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Abstract— We propose a novel method of path planning for
robotic manipulators that is based on the tree expansion via
bubbles of free configuration space. The algorithm is designed
to yield collision-free paths that also tend to minimize a certain
danger criterion. This is achieved by embedding a suitably
tailored heuristics within the algorithm. For that purpose we
use a recently proposed safety assessment based on the concept
of the danger field - an easily computable quantity that captures
the complete kinematic behavior of the manipulator. Under the
assumption that a systematic graph search technique dictates
the tree growth, we prove the algorithm’s completeness.

I. INTRODUCTION

In the field of human-robot interaction, the issue of safety

is clearly vital. It is triggered mostly by the growing demands

on humans and robots to share the same workspace or

task whether within an industrial, domestic or any kind of

environment. Not surprisingly, a large attention is devoted to

this matter in the literature.

Ikuta et al. [1], [2] discuss the minimization of the risk in

interaction by means of mechanical design and by means

of control. They introduced the first systematic quantita-

tive methods (danger index, safety index, etc.) in safety

evaluation, concerning human robot interaction in general.

Heinzmann and Zelinsky [3] proposed a control scheme for

robotic manipulators that restricts the torque commands that

comply to predefined quantitative safety restrictions. They

defined a quantity called impact potential as a maximum

impact force that a moving mechanical system can create in

a collision with a static obstacle. Bicchi et al. [4] presented

the variable impedance approach as a mechanical/control co-

design that allows the mechanical impedance parameters to

change during the task execution. By solving the so-called

safe brachistochrone problem, the authors have shown that

low stiffness is required at high speed and vice versa. Henrich

and Kuhn [5] divide all safety aspects of the robot behavior

into four groups (states) that easily fit into the formalism

of state transition diagram. A similar mechanism is used

by Guiochet et al. [6] to develop quite rigorous framework

to facilitate the specification of safety rules used by an

independent safety monitor. In [7] and [8] comprehensive

overviews of safe human-robot interaction are presented.

Kulic and Croft [9], [10] propose several safety strategies,

as a components of an extensive methodology for safe

planning and control in human-robot interaction. Several

danger indices have been formulated and used as an input to a

real-time trajectory generation. A motion strategy consists in
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minimizing the danger index during a stable robot operation.

In [9], the authors tackle safety by minimizing a danger

criterion during the path planning stage. Brock and Khatib

[11] propose a general framework for motion planning in a

human environment.

Typical path planning aims at obtaining a collision-free

path in the configuration space (C-space) of a robot that con-

nects a start configuration qstart with a goal configuration

qgoal [12]. Planning algorithms that are based on the a priori

knowledge of the complete C-space are proven to be expo-

nential in the dimensionality of the C-space [13]. Due to the

questionable applicability of such an approach, probabilistic

roadmap (PRM) paradigm has gained more popularity [14].

In particular, rapidly-exploring random tree (RRT) algorithm

[15], [16] turns out to be the most prominent approach

in recent years. Its scope also includes the systems with

kinodynamic constraints. An interesting approach that joins

the RRT-based path planning and redundancy resolution for

manipulators is presented in [12]. A large overview of path

planning algorithms can be found in [17], [18], [19].

Most of the planning algorithms provide feasible paths

than only need to be collision-free [20]. In order to seek for

safe paths, a suitable safety assessment needs to be defined.

Some efforts to impose additional requirements upon the path

like staying away from certain areas as much as possible

could be found in [20], [21]. As for robotic manipulators,

apart from [2] and [10], we know of no attempt to tackle

safety in the planning stage using a dedicated safety criterion.

In [2], a danger index based on the distance and velocity

between the human and the planar manipulator’s end effector

is used. An obvious drawback of this approach is that it deals

with a planar case and it does not consider the state of the

whole manipulator. The approach from [10] is very elaborate,

yet it is highly descriptive and still suffers from the local

minima problem, although some attention is devoted to its

mitigation. In a recent work of the authors [22], a dedicated

safety criterion is used within a standard PRM context.

In this work we propose a method for path planning that

has a safety information embedded in its heuristics. Hence

the planner outputs not only the collision-free paths, but

also strives for safer ones. The planner is based on a tree

expansion using the bubbles of free configuration space [23]

and is proven complete under certain assumptions.

The remainder of the paper is organized as follows. In

Section II, the concept of the danger field is introduced, while

in Section III we describe the proposed planning algorithm

that seeks for safe paths. Section IV contains the analysis of

the algorithm’s completeness. Simulation examples are given

in Section V and concluding remarks in Section VI.
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Fig. 1. Snapshots of the CDF contour plot - a 2DOF example: both links
accelerate in the counterclockwise direction (the robot base is marked)

II. DANGER/SAFETY EVALUATION

This section briefly recalls the cumulative danger field

concept [24]. Due to space constraints, it will not be de-

scribed in details. For an elaborate description, the reader is

referred to [24].

In principle, the cumulative danger field ~CDF (r,q, q̇) is

a vector field evaluated at an arbitrary point r = (x y z)T in

the robot’s workspace. Moreover, it depends on the robot’s

current configuration vector q and its velocity captured in

vector q̇. Once the environment object has been perceived,

the field is computed based on the distance between object

and robot, the velocity of the robot, and the angle between the

distance and velocity vectors. The danger field is computable

in closed form via elementary algebraic expressions [24].

Fig. 1 shows the contour plot of the field induced by the

motion of a 2DOF planar manipulator. For making it visually

presentable as a function of two variables, the danger field

is tacitly restricted to the plane in which the robot moves.

III. PLANNING ALGORITHM

The proposed planner is designed to find the collision-

free path in C-space from qstart to qgoal that is as short

as possible while at the same time tries to minimize the

danger induced by the robot’s configuration at the obstacles’

locations. Fig.2 shows an example of a collision-free path in

C-space (left) and a consequent motion of a 3 DOF planar

manipulator (right). The C-space is represented as a cube

[−π, π]3 whose axes correspond to joint angles. It includes

the C-space obstacles - the set of all configurations that cause

the intersection between the robot and the obstacles [12]. The

initial and final positions (p(qs) and p(qg) respectively), as

well as the path described by the end-effector are indicated.

For redundant manipulators, the goal configuration qgoal

can be extended to the goal region, i.e. the set of all

configurations that enable the robot to complete the task

(e.g. grasp the object) [12]. For instance, if the goal is

equivalent to the end-effector reaching the point p in the

workspace, the goal region in C-space is the collision-free

portion of the self motion manifold corresponding to p [25].

The algorithm is based on the concept of so-called bubbles of

free configuration space, introduced in [23]. The bubble B(q)
at the current configuration q is a compact region computed

p(q
g
)

p(q
s
)

Fig. 2. Path in C-space and the corresponding manipulator motion

Fig. 3. Diamond-shaped bubble B(q) and a corresponding hypercube-
shaped bubble HCB(q) (a 3D case)

using a distance dc of the robot in configuration q from

the closest obstacle in the workspace. For the robots with n

revolute joints, it takes a diamond shape [23]:

B(q) = {x :
∑n

i=1
ri|xi − qi| < dc} . (1)

Quantity ri is the radius of the cylinder whose axis is

collocated with the axis of the i-th joint and that encloses all

the links starting from i-th joint to the end-effector. Changing

the configuration from q to an arbitrary configuration within

a bubble implies that no point on the kinematic chain will

move more than dc and thus no collision will occur. An

elaborate assertion of the simplicity in computing the bubbles

can be found in [23]. We define a corresponding hypercube

bubble HCB(q) with a center at q as the largest possible

axis-aligned hypercube that belongs to B(q) (see Fig.3). The

algorithm tries to connect qstart and qgoal by simultaneously

chaining bubbles both from initial and goal configurations

until these chains intersect. Its principle is given by the

procedure BUBBLE PLANNER. The code is based on the

bidirectional A∗ search algorithm [26], [18]. Lists named

“Closed()” stand for the lists of visited nodes (configura-

tions), while the waiting lists of nodes yet to be considered

are labeled “Open()”. Index 1 stands for the list (tree) that

is currently being processed. At each iteration, function

INTERSECT checks whether there are q1 ∈ Closed(1) and

q2 ∈ Closed(2) such that B(q1) ∩ B(q2) 6= ∅. If that is the

case, there is a collision-free path between the trees expanded

from qstart and qgoal and hence a path between qstart and

qgoal. Otherwise, the most promising node qnew is selected

from the list Open(1) that minimizes the heuristic function f

(described later). The configuration qnew is deleted from the

list Open(1) and added to the list of visited nodes Closed(1).

Then the bubble B(qnew) is computed and its endpoints are

added to the list Open(1). For the original bubble B(qnew)

5367



procedure BUBBLE PLANNER(qstart,qgoal)

Closed(1) ← [qstart]; Closed(2) ← [qgoal];
Open(1) ← [qstart]; Open(2) ← [qgoal];
dir← 1; qcurrent goal ← qgoal;

for k = 1 to kmax do

if INTERSECT (Closed(1), Closed(2)) then

return PATH (Closed(1), Closed(2));

end if

qnew ← argmin
x ∈ Open(1)

f(x);

REMOVE (Open(1), qnew);

ADD (Closed(1), qnew);

ADD (Open(1), BUBBLE ENDPOINTS (qnew));

SWAP (Closed(1), Closed(2));

SWAP (Open(1), Open(2));

dir ← 3− dir; qcurrent goal ← qnew ;

end for

return Failure

end procedure

these endpoints are its vertices and for the hypercube bubble

HCB(qnew) the endpoints are the centers of the hypercube’s

faces (see Fig.3). Theoretically, the overlapping of the bub-

bles is allowed. The search direction is then reversed by

swapping the corresponding lists. The variable dir preserves

the information about the search direction. If we expand the

tree originating from qstart then dir = 1, otherwise dir = 2.

If the collision-free path is not obtained within a predefined

number of iterations kmax, the algorithm returns failure.

The heuristic function f is defined as:

f(x) = g(x) + h(x) + α ˆCDF (x)− βmin
z∈C
‖x− z‖, (2)

where g(x) is a cost function of a traversed path from root

to x, h(x) = ‖x−qcurrent goal‖1 is the underestimate of the

distance between x and the current goal qcurrent goal. The

term ˆCDF (x) serves as the estimate of the maximum value

of the danger field ‖ ~CDF (r,x, ẋ)‖ induced by the robot

in configuration x over all of the relevant subjects/obstacles

locations r. More precisely, for a single obstacle, its repre-

sentative location is a point that is closest to the robot. The

last term in (2) represents the contribution of the point x

to the spatial diversity of the samples (in the corresponding

tree with a list of visited nodes C = Closed(dir)) already

processed during the search. The point is considered better

if it has a larger minimum distance from the set of already

visited nodes. The idea is to increase the tendency of the

algorithm to explore less visited parts of the configuration

space. Variables α and β are positive tunable parameters.

Unlike the planners that are based on RRT paradigm, the

proposed algorithm updates the search trees in a deterministic

manner. As for the computational effort needed to extend the

tree towards the new configuration, the proposed algorithm

does not require the collision checking routine (unlike the

RRT algorithm) because the entire edge that is being added

to the tree lies within the bubble of free configuration space.

On the other hand, the computation of the bubble around a

given configuration requires only marginally more effort than

determining solely whether a configuration is collision-free

[23]. The only additional requirement is the memory space

needed for maintaining the Open() lists. Partial resolution to

this problem may be the substitution of the A∗ search with

the iterative deepening A∗ algorithm [18], [26].

IV. COMPLETENESS ANALYSIS

The natural question is whether the proposed algorithm

guarantees to find a collision-free path from qstart to qgoal,

if such a path exists. If there exists a feasible path that

can be generated via sequence of bubbles as described in

the algorithm, the planner is able to find it because it is

based on the A∗ search that is systematic1 [18], provided

that parameter kmax is large enough. On the other hand,

the set of such paths might seem too restrictive, since they

are piecewise axis-aligned and their segments have specific

lengths (constrained by the size of the bubbles). However,

in this section we prove that the existence of an arbitrary

collision-free path implies the existence of the path attain-

able by the algorithm. Moreover, the proof considers the

completeness of the unidirectional version of the algorithm

that is a stronger result. For now, we conduct the proof for

the case when the hypercube-shaped bubbles are used. Note

that the completeness is preserved if the A∗-based search

is replaced with another systematic search technique (e.g.

iterative deepening or iterative deepening A∗ [18], [26]).

Definition 4.1: Let B = {b1, b2, . . . , bn} be the basis

of vectors that span the configuration space C. We say that a

sequence of bubbles B(q1), B(q2), ..., B(qN ), where N ∈ N

is B-feasible if the following holds:

i) ∀qi, i = 1, 2, . . . , N − 1 ∃j ∈ {1, 2, . . . , n} such that

qi+1 − qi = δbj , δ ∈ R

ii) qi+1 ∈ ∂B(qi), i = 1, 2, . . . , N − 1, where ∂B(qi)
denotes the border of the bubble B(qi).

Namely, a B-feasible sequence is the one where each

element is obtained from the predecessor through a displace-

ment along one vector of the basis and belongs to the border

of the bubble around its predecessor.

Lemma 4.1: Let qA and HCB(qA) be a point in a

2D configuration space and its corresponding axis-aligned

square-shaped bubble of free space. If qB is a point on the

border of HCB(qA) such that HCB(qB) has nonzero size,

there exists an E2-feasible sequence of axis-aligned square-

shaped bubbles starting from HCB(qA) with the final bubble

containing qB , where E2 =
{

[1 0]
T
, [0 1]

T
}

.

Proof: Without loss of generality, assume qA = 0

and that qB falls into the first quadrant, and belongs to the

vertical edge of HCB(qA) (see Fig. 4). We proceed with the

propagation of bubbles from qA1 , where qA1 is the endpoint

of the bubble HCB(qA) that belongs to the said edge. If

qB ∈ HCB(qA1), the process is over, otherwise we choose

the point qA2 = ∂HCB(qA1) ∩ qA1qB as the new starting

point. Since the segment qA1qB lies entirely within the

1If a solution exists, then the search algorithm must report it in finite
time; however, if a solution does not exist, it is acceptable for the algorithm
to search forever [18].
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Fig. 4. Reaching the point on the bubble’s border via E2-feasible sequence
of bubbles

free configuration space Cfree with some minimum positive

clearance 2, the linear size of the bubbles propagated along

qA1qB will not go below a certain positive value, say ε.

Thus, the target point qB will eventually be covered after a

finite number of steps.

Moreover, we can guarantee that the point qB is “deep

enough” in the last bubble such that d {qB , ∂HCB(qf )} ≥
ε
4

, where HCB(qf ) is the last bubble in the sequence. The

function d{·, ·} stands for the minimum distance between two

input arguments. Assume the opposite, i.e. that HCB(qf )
covers qB but d {qB , HCB(qf )} <

ε
4

. In that case, we can

construct one more bubble at the point qC = HCB(qf ) ∩
HCB(qA), where d {qB , qC} < ε

4
. Since the linear size

of HCB(qC) is greater or equal than ε, it will certainly

enclose qB such that d {qB , HCB(qC)} ≥
ε
4

. Clearly we

can declare HCB(qC) a final bubble.

Theorem 4.1: Let qs and qg represent a start and a goal

in 2D configuration space respectively. Assume there exists

a collision-free path given with c : [0, 1]→ Cfree, such that

c(0) = qs and c(1) = qg and that ∀s ∈ [0, 1] the following

holds:

d {R (c(s)) , WO} ≥ dmin > 0, (3)

whereR(q) represents the operational space occupied by the

robot at the configuration q andWO is the set of workspace

regions occupied by the obstacles.

Then, there exists an E2-feasible sequence of axis-aligned

square-shaped bubblesHCB(qs) = HCB(q1), HCB(q2), ...,

HCB(qN ), where qg ∈ HCB(qN )
Proof: Quinlan [23] has shown that the collision-free

path that has a nonzero minimum clearance can be covered

with a finite set of bubbles. We emulate his approach using

HCBs. Let HCB(q1) = HCB(qs) intersect c(s) at q′

2. We

further construct HCB(q′

2) that intersects c(s) at q′

3 and

we repeat the procedure until qg is covered (see Fig. 5).

Condition (3) implies that the size of the bubbles will not

go below a certain positive number. Thus, the path c(s)
can be covered in a finite number of steps. Of course, the

sequence of bubbles constructed this way is not E2-feasible

2If qB coincides with the corner of HCB(qA), there is a theoretical
possibility that it lies at on the border of Cfree. However, a nonzero size
of HCB(qB) ensures that it is not the case.

Fig. 5. Reaching the goal via E2-feasible sequence of bubbles

in general. We now show how this can be achieved actually.

According to Lemma 4.1, point q′

2 can be reached from

q1 using E2-feasible sequence of bubbles. Let the final

bubble of this sequence be HCB(qf1 ). Since q′

2 falls into

HCB(qf1) “deep enough”, i.e. d {q′

2, HCB(qf1 )} ≥
ε1
4

,

where ε1 is a positive constant, it means that HCB(qf1 )
intersects the path c(s) at a certain point q′′

2 outside the

HCB(q1) such that d {q′′

2 , q
′

2} ≥
ε1
4

(see Fig. 5). Hence,

we have “moved” along a path c(s) using a finite E2-

feasible sequence of bubbles. Moreover, according to Lemma

4.1, we can construct an E2-feasible sequence of bubbles

from qf1 to q′′

2 . The final bubble of this sequence will

enclose q′′

2 and intersect c(s) at a further point. Proceeding

in this way it is easy to conclude that the goal configuration

qg can be reached if we repeat this procedure. Note that

this is achievable in a finite number of steps, since each

advancement along a path is greater or equal to a certain

positive constant.

In the sequel of the section we exploit the conclusions

above to tackle the problem in higher dimensions.

Lemma 4.2: If qA is a point in a 3D configuration

space and HCB(qA) is a corresponding axis-aligned cube-

shaped bubble of free space, then for each point qB ∈
∂HCB(qA) such that the bubble HCB(qB) has a nonzero

size, there exists an E3-feasible sequence of axis-aligned

cube-shaped bubbles starting from HCB(qA) with the final

bubble HCB(qf ) covering qB .

Proof: Let qA1 be the centroid of the face of the cube

HCB(qA) that contains qB . We continue with the bubbles

propagation from qA1 (see Fig.6 - left). The remaining part

of the path to cover has a maximum of two perpendicular

segments qA1qA2 and qA2qB that clearly lie in the plane i.e.

a face of the bubble HCB(qA)). Restricting the propagation

in a way that the center of the bubble has to belong to the

same face, the problem reduces to the covering of a path in

the plane. According to Theorem 4.1, the path in the plane

can be covered in a finite number of steps.

Corollary 4.1: If there is a collision-free path c(s) in

3D configuration space from qs to qg , then there is an

E3-feasible sequence of axis-aligned cube-shaped bubbles

starting from HCB(qs) and ending with HCB(qf ) such that

qg ∈ HCB(qf )

Proof: Using Lemma 4.2, we may proceed in the same

way as it is done in the proof of Theorem 4.1.

Theorem 4.2: The statement of the Theorem 4.1 holds for
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Fig. 6. Reaching the point on the bubble’s border via E3-feasible sequence
of bubbles (left). The chain of bubbles that connect qs and qq and a path
passed through it (right).

any dimension of configuration space.

Proof: The problem of finding an E4-feasible se-

quence of axis-aligned hypercube-shaped bubbles starting

from HCB(qs) and ending with HCB(qf ) such that qg ∈
HCB(qf ), where qs and qg are start and goal configurations

in 4D configuration space can be reduced to obtaining an

E4-feasible sequence from the center of the 4D hypercube

to any point on its boundary. The latter can be reduced to

finding an E3-feasible sequence that covers a path in the 3D
subspace of the 4D hypercube, that is proven achievable.

Proceeding inductively, we can obtain an En-feasible

sequence of bubbles for a problem in any dimension.

The performed analysis proves that if a collision-free path

exists, then an En-feasible sequence of bubbles can be built

upon it. The proposed algorithm outputs such a sequence

and a path is easily generated by connecting the successive

bubble centers. Note that the result is not only a path, but

a “tube” constructed by the chain of bubbles (see Fig.6 -

right). This region of free C-space allows for a further path

modifications, e.g. smoothing or the application of elastic

bands/strips framework [11], [23].

V. EXAMPLES

In this section we present some validation of the proposed

algorithm. The tests are performed on the models of a 3-

DOF planar arm and a 6-DOF arm that move in a more

or less cluttered environment. The robots are modeled using

the Robotics Toolbox for Matlab [27]. Since the output of

the algorithm is a path, still not a trajectory parameterized

in time, the velocity information is not available. For now,

the estimate of the danger field takes into account only the

static part of the danger field, i.e. the velocity contribution

is neglected. Fig.7 shows two different arrangements of the

obstacles with two corresponding start and goal configu-

rations. Figures on the left show the resulting path when

the tree is expanded via hypercube-shaped bubbles while

the result of the search via original bubbles is depicted

in the figures on the right. Not surprisingly, less iterations

(i.e. nodes in both trees) are required for the algorithm to

obtain the path when the diamond-shaped bubbles are used

since they provide larger search steps. Although we still do

not have a proof of the algorithm completeness when the

diamond-shaped bubbles are used, it is not yet observed that

this approach fails to find the path if the algorithm based on

the hypercube-shaped bubbles succeeds. For the first scenario

p(q
s
)

p(q
g
)

p(q
s
)

p(q
g
)

p(q
s
)

p(q
g
)

p(q
s
)

p(q
g
)

Fig. 7. A 3-DOF example: the path generated via hypercube-shaped bubbles
(left) and via diamond-shaped bubbles (right). The path described by the
end-effector is indicated.

the path is obtained in 457 iterations for the hypercube-

shaped bubbles and in 49 iterations for the diamond-shaped

bubbles. The second example required 1080 iterations for

the hypercube-shaped bubbles and 247 iterations for the

diamond-shaped bubbles. Fig.8 shows the results for the 6-

DOF manipulator. For the first scenario (7 obstacles), the

algorithm based on the hypercube-shaped bubbles obtains

the path in 146 iterations whereas the diamond-shaped based

algorithm finishes after 26 iterations. For the second scenario

(45 obstacles), the corresponding numbers of iterations are

227 and 41. Note that in all the scenarios, the robot’s distance

from the obstacles is considerably large along the path,

indicating its high quality in terms of safety. As for the

implementation details, some improvements still need to be

done. Namely, the running times for the examples above are

couple of seconds, which is clearly behind the state of the art

implementations. This is mostly due to the fact that all of the

routines are written in MATLAB and that no state of the art

libraries for proximity queries are utilized. Nevertheless, the

number of iterations and distance computations provide an

unambiguous information about the algorithm’s performance.

We have observed that the safety assessment part in the

heuristic function usually speeds up the algorithm. This may

be attributed to the fact that the bubbles (and thus the search

steps) are likely to be larger in safer areas. As a matter

of fact, the slowness of the algorithm without the safety

heuristic is a culprit for establishing how much is the quality

of the resulting path increased by the inclusion of safety

assessment. To have a clue how a safety heuristic affects the

quality of a path when e.g., the PRM approach is used, the

reader is referred to [22].
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Fig. 8. A 6-DOF example: the path generated via hypercube-shaped bubbles
(left) and via diamond-shaped bubbles (right)

VI. CONCLUSIONS AND FUTURE WORKS

A novel approach to path planning for robotic manipula-

tors is presented. The planner searches for a collision-free

path via bubbles of free C-space while trading off the path

length with a defined degree of danger. The algorithm is

based on bidirectional A∗-search technique with a heuristic

function that makes account of the danger. We estimated

the danger degree using the danger field - a proposed

quantity that captures the complete kinematic behavior of

the manipulator and is easily computable. We have proved

the completeness of the proposed algorithm if a more con-

servative variant of bubbles is used. The proposed algorithm

is supported with several numerical examples.

The future work will investigate the possibilities to replace

the A∗-search algorithm with another search technique like

iterative deepening A∗ in order to decrease the memory

space requirements. From a control point of view, we will

utilize the concept of danger field to implement the low level

reactive control for dealing with dynamic environments.
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