
  

  

Abstract—Multi-resident activity recognition is among a key 

enabler in many context-aware applications in a smart home. 

However, most of prior researches ignore the potential 

interactions among residents in order to simplify problem 

complexity. On the other hand, multiple-resident activities are 

usually recognized using cameras or wearable sensors. However, 

due to human-centric concerns, it is more preferable to avoid 

using obtrusive sensors. In this paper, we propose dynamic 

Bayesian networks which extend coupled hidden Markov models 

(CHMMs) by adding some vertices to model both individual and 

cooperative activities. In order to improve performance of the 

model, we categorize sensor observations based on data 

association and some domain knowledge to model 

multiple-resident activity patterns. We then validate the 

performance using a multi-resident dataset from WSU 

(Washington State University), which only includes 

non-obtrusive sensors. The experimental result shows that our 

model performs better than other baseline classifiers. 

I. INTRODUCTION 

OR the purpose of service prevision, activity recognition 

progressively becomes desiderative in a smart home. 

Numerous intelligent applications can be fostered if more 

robust outcomes of activity recognition are given to a 

smart-home system. We exemplify this requirement using a 

commonly used reminder system in a smart home. A smart 

reminder system, automatically reporting scheduled task or 

information, is important for human computer interaction in a 

smart space and usually requires activity profiling. For 

example, the system can remind a resident that a specific food 

is about to expire during meal preparation. In addition, 

activity recognition is also needed in other context-aware 

applications, such as home automation, security surveillance, 

and healthcare. Due to these benefits, many researchers have 

focused on how to robustly sense activities of residents. 
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Many researchers have investigated the mechanisms for 

recognizing interactions among humans. In a recognition 

procedure, firstly sensors are deployed to detect the signals 

from both the environment and residents, and then the sensed 

signals are analyzed by activity recognizers to output 

estimated activities. According to the above discussion, two 

sensor and model related issues should be concerned. 

Regarding sensor deployment and selection, several prior 

researches have been conducted for multiple-resident activity 

recognition in a smart home. Generally speaking, these 

approaches include demanding residents to carry wearable 

sensors [1] (e.g., RFIDs, infra-red receivers), installing 

cameras [2-3], or deploying pervasive sensors [4-5] (e.g., 

pressure sensors, reed switches) to collect important clues for 

later activity reasoning. What often seem to be ignored, 

however, is the human-centric concerns, since a smart home 

system, unlike a public space, should take ergonomic 

concerns into consideration. For example, a camera-based 

solution may violate a resident’s privacy concerns, and 

wearable sensors usually cause inconvenience, these two 

sensors may be not suitable for a smart-home environment 

targeting maximum comfort. Therefore, Lu et al. classifies 

deployed sensors into seamless and seamful categories to take 

residents’ ergonomic concerns into account, and they suggest 

taking advantage of as many seamless devices as possible 

especially for a smart-home environment [6]. As a result, 

sensor selection is nontrivial and deploying non-obtrusive and 

pervasive sensors for sensing information is suggested in a 

smart-home environment. 

On the other hand, model design will directly influence the 

performance of activity recognition. Unlike single-resident 

activity recognition, multiple-resident activity recognition 

should additionally consider data association and interactions 

among residents. Data association, which associates a 

triggered signal to its corresponding resident, is used to 

improve the performance of multiple resident activity 

recognition [4]. Moreover, there exists positive correlation 

between the accuracy of data association and that of activity 

estimation [7-8]. These proven suggestions turn our attention 

to modeling interactions among residents.  

Before we introduce interaction modeling, some inherent 

properties of human interactions at home should be addressed. 

Human activities can be dependent or independent, and 

dependent activities can be exclusive or cooperative to one 

another. In formulating the relationship among human 

activities using probabilistic models, independent activities 

are probabilistically independent. However, dependent 

activities may not be necessarily probabilistically dependent, 
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especially when they are mutually exclusive. For example, a 

person cannot perform “using computer” if the computer is 

occupied. If this person decides to watch TV instead because 

of the unavailability of the computer, there is causality 

between these two activities in this case since “watching TV” 

happens because of “using computer.” However, “watching 

TV” does not always occur when there is another person using 

the computer. Both activities are independent in most cases. If 

using computer is not a routine, it will be difficult for a 

probabilistic model to detect the above-noted causality 

between “using computing” and “watching TV.” In contrast, 

cooperative activities like playing chess or preparing meals 

together are usually probabilistically dependent.  

Interaction modeling, which detects the occurrences of 

interactions and then classifies them into appropriate 

categories, has also been explored in some prior works[8-9]. 

However, in a smart home, considerable researches are 

devoted to either camera based approach or wearable-sensor 

one; little attention is paid to the suggested approach using 

pervasive-sensors. The purpose of this paper is to model the 

interaction by non-obtrusive pervasive sensor in a 

multi-resident smart home. The interactive activities we deal 

with in this work are those cooperative, or specifically, 

probabilistically dependent ones. Moreover, it is suggested 

that different types of features might be required for 

interaction modeling [10], thus motivating us to introduce  

usage of extra auxiliary nodes to describe interaction features. 

The remainder of the paper is constructed as follows. After 

we describe the related work, section III introduces some 

properties of the dataset we use to evaluate the proposed 

approach. In the section IV, the methods of data processing 

and model design are given. The experiment results are given 

in the section V, and some discussion and the conclusion are 

presented in the last section. 

II. RELATED WORK 

Numerous approaches focus on the interaction modeling in 

the literature, but to the best of our knowledge, few have 

addressed multiple-resident activity recognition using 

non-obtrusive sensors. Two exceptions are [4-5], and they 

both exploit the data association and apply hidden Markov 

models to infer activities. However, these works do not model 

the interactions among residents, thus motivating us to do 

more in-depth literature survey on interaction modeling. 

As for interaction modeling using obtrusive sensors, a few 

approaches can be found. Briefly speaking, these approaches 

include coupled hidden Markov models (CHMMs [1-2, 11]), 

dynamic Bayesian networks (DBNs [12]), conditional random 

fields (CRFs [8]), and emerging patterns (EPs [9]). In addition 

to above-noted models, there are some other researches 

focusing on the assistance of hierarchical nodes [3] or 

duration nodes [13]. These approaches are beyond the scope 

of this paper, which concentrates on the interaction modeling. 

Regarding CHMM related approaches, sensor 

observations for each person are used to learn a Markov chain 

and to describe the relations among residents. These 

approaches usually need to incorporate cameras along with 

large set of features to get a satisfactory accuracy. Regarding 

DBN related approaches, domain knowledge is often used to 

build their graphical structures. Moreover, scale 

decomposition could be exploited to model residents’ 

interactions using cameras, but it causes sophisticated 

graphical structures. In the CRF approach [8], a single linear 

CRF with iterative inference is leaned to classify an activity of 

interest, and the CRF with decomposition inference uses one 

CRF to model the activity of one resident, resulting in multiple 

CRFs in a multiple-resident environment. Both of the two 

mechanisms do not model the human interaction. In the EP 

approach [9], the authors apply EPs, which describes 

significant changes between classes of activities, and design a 

confidence measure to decide whether two residents have 

interactions. However, due the current formulation of the EPs, 

they are intrinsically more prone to cooperative activities even 

if residents perform activities independently. 

In this paper, we exploit auxiliary nodes to incorporate 

domain knowledge and extend CHMMs to model the 

activities sensed by non-obtrusive sensors. 

III. DATASET AND DATA PREPROCESSING 

A. CASAS Dataset 

The CASAS dataset, “WSU Apartment Testbed, ADL 

Multi-resident Activities”, was collected in the CASAS 

project in the WSU smart workplace [14]. There are totally 26 

files of different participant pairs containing sensor events and 

their corresponding annotations whereby we utilize to validate 

our proposed models. There are approximately 400 to 800 

sensor events in each file, totally 17,238 events in the whole 

dataset. The data represent the observation of two residents 

being asked to perform 15 activities of daily living (ADLs), 

which are listed in Table I. Of these activities, some are 

individual activities, which are performed by one resident and 

which are independent to other activities performed by the 

other residents. On the other hand, cooperative activities are 

simultaneously performed by one or more residents, and these 

activities are dependent. The sensors in the dataset include 

motion sensors, item sensors and cabinet sensors (see Fig. 

1.(a)). The output of a sensor event and its annotation is in the 

format of (Date, Time, SensorID, Value, ResidentID, TaskID). 

The detail description of the dataset can be found in [5]. 

TABLE I 

THE 15 ACTIVITIES ASKED TO PERFORM BY RESIDENTS IN CASAS 

PROJECT  

Individual  Cooperative 

Filling medication 

dispenser 

Hanging up clothes 

Reading magazine 

Sweeping floor 

Setting the table 

Watering plants 

Preparing dinner 

Moving furniture 

Playing checkers 

Paying bills 

Gathering and packing 

picnic food 
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B. Data Preprocessing 

In order to focus more on human interaction modeling, the 

data association is assumed to be given. Under this 

assumption, the events are separated according to their 

resident IDs and update each resident’s state using a 

procedure as follows: the two residents (with their IDs A and B) 

in the environment are assigned a null activity and a null 

feature vector as their initial states. Each time getting an event 

of resident A, his/her current state is updated to a new state and 

the state of resident B remains unchanged. The same 

procedure is applied while an event of resident B occurs. 

Using the above-noted procedure, the original event 

sequences in the dataset will be transformed into two 

corresponding feature-vector sequences. 

We apply three data preprocessing methods to generate  

three types of feature vectors in this paper. The three feature 

vectors are raw feature vector, loc-obj feature vector, and 

loc-obj with locoff feature vector. The details of  these feature 

vector are described as follows.  

The raw feature vector is represented as (event, interaction), 

where “event” is an integer representing a sensor and its state. 

There are 37 different sensors in the dataset, and each sensor 

has two states, on and off. The cardinality of possible integer 

of “event” is thus 75, including a null value. 

The loc-obj and the loc-obj with locoff feature are used in 

the other two data preprocessing method that the interaction 

feature is unchanged, but the information of “event”  in the 

raw feature vector are separated according to whether the 

event is generated by object sensors (item sensors and cabinet 

sensors) or location  sensors (motion sensors) since the 

information implied in the motion sensor event is essentially 

different to that in the object sensor event. In the dataset, 10  

object sensors are deployed, thus causing 20 possible cases for 

these object sensor events because each object sensor has two 

states. With a null value being added, the cardinality is 21. For 

the location sensors in loc-obj and loc-obj with locoff feature 

vector, a room-level granularity is choosed. That is, unlike the 

raw feature vector, the location sensors are embedded into a 

measure space. Specifically, we divide the environment into 

six regions as shown in Fig.1(b). Motion sensors in the same 

region are aggregated and mapped to the same index. The 

cardinality of this feature is seven because of the six regions 

and one null value.  

The loc-obj with locoff feature vector adds an extra location 

related feature, locoff, into loc-obj feature vector. This feature 

records the “off” event of the motion sensor. Because we also 

take a room-level granularity in this feature, the cardinality of 

this feature is also seven. The locoff feature is used to indicate 

a recently occupied region that is now empty and this design 

provides extra information or correction to the loc-obj feature. 

Finally, in all the three types of feature vectors, the 

dimension “interaction” is defined to be a binary feature 

which captures the information of activities between each 

resident. This feature becomes 1 if and only if the two 

residents are in the same region of the environment. We 

extract this feature because the “interactive activities” we are 

interested in are cooperative activities. As shown in Table I, 

these cooperative activities are usually performed by the 

residents in the same room in the dataset. This feature contains 

the information about the human interaction by observing if 

two residents are in the same region. 

To sum up, we define three types of feature vectors, and 

each feature vector is generated by one corresponding data 

preprocessing method. The three feature vectors are raw, 

loc-obj, and loc-obj with locoff feature vector. These feature 

vectors are represented as (event, interaction), (object, 

location, interaction), and (object, location, off-location, 

interaction) respectively. We generate three types of data 

according to these feature vectors in the data preprocessing 

step and evaluate their effectiveness in our experiments.  

IV. HUMAN INTERACTION MODELING IN MULTI-RESIDENT  

ACTIVITY RECOGNITION 

In order to compare the performance among different 

models, we adopt the following three models in this paper, 

which are all based on the typical hidden Markov model. 

These three models are parallel hidden Markov model 

(PHMM), coupled hidden Markov model (CHMM) [10], and 

a dynamic Bayesian network which extends CHMM by 

adding some informative vertices.  

A. Parallel Hidden Markov Model  

 PHMM is essentially a combination of two hidden Markov 

models without adding any edge. That is, this kind of model 

combines two HMMs without considering any relationship 

between them. In the CASAS dataset, there are two residents 

in the environment. Under the assumption that we know the 

generator of each sensor event, we can create one hidden  

Markov  model  for  each  resident. Let 

A
(1)

={a{1:T}
(1)

}={a1
(1)

,…,aT
(1)

} and A
(2)

={a{1:T}
(2)

}= 

{a1
(2)

,…,aT
(2)

} be the sequences of performed activities from  

resident 1 and 2 respectively within the internal from time 

slice 1 to T. Let O
(1)

={o{1:T}
(1)

}={o1
(1)

,…,oT
(1)

} and 

O
(2)

={o{1:T}
(2)

}={o1
(2)

,…,oT
(2)

} be the sequences of sensor 

events corresponding to A
(1)

 and A
(2)

. We can construct two 

HMMs separately by {A
(1)

, O
(1)

} and {A
(2)

, O
(2)

}, and combine 

 
(a)                                              (b)  

 

Fig. 1.  (a)  Sensor Deployment (M: motion sensors, I: item sensors, D: 

cabinet sensors) (b) The room-level division  
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them independently to obtain a PHMM as shown in Fig. 2. 

Note that there are edges from at
(m)

 to at+1
(n)

 only when m 

equals to n. Moreover, we do not use the interaction feature 

we described in section III-B in this PHMM. 

Since the two HMMs in the PHMM are independent, the 

posterior of activities given the observation is just the 

multiplication of the two HMMs, which is:  
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B. Coupled Hidden Markov Model 

Unlike the independent setting in a PHMM, the CHMM is, 

in contrast, a combination of two HMMs which are not 

independent. In a CHMM, there are directed edges from each 

at
(m)

 to at+1
(n)

 even if m is not equal to n. When two residents in 

a smart home act cooperatively, their activities will influence 

each other. Adding edges across two HMMs means that the 

activity of one resident at time t can affect not only the activity 

of his/herself but also that of the other, which is what we can 

observe when two people  interact. However, like a PHMM, 

the interaction feature we extract from the dataset is ignored as 

well in the CHMM model. The graphical topology of a 

CHMM is shown in Fig.3.  

Since the two HMMs are no longer independent in a CHMM, 

the posterior of the activity sequences given all the 

observation becomes: 
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 Given the condition independence in the graphical structure 

of Fig.3, we can factorize P(O
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C. CHMM + Interaction vertices 

Recall that we assume that the residents in an environment 

interact only when they are in the same region. We can extract 

one more binary feature, the interaction feature, accordingly 

from the dataset. We utilize the interaction feature in the third 

model as follows: t CHMM model is extended by adding one 

vertex it representing the interaction feature in each time slice 

t. Some activities are performed interactively, so there should 

be edges from at
(m)

 to it. Moreover, people may use different 

objects when they perform activities solely or cooperatively, 

this leads to extra edges from it to ot
(m)

. From the aspect of 

modeling a dynamic Bayesian network, at
(1)

 and at
(2)

 are two 

hidden-state vertices at time frame t with causal links to the 

observation vertices it, ot
(1)

, and ot
(2)

. After unrolling the time 

frame and adding edges from at
(m)

 to at+1
(n)

 and it to it+1 for all 

time interval, we get a resultant dynamic Bayesian network as 

shown in Fig.4. 

Inferring the most likely activity sequences given the 

observation and interaction feature sequences becomes rather 

complex. By the Bayes rule: 
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In the extended DBN, the graph topology is no longer the 

same with the original CHMM. According to the d-separation 

 
Fig. 2. PHMM consists of two independent HMMs 

 
Fig.3. CHMM models human interaction by the cross HMM edges 
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criteria[15], however, despite of these newly added vertices 

that the CHMM does not define, we can still separate the joint 

probability of activity sequence as follows: 
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The “state transition” parameters in this model are identical to 

those in a CHMM. However, the observation and interaction 

feature sequences become 
1 1 1 2
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where the probability of observation here depends on not only 

the activity but also the interaction features. 

We implement the three models using GMTK, the Graphical 

Models Toolkit[16]. The details about what inference and 

training algorithms are used by GMTK can be found in the 

GMTK document. Note that the difference between the above 

dynamic Bayesian network and the CHMM is whether the 

interaction feature is taken into consideration. The reason we 

select these three models in this paper is thus clear: the three 

models are similar with the exception of how much they take 

the human interaction into account. We want to verify if this 

difference affects the performance of these three models under 

a multi-resident environment. The difference will be more 

clarified when comparing among Fig.2, 3, and 4. We can see 

the independent property, the cross edges, and the additional 

interaction vertices in the three graphical models. 

V. EXPERIMENTS AND RESULT 

In order to examine whether taking human interaction into 

account can help a multi-resident model get better accuracy, 

we make use of GMTK[16] to implement the three models 

and run the experiments on the CASAS “WSU Apartment 

Testbed, ADL Multiresident Activities” dataset. There are 26 

files in this dataset. Each file corresponds to one participant 

pair. We run leave-one-out cross validation experiments in 

this paper. We use the three different data pre-processing 

methods we describe in section III-B to separate the sensor 

events into two concurrent event sequences according to their 

resident IDs and the extracted features. The results of our 

experiments are shown in Table II. In each model, the 

accuracy using raw feature set is better than the others, which 

is consistent with our previous work[8]. This decline in 

accuracy for more manipulation may be attributed to the 

sensitivity to noises. Furthermore, in each data pre-processing 

method, the dynamic Bayesian network extended from 

CHMM outperforms the original CHMM and PHMM, and the 

CHMM performs better than the PHMM. 

The result conforms to our expectation. Recall that a 

PHMM ignores the data dependency of the two hidden 

sequences in the two parallel HMMs. If this independency 

assumption does not hold, the PHMM may be biased. The 

CHMM with additional interaction vertices tries to capture 

more human interaction information than the original CHMM. 

The interaction feature we manually labeled may be 

error-prone. First, it is an overlapping feature, which means 

that it can be computed from the other features, and 

information subservient to the performance as well as the 

noises in the dataset will all be replicated. Second, the 

assumption about the distance between residents who have 

interactions is not always true. The residents being at the same 

room does not mean that they will perform cooperative 

activities. As a result, the information this interaction feature 

provides may be limited. However, the model with the 

assistance of this feature is still more accurate than that of the 

others. From this result, we will argue that human interaction 

is a necessary and important factor in designing multi-resident 

activity recognition models. 

 

 
Fig.4. The DBN with additional vertices tries to capture more human 

Interaction information than a CHMM 

TABLE II 

EXPERIMENTAL RESULTS OF THE THREE MODELS RUNNIG ON THE DATASET WITH THREE DATA PREPROCESSING METHODS.  SUB.1 AND SUB.2 ARE 

RESIDENT 1 AND 2’S ACTIVITIES, AND JOINT IS COUNTED WHEN BOTH SUB.1 AND SUB.2 ARE CORRECT. 
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VI. CONCLUSION AND FUTURE WORK 

In this paper, we adopted three different directed graphical 

models including PHMMs, CHMMs, and the DBNs extended 

from CHMM with interaction node, to identify the activities in 

a multi-resident environment. We extract two kinds of 

features, the object used and the locations of residents, from 

the dataset, and create the human interaction feature based on 

the assumption of the distance between two interacting 

persons. Note that in the CHMM, the human interaction has 

already been preliminarily identified, and  it outperforms 

PHMM, a model ignoring the dependency between two 

activity (hidden) sequences. Moreover, adding auxiliary 

nodes of human interaction to CHMM can still improve the 

accuracy. The result confirms that human interaction plays an 

important role in building an intelligent system for smart home 

that often has more than one resident in it. 

Data association and human interaction are two important 

factors to extend single-resident activity recognition models to 

multi-resident ones. In our previous work[8], we showed the 

importance of data association in multi-resident activity 

recognition. In this paper, we assume data association is given 

and focus on modeling the interaction between the residents. 

A model which can combine both two factors will be a better 

solution to the multi-resident activity recognition problem. 

Furthermore, scalability of the model in the number of 

residents is another important issue. In this paper, we use a 

dataset that has only two residents in it. In an environment 

containing more than two residents, this model may fail. 

Adding one sequence for each resident in graphical models 

will become intractable because of the number of 

vertices/edges in the graph. The resource for training and 

inference will be extremely demanding when the number of 

vertices/edges increases. How to learn a more generalized 

multi-resident activity model will be an interesting and 

challenging research.  
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