63 0.58

accuracy of this system by performing an automatic mainte-
nance operation on an industry standard Rosemount wireless
sensor. The proposed system is a step toward enabling
onshore operators to perform I&M operations offshore.

The maintenance operation described in this paper in-
volves replacing a battery in the sensor and illustrates one
of several maintenance operations necessary on an unmanned
offshore oil platform. A novel lid operation tool for removing
and re-attaching the sensor lid of the sensor has been
presented and successfully tested. The casing of the sensor
is employed for a large range of different sensors which
suggests that this tool has a large range of applications.

To meet the stringent demands for accurate positioning
during robot contact operations, a 3D vision system based on
structured light is employed to acquire detailed 3D models in
the form of dense point clouds of the operating environment.
By basing our image analysis algorithms on 3D shape instead
of 2D images, we ensure robustness to e.g. perspective,
object distance, changes in the ambient lighting or in the
color or appearance of surfaces, which otherwise cause
problems for standard machine vision tools. A generic object
localization and pose estimation algorithm called 3D-MaMa
has been adapted and improved to meet the demands for
accuracy in this case scenario. Experimental data show that
the vision system is capable of localizing both the sensor lid
and battery with 6 degrees of freedom with sub-millimeter
accuracy, and that the output of the vision algorithm is
directly applicable for controlling a robot.

In our experiments the point clouds are obtained by 3D
imaging with structured light, but the algorithm is applicable
for other 3D acquisition methods that provide dense 3D
data as well, such as laser triangulation. Since 3D models
(a CAD model or a 3D scan) is used as input for the
object localization and pose estimation algorithms, the vision
system becomes very versatile, and it is easily trained to
search for new objects. For some objects, however, such as
completely flat objects or objects with very complex texture,
our search strategy based on two points with corresponding
surface normals may not be ideal.

There are still many challenges to face for remote I&M
operations offshore, such as how to enable robots and tools
to operate in the harsh weather conditions of an offshore oil
platforms. These challenges are topics for further research. In
addition, we continue with 3D robot vision and further work
will focus on increasing the accuracy and robustness of our
object detection and pose estimation algorithms and to make
them applicable for even more complex and noisy outdoor

scenes. We are also working on algorithms for determining
deviations between a CAD model and a measured point cloud
of a scene, and to take advantage of this information for
navigation and robot guidance.

Reduced commissioning and operation costs, together with
improved Environmental, Health and Safety (EHS) are some
of the potential benefits of having normally-unmanned top-
side oil platforms. However, such oil platforms require ad-
vanced methods and tools for remote control and monitoring
of I&M operations. In this paper, we have presented a first
step toward a complete system for such operations.
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[4] P. Liljebäck, T. Kavli, and H. Schumann-Olsen, “Robotic technologies

for an unmanned platform,” SINTEF, Report STF90 F05405, 2005.
[5] B. Graf, K. Pfeiffer, and H. Staab, “Mobile robots for offshore

inspection and manipulation,” in Proc. Int. Petroleum Technology
Conference. Dubai, U.A.E.: SPE, December 4 - 6 2007.

[6] M. Bengel, K. Pfeiffer, B. Graf, A. Bubeck, and A. Verl, “Mobile
robots for offshore inspection and manipulation,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2009, pp. 3317–3322.

[7] J. Hills and J. Jensen, “Telepresence technology in medicine: Princi-
ples and applications,” Proc. IEEE, vol. 86, pp. 569 – 580, 1998.

[8] M. Hinchey and K. Muggeridge, “Potential for subsea robot control,”
Ocean Engineering, vol. 22, no. 2, pp. 223–234, February 1995.

[9] Y. Xu and T. Kanade, Eds., Space Robotics: Dynamics and Control.
Springer, 1992.

[10] H. Roman, “Robots cut risks and costs in nuclear power plants,” IEEE
Computer Applications in Power, vol. 4, no. 3, pp. 11–15, July 1991.

[11] OC Robotics, “Snake-arm robots access the inaccessible.” Nuclear
Technology International, pp. 92–94, 2008.

[12] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent
range image registration methods with accuracy evaluation,” Image
and Vision Computing, vol. 25, pp. 578–596, May 2007.

[13] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Proc. 3-D Dig. Imaging and Modeling, 2001, pp. 145–152.

[14] T. Moeslund and J. Kirkegaard, “Pose estimation of randomly orga-
nized stator housings,” in Proc. Scand. Conf. on Image Analysis, 2005,
pp. 679–688.

[15] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, pp. 433–449, 1999.

[16] C.-S. Chen, Y.-P. Hung, and J.-B. Cheng, “RANSAC-based DARCES:
A new approach to fast automatic registration of partially overlapping
range images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, pp. 1229–1234, 1999.

[17] K. Brunnstrom and A. Stoddart, “Genetic algorithms for free-form
surface matching,” in Proc. Int. Conf. on Pattern Recognition, vol. 4,
Aug 1996, pp. 689–693.

[18] Ø. Skotheim, J. Thielemann, A. Berge, and A. Sommerfelt, “3D-
MaMa: 3D pose estimation for random bin picking by pairwise
manifold matching,” in Proc. 3D Image Processing (3DIP) and
Applications 2010. San Jose, CA, USA: SPIE, January 2010.
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