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Abstract— We consider the problem of goal seeking by
robots in unknown environments. We present a frontier based
algorithm for finding a route to a goal in a fully unknown
environment, where information about the goal region (GR), the
region where the goal is most likely to be located, is available.
Our algorithm efficiently chooses the best candidate frontier
cell, which is on the boundary between explored space and
unexplored space, having the maximum “goal seeking index”,
to reach the goal in minimal number of moves. Modification of
the algorithm is also proposed to further reduce the number
of moves toward the goal. The algorithm has been tested
extensively in simulation runs and results demonstrate that the
algorithm effectively directs the robot to the goal and completes
the search task in minimal number of moves in bounded as well
as unbounded environments. The algorithm is shown to perform
as well as a state of the art agent centered search algorithm
RTAA*, in cluttered environments if exact location of the goal is
known at the beginning of the mission and is shown to perform
better in uncluttered environments.

I. INTRODUCTION

For search and rescue missions in hazardous environments

or in a situation where nuclear leakage or forest fire occurs,

the exact location of the disaster will not be known a

priori. However, an approximate idea about the area in which

the disaster might be located is likely to be known from

other information sources. This is a practical scenario and

is different from when there is no information about the

location of the target point. The robot or the search and

rescue agent starts from an initial location and reaches the

location of interest through a completely unknown terrain.

Thus, the problem is to find a route from a start position to a

goal region (GR), where the goal is most likely to be located,

through an unknown intervening area which is cluttered with

unknown obstacles. The robot can only sense the surrounding

area within the range of its sensors.

When the robot starts navigating in an unknown terrain, it

knows only what it sees from where it is situated. Yamauchi

[1] introduced the concept of frontiers and defined them to be

the boundary between the open space and unexplored space.

The main idea is that, to gain the most new information about

the world, the robot should move to one of the frontier cells.

Most methods of path planning in completely unknown

environment use cell decomposition methods, which partition
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the world into grids, for the representation of search space.

Grid based heuristic search algorithm like A* [3] searches all

possible routes from a starting point until it finds the shortest

path to a goal. Some grid based approaches plan an initial

path using all known information, making assumptions about

those parts of the environment that are unknown [4]. As the

robot acquires new information about the environment, the

assumptions are updated with correct information, and the

path is replanned [5]. In [6] the algorithm plans the optimal

path to goal using all known information and replans from

the current state whenever new or conflicting information

becomes available. Real time search methods in [7] and [8]

are closest to our method in terms of the framework used.

In all the methods mentioned above for goal seeking,

the exact goal location needs to be known at the start

of the search task. These methods do not reduce multiple

traversals through the same cell. We introduce a frontier

based algorithm for successfully reaching the goal, given the

probable location of the GR. Information about the probable

location of the GR can be given to the robot at any point

of time from the beginning of the mission. Till date the

concept of frontiers have been successfully implemented for

autonomous exploration in unknown environments [1], [2].

Our algorithm focusses on a proper choice of the frontier cell

which ultimately reduces the number of moves to reach the

goal. As this algorithm is frontier based, route planning in

unknown environments ensures reducing multiple traversals,

that is, the robot will avoid going back again to an already

explored region. In a previous paper we have presented

some preliminary work based on this idea [9]. The present

paper contains improved versions of the algorithm with more

detailed comparison results.

II. PROBLEM DESCRIPTION

A robot, equipped with sensing and localization capabili-

ties, starts searching for a goal in an unknown environment.

The only information available to the robot is the goal region

(GR), where a goal is likely to be present. But the exact

location of the goal is not known a priori. The objective

is to find a route from the start to the GR. Once the robot

reaches the GR exploration of that region is done, till the

goal is found. If at the start of the mission, the information

about the location of GR is not available, the robot will start

its search in exploration mode and when GR information

becomes available it will switch to goal seeking mode. Our

approach uses occupancy grid maps [10] to represent the

environment. The underlying framework used is to partition

the terrain into identical hexagonal cells and to store in each
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Fig. 1. A 10×10 grid with robot position, frontier cells and goal region

cell the probability Poxy which denotes the probability that

the cell is occupied by an obstacle.

Given the discrete terrain model, we also discretize the

robot motion. More specifically it can move to any of the

six neighbours. It is assumed to have a radial sensor of two

cell depth, that is, all the cells within two cell sensor radius

from the current robot position are updated (if unobstructed

by obstacles). Given a sequence of sensor measurements,

corresponding positions of robot and the prior probability of

occupancy, the posterior probability Poxy can be found [10].

Initially, all the cells are set to the prior probability of

occupancy, 0.5. While the robot is moving through the

environment, cell values are updated [11] as soon as it has

been intercepted by a sensor beam. An occupancy value near

zero corresponds to a free cell. An occupancy value near one

indicates that the cell is occupied. So all the unexplored cells

will have occupancy probability equal to prior probability.

The robot is assumed to have perfect localization capabilities.

III. GOAL DIRECTED ROUTE PLANNING STRATEGY

A. Basic Goal Seeking (BGS) Algorithm

We assume that the possible location of GR is available

to the robot at the beginning of the mission and there are no

obstacles in GR. The Basic Goal Seeking (BGS) algorithm

tries to find a series of intermediate target points for the

robot from the starting position till the goal is reached. By

performing a 3600 scan at these points the robot can update

the cells within the sensor range, with Poxy calculated from

the sensor measurements. These group of cells are referred

to as explored cells and the collection of explored cells is

known to the robot at that moment. From this set of explored

cells, frontier cells which are on the boundary between

explored and unexplored cells are identified. A frontier cell

is an already explored cell which is an immediate neighbor

of an unexplored cell (See Fig. 1). BGS chooses the best fit

frontier cell, that is, the cell with maximum “goal seeking

index”, among these and a route is found from the current

location to the frontier cell at each iteration.

In the following subsections we describe how to compute

the cost of reaching a frontier cell from the current robot

position, how the “goal seeking index” is calculated and how

the next target positions for the robot is chosen.

1) Evaluating Cost: We have to find out the cost of

reaching the current frontier cells to compute the optimal

path from the current position of the robot to all the frontier

cells. Consider a cell (x,y), which represents the xth cell in

the horizontal direction and yth cell in the upward direction in

the hexagonal occupancy grid map. The cost for traversing

a cell (x,y) is proportional to its occupancy value Poxy. It

is computed using the algorithm in [2], modified for the

hexagonal discretization instead of the square grid pattern

used in [2]. The algorithm is as follows:

1) The grid cell that contains the robot is initialized with

a value 0 and all others with ∞.

2) For determining the cost of reaching the current fron-

tier cells, update all cells (x,y) as

Cxy = min{Cx+∆x,y+∆y +Poxy}

where, Cx+∆x,y+∆y is the cost associated with immediate

neighbours, Poxy is the probability that the cell is occupied by

an obstacle (Poxy ∈ [0,Occmax]) and Occmax is the maximum

occupancy probability value of a grid cell the robot is allowed

to traverse. The second step is repeated until convergence.

Then each Cxy represents the cumulative cost of reaching

from the current position of the robot to (x,y). From this

we can find a minimum cost path from the robot position

to frontier cells, by steepest descent in cost value starting at

(x,y).

2) Evaluating “Goal Seeking Index”: The main task of

the BGS algorithm is to select a frontier cell such that the

robot will be able to reach the GR in minimal number of

moves. For this we need to find a “Goal Seeking Index”,

denoted by Gs for each frontier cell which is calculated as

follows:

Goal Region GR is a collection of cells where the goal is

likely to be present. Once we know the GR, it is possible

to choose a representative cell, from GR. This cell could be

the centroid cell of GR. We denote that cell as CG. Let GD

be a measure which gives an indication of distance between

current frontier cell and CG. As the distance between the

frontier cell and CG decreases, the value of GD increases.

We use a variable g to make the robot stay and search

inside GR, once it arrives there. The only information

available is that the goal is present in GR. So, once the robot

reaches GR, it is necessary to search GR till the goal is found.

So g is assigned values as : g = 0, ∀ frontier cells /∈ GR and

g > 0, ∀ frontier cells ∈ GR.

Suppose at a particular step, the robot is inside GR and

there are two candidate frontier cells available, one inside

and one outside GR. Because g > 0 for frontier cells inside

GR, the one inside GR will be chosen.

The “Goal Seeking Index” for each frontier cell is calcu-

lated using (1) where K1, K2 are weighting constants and C

is the cost of reaching the frontier cell from current position.

Gs = K1GD −K2C +g (1)

To determine appropriate target points for the robot, Goal
Seeking Index Gs, of the current frontier cells are calcu-

lated. K1, K2 are nonnegative weighting constants and by

changing the weights the importance of each component is

varied. K1 > 0 =⇒ goal seeking behaviour and K1 = 0 =⇒
exploratory behaviour of the algorithm. (i) K1 > 0, ∀ frontier
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decreases from position 1 to 6 and shows an increasing trend from there
onwards (EOC-Explored obstacle cell, UOC-Unexplored obstacle cell,
EFC-Explored free cell, UFC-Unexplored free cell, FC-Frontier cell, GR-
Goal Region)

cells /∈ GR (ii) K1 = 0, ∀ frontier cells ∈ GR (iii) K2 > 0, ∀
frontier cells.

Before reaching GR, the value of g = 0, and hence the

selection of frontier cell is based on values of C and GD

only, resulting in directed exploration toward GR. Once the

robot reaches GR, K1 is made equal to zero, which results in

simple exploratory behaviour of the algorithm in that region.

In simple exploration mode, the minimum cost frontier cell

from current position is chosen. Once the robot reaches GR,

the search will be confined only to that region till a goal

is reached. This is because g > 0 in GR and hence more

weightage will be given to the frontier cells in GR.

3) The BGS Algorithm:

1) While the goal is not reached, identify all frontier cells

that are within the current sensing region. If no such

cell exists, go to step 4.

2) Determine the cost C to reach the current frontier cells.

3) Choose a frontier cell with maximum “Goal Seeking

Index” Gs. If multiple cells exist then choose any one.

4) If no such frontier cells exist within the current sensing

region, then pick the closest frontier cell outside the

current sensing region as the next target.

5) If no frontier cells exist then all accessible area has

been covered and the goal is not present in the area.

Even though goal seeking in an unknown environment

cannot claim optimality, the total distance traveled to reach

the goal is reduced considerably by this algorithm over

the time taken by an exploratory search. Our algorithm

efficiently chooses the best candidate frontier cell, in an

attempt to find a route from start to goal in minimal number

of steps. The algorithm tries to search for a goal by doing

directed exploration toward the goal.

If there are no obstacles on its way, the robot will be

making a move toward GR. So, as time passes the distance

between the present robot position and CG of GR decreases,

until it reaches the GR. The algorithm performs well if small

obstacles are scattered in the environment. But if the envi-

ronment contains walls or wall like obstacles (obstacles kept

in orderly manner such that wall like obstacle is created),

the performance of the algorithm may deteriorate. We refer

to the distance between robot position and CG as D. But as

it encounters an obstacle, D will start increasing as shown

in Fig. 2(a). The minimum distance achieved in this process

is referred to as Dmin. This is illustrated in Fig. 2(b). The

robot starts from position 1 and the distance D decreases till

it reaches position 6. From there onwards D keeps increasing

because the robot encountered a series of obstacle cells like

a wall at that point. The distance D at position 6 is referred

to as Dmin. In such a situation, more moves are required to

reach the goal and hence the total route length from start

to goal will increase. Hence the total time for reaching the

goal will also increase. In order to account for this situation,

a modified algorithm is proposed below.

B. Modified Goal Seeking (MGS) Algorithm

The modification in the BGS is mainly in the form of

choosing a frontier cell more effectively.

1) While the goal is not reached, identify all frontier cells

that are within the current sensing region. If no such

cell exists, go to step 6.

2) Determine the cost to reach the current frontier cells.

3) Determine the distance D from the current robot posi-

tion to the CG. If D > Dmin, go to step 5.

4) Choose the frontier cell such that “Goal Seeking In-

dex” is maximum (The chosen frontier cell may or

may not be near an obstacle cell). Go to step 6.

5) Choose the frontier cell near to the obstacle such

that “Goal Seeking Index” is maximum (The chosen

frontier cell must be near an obstacle cell).

6) If no frontier cell exists within the current sensing

region, then pick the frontier cell outside the current

sensing region and near the obstacle. If multiple cells

exist then choose the one nearest to the CG.

7) If no frontier cells exist then all accessible area has

been covered and the goal is not present in the area.

The condition at step 6, that is, the situation with no

frontier cell in the current sensing region, is referred to as a

“trap” situation. In such a situation a frontier cell has to be

chosen outside the current sensing region.

Fig. 3a illustrates the robot in a “trap” situation. At

position 15, there are no frontier cells in the current sensing

region and the frontier cells at this position are f1, f2, . . . f9

which are outside the current sensing region. There are three

frontier cells f1, f2 and f9 near the obstacle and the one

near the CG is to be chosen according to step 6. Hence the

robot chooses the frontier cell f9. The path to the frontier

cell outside the current sensing region is also found in the

same way as described in the previous section. Unlike BGS,

MGS chooses frontier cell near the obstacle and to the CG

in a trap situation. Choosing frontier cell near the obstacle

will drive the robot to the exit of the trap, and the one near
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CG will direct the robot toward the CG. This will reduce the

unnecessary exploration around the robot position and robot

will reach a frontier cell near CG.

IV. SIMULATIONS

All experiments are performed in 25× 25 cell environ-

ments. The start position of the robot is the same in all

experiments. The location of the GR is chosen randomly. The

coordinates of the goal and obstacles are fixed. The robot

knows its own and GR’s coordinates. A total of 50 such

environments, both cluttered (in which small obstacles are

randomly placed and wall like obstacles are not present) as

well as uncluttered (in which wall like obstacles are present),

are simulated with obstacles of the same type, but the

obstacles were placed at different position and orientations

randomly in each environment. Note that both cluttered and

uncluttered environments are unknown. The parameters used

for simulations are: K1=1; K2=1; GD=N-D f cg (N should be a

large positive number, which is the largest possible distance

between any cell in the grid and CG in the environments

used for simulations (N=25 ) and D f cg is the distance in the

hexagonal grid between the frontier cell and the CG ); g=25,

∀ frontier cells ∈ GR and Occmax=0.1.

A. Basic Goal Seeking

1) When GR information is available to the robot at the

beginning of the mission: Simulations are done for cluttered

as well as uncluttered environments, as shown in Fig. 3b and

3c. The robot is assumed to have two cell depth radial view

sensor. The robot start position in all the cases is assumed

to be extreme left corner of the unknown area. The series

of frontier cells, chosen from the start position 1 to the

final step when robot reaches the goal, is shown in the

Fig. 3b and 3c. From the extensive simulations it is seen

that the BGS algorithm performs well and is reaching the

goal successfully. Goal reachability is assured, because in

the worst case exploration of the entire region including GR

is done, that is, till frontier cells are exhausted. Hence robot

will reach the goal if it is present in the GR.

2) When GR information is made available to the robot at

some intermediate time during the mission: For all experi-

ments discussed previously, it is assumed that the information

about the probable location of the GR and boundary limits

are available to the robot at the beginning of the mission.

If only the information of boundary limits are available, the

robot will start its search in an exploratory mode (K1 = 0 in

(1)) and it can switch to goal seeking mode when information

becomes available. This situation is illustrated in Fig. 4a. In

this case the GR information becomes available at position

20 and the algorithm switches from exploratory mode to

BGS by making K1 > 0. The case when GR information

is not available to the robot at all, is illustrated in Fig. 4b.

In this case also goal reachability is assured because, in the

worst case exploration of the entire region is done, that is,

till frontier cells are exhausted.
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Fig. 4. Searching for a goal via (a) exploration and BGS (GR information
becomes available to the robot only at position 20 and switches from
exploratory mode to BGS at that position) (b) simple exploration, in one of
the sample environments

3) BGS performance when boundary is not specified:

In order to evaluate the performance of BGS, if only GR

information is available to the robot at the start of the mission

and boundary is not specified, simulations are done in larger

grids as shown in Fig. 5a. The robot successfully reaches the

goal without deviating from the search area because of the

directed motion toward the goal.

As mentioned previously, D, the distance between robot

and CG, monotonically decreases till an obstacle is encoun-

tered. Depending on the type of obstacle, the change in

D may or may not be monotonic. It will show a worst

case behaviour (D mononotonically increasing) only when

a series of obstacle cells like a wall is encountered. In this

situation also goal reachability is assured, because, there

exist unexplored cells near the GR because the GR is not

reached; there exist explored cells near GR but are separated

by the wall; hence in the boundary between explored and

unexplored cells there exist frontier cells (away from GR as

well as near GR). Even though the robot chooses frontier

cells away from the GR, at some point in time the robot will

choose the ones near GR according to (1). And hence the

robot will ultimately reach GR after zigzag motion around

GR (unless the wall is of infinite length).

B. Modified Goal Seeking

Simulations are also done in similar environments using

MGS. It is found that the total number of moves to reach

the goal is considerably reduced if, in a “trap” situation, a

frontier cell is chosen according to Step 6 of MGS algorithm.

It also avoids zigzag motion when a wall like obstacle is

encountered. Hence, the total route length from start to goal

is considerably reduced compared to BGS and the time taken

to reach the goal is also less. But in cluttered environments,

where wall like obstacle are not present, the performance

of MGS will be the same as that of BGS. Fig. 5c and

5d shows a comparison between BGS and MGS algorithms

with the above mentioned strategy in one of the uncluttered

environments. Performance is also evaluated for MGS, when
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Fig. 3. (a)The robot in “trap” situation at position 15 and the frontiercells f1-f9 are outside the current sensing region (b) Illustration of BGS in one of
the cluttered environments (c) Illustration of BGS in one of the uncluttered environments
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Fig. 5. (a)BGS performance in an environment without specifying the boundary (b)Exploration and MGS (GR information becomes available only at
position 18 and switches from exploratory mode to MGS at that position)(c) BGS in one of the sample environment requires 97 steps to reach the goal (d)
MGS requires only 75 steps to reach the goal (e) BGS and MGS in one of the cluttered environments (f) RTAA* with LA=4 in the same environment)

GR information is made available to the robot at some

intermediate time during the mission (Fig.5b) and when

performance boundary is not specified. In this case also goal

reachability is assured as walls are not of infinite length.

C. Competitiveness of the algorithm

One of the main requirements of the navigation strategy

in unknown environments has been its competitiveness. A

strategy for working with incomplete information is called

competitive if it solves each problem instance at cost not ex-

ceeding the cost of an optimal solution (with full information

available), times a constant [12]. The algorithms were tested

again in the similar 25×25 environments to evaluate the

competitive factor. The optimal path for all the environments

are found under the assumption that the environment is

known a priori. The results are shown in Fig.7.

D. Comparison with RTAA*

Simulations are done in similar 25×25 environments to

compare the performance (in terms of the number of steps

to reach the goal) of BGS and MGS with one of the state

of the art real time heuristic search algorithm, RTAA* [8].

This real time heuristic search method is able to choose its

local search space in a fine grained way and it updates the

heuristic values of all states in the local search spaces. For

comparison purpose, GR in BGS and MGS algorithms are

shrunk to the exact goal location and is made available to

the robot at the beginning of the mission.

The comparison in one of the cluttered environments

is shown in Fig. 5e-f. In this case the number of steps

required to reach the goal, for all the algorithms is the

same. In almost all experiments in cluttered environments,

BGS and MGS perform as efficiently as RTAA*. But in

uncluttered environments, because of the presence of wall

like obstacles, RTAA* performance is not as good as in

cluttered environments. It can be seen from Fig.6 that the

number of steps required by BGS, to reach the goal is 62,

and that for MGS is 48, while RTAA* takes 87 steps. In

the 25 uncluttered environments considered for simulation,

RTAA* takes more steps to reach the goal than BGS, when

wall like obstacles are present. Performance of MGS is even

better in a majority of the uncluttered environments.

V. RESULTS AND DISCUSSION

Table I gives the performances of the algorithms in

cluttered environments. It can be seen that BGS and MGS

performs as well as RTAA*.

Table II gives the comparison of the algorithms in un-

cluttered environments. Simple exploration is also done in

these environments to know the worst case behavior of the

algorithm without the information of GR known a priori.

Simple exploration strategy takes more number of moves to
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Fig. 6. Performance of (a) BGS in one of the uncluttered environments (b) MGS in the same environment (c) RTAA* with LA=4 in the same environment

TABLE I

PERFORMANCE COMPARISON: BGS, MGS , RTAA* WITH LOOK-AHEAD 4

& OPTIMAL PATH ALGORITHMS IN CLUTTERED ENVIRONMENTS

Number of moves to
Number of Experiments

BGS, MGS RTAA-LA4 Optimal
reach the goal

≤30 4 4 4

≤40 15 15 18

≤ 50 25 25 25

TABLE II

PERFORMANCE COMPARISON: EXPLORATION, BGS, MGS, RTAA* (LA

2,4 & 6) & OPTIMAL ALGORITHMS IN UNCLUTTERED ENVIRONMENTS

No. of moves

Number of Experiments
EXP BGS MGS RTAA* Opt

LA LA LA
(2) (4) (6)

≤50 1 5 9 4 4 4 25

≤100 8 15 18 8 10 11 -

≤ 150 13 20 25 11 17 16 -

≤ 200 18 23 - 14 21 20 -

≤ 250 24 24 - 17 23 23 -

≤300 25 25 - 19 24 24 -

≤400 - - - 23 25 25 -

≤500 - - - 25 - - -

reach the goal and hence the route length from start to goal

is more in a majority of the simulation environments. BGS

performs better compared to simple exploration strategy,

because of the directed exploration toward the goal till

obstacle is found. Due to local minima in these type of

uncluttered environments, RTAA* algorithms do not perform

well, as in cluttered environments.

The performance of BGS in uncluttered environments is

slightly better than RTAA* with different look-ahead because

it is capable of escaping faster from local minima present

in these type of environments. In RTAA* the heuristics

update of the corresponding states are done till it comes

out from local minima. But BGS will avoid going to the

already explored cells in these situations and will be able to

come out in a better way in the type of environments where

local minima are occurring. MGS performs even better than

BGS in uncluttered environments because of proper choice

of frontier cells when a wall is encountered and also in

trap situations. The performance comparison between BGS,

MGS and RTAA* with different look-ahead in terms of

competitiveness is illustrated in Fig.7 and competitive ratio

is comparatively less for MGS, than for BGS and RTAA* .

Fig. 7. Competitive Ratio Comparison of BGS and MGS with RTAA* of
look-ahead 2,4 and 6 in uncluttered environments

VI. CONCLUSIONS

In this paper we presented an algorithm for goal seeking

and exploration in an unknown environment. The algorithm

was tested in extensive simulation runs. They demonstrate

that the algorithm is able to seek for a goal in unknown

environments with minimal moves from start to goal. Com-

parison with standard RTAA* algorithm shows the proposed

algorithm performs better in several ways.
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