
Tracking of Closed–Curve Trajectories for Multi–Robot Systems

Lorenzo Sabattini, Cristian Secchi, Cesare Fantuzzi and Daniel de Macedo Possamai

Abstract— In this paper we address the trajectory tracking
problem for groups of mobile robots. We consider trajecto-
ries described by completely arbitrary shaped closed curves.
The proposed control strategy is a completely decentralized
algorithm, and does not require any global synchronization.
The desired behavior is obtained by means of some properly
designed artificial potential functions.

I. INTRODUCTION

In this paper we describe a control strategy for the
trajectory tracking of groups of mobile robots. This control
strategy has been developed for the control of Automated
Guided Vehicles (AGVs) moving in an industrial environ-
ment. More specifically, our target applications are automatic
systems for end–of–line operations, for example delivery of
goods from the production machines to the warehouse.

Since industrial environments are typically highly cluttered
environments, the admissible paths for the AGVs often
assume very strange shapes. Thus, in this paper we introduce
a trajectory tracking control strategy that is suitable for
trajectories with completely arbitrary shapes.

In the literature, many control strategies have been pro-
posed for trajectory tracking. Traditional approaches (see e.g.
[3] and references therein) generally make the mobile robot
follow a reference point that moves along the trajectory, by
means of error feedback. Even though these strategies are
very effective for a single vehicle to track a trajectory, it’s
not straightforward to extend them to the multi–vehicle case.

In the multi–vehicle case, each robot has to track the
trajectory without colliding with the other ones, and main-
taining a desired distance from them. For this purpose, tra-
ditional collision avoidance strategies, for example potential
based ones [6], are not suitable. An adapted potential based
control strategy is presented in [13] for automatic driving on
highways. The composition of the artificial potentials makes
the vehicles change the lane to overtake other vehicles, thus
avoiding collisions. Conversely, we would like to address a
single lane scenario, in which the vehicles never leave the
trajectory, and synchronize their motion along it.

The deployment of a group of robots over a curve has
been addressed in the field of boundary tracking algorithms
[4], [5]. These algorithms aim at deploying a group of
robots along the boundary of a certain zone, usually for

L. Sabattini is with the Department of Electronics, Computer
Sciences and Systems (DEIS), University of Bologna, Italy.
lorenzo.sabattini2@unibo.it

C. Secchi and C. Fantuzzi are with the Department of Sciences and Meth-
ods of Engineering (DISMI), University of Modena and Reggio Emilia, Italy
{cristian.secchi, cesare.fantuzzi}@unimore.it

D. Possamai is with the Department of Automation and Systems Engi-
neering (DAS), Federal University of Santa Catarina, Brazil

environmental monitoring. However, generally boundaries
are approximated by convex (or star–convex) curves [2],
since a higher precision in the definition of the boundary
is not needed for environmental monitoring. Furthermore,
the aim of these algorithms is to spread the robots over the
boundary and then to stop them [2], or to make them patrol a
small segment of the boundary moving alternatively forward
and backward [12].

In [11] a potential based control strategy has been in-
troduced to obtain an arbitrary shaped formation of mobile
robots. The composition of the artificial potential fields leads
to the creation of a regular polygon formation. Exploiting
a properly defined bijective coordinates transformation, it
is possible to obtain formations with completely arbitrary
shape.

Introducing one further coordinates transformation it is
possible to make the coordinates system rotate, in order to
make the robots move along the circumference. However,
since it’s not always possible to find a suitable coordinates
transformation to relate a circumference with a completely
arbitrary shaped curve, it is necessary to heavily modify the
control strategy, in order to avoid the use of coordinates
transformations.

Thus, in this paper we introduce an artificial potential
based control strategy to make a group of robots track
an arbitrary shaped trajectory, moving at a given desired
speed. The algorithm is completely decentralized, and the
coordination along the curve is obtained without any global
synchronization. Artificial potential functions are used to
make the robots reach the curve and move along it, and to
obtain the desired spacing between each couple of robots.
Furthermore, the number of robots involved in the trajectory
tracking can change dynamically, allowing sudden addition
or subtraction of robots. Clearly, this control strategy works
also perfectly for the trajectory tracking performed by a
single vehicle.

II. PATHS DESCRIBED WITH IMPLICIT FUNCTIONS

In this paper we consider a group of n point mass
holonomic agents characterized by the following dynamics:

ẍi = vi i = 1, ..., n (1)

where xi ∈ R
2 is the position of the i–th agent. The dynamic

behavior we are considering is quite simple, but all the results
obtained in the paper can be extended to nonholonomic
vehicles. In fact, many strategies can be found (e.g. [9]) to
feedback linearize several classes of nonholonomic vehicles.
Furthermore, we suppose that the agents can localize them-
selves exactly.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 6089

In this section we introduce a control law that makes
the robots move along an arbitrary shaped curve that can
be described by means of an implicit function f (x) = 0,
x ∈ R

2.
To make a group of robots converge to the desired curve,

we control them to perform a gradient descent of f2 [7].
Thus we introduce the following control law:

vi = −K∇f2 + fti + fdi − bẋi (2)

where K and b are positive constants, and b implements a
damping action.

The term −K∇f2 is orthogonal to the curve C in every
point of the space. The role of this term is to make the robots
converge to the desired curve C.

The role of the term fti is to make the i–th robot move
along the curve C at the desired speed. To this aim, the force
fti is tangent to the curve at every time. More specifically,
fti is described as follows:

fti = ω · Rθ · −∇f2

‖∇f2‖ (3)

where ω ∈ R is a constant, proportional to the desired speed
for the robot along the curve, and Rθ is a rotation matrix.
The rotation matrix Rθ is defined as follows:

Rθ (xi) =
[

cos θ − sin θ
sin θ cos θ

]
(4)

where:

θ (xi) =
{ −π/2 if f (xi) > 0

π/2 otherwise
(5)

In other words, θ (xi) = −π/2 if the i–th robot is outside the
curve C, and θ (xi) = π/2 if it is inside the curve. As shown
for example in Fig. 1, this definition of the rotation matrix
Rθ leads to a movement along the curve in counterclockwise
direction if ω > 0, and in clockwise direction if ω < 0.

-∇f2

-∇f2

fti

fti

Rπ/2

R−π/2

ω < 0

ω > 0C

Fig. 1. The force fti is perpendicular to the negative gradient of f2. Their
composition makes the robots converge to the curve and move along it

Clearly Eq. (3) is not defined when
∥∥∇f2

∥∥ = 0. This
condition is verified only when the robot is on the curve C.
In this case, we want the control action to drive the robot
along the curve. In other words, the force fti needs to be still

tangent to the curve C. To obtain this, we slightly modify
Eq. (3):

fti (xi) =

⎧⎪⎪⎨
⎪⎪⎩

ω · Rθ (xi) · −∇f2 (xi)
‖∇f2 (xi)‖ if f (xi) �= 0

ω · Rθ (xp) · −∇f2 (xp)
‖∇f2 (xp)‖ otherwise

(6)
where xp is an arbitrary point on the line perpendicular to the
curve C passing through xi. Fig. 1 shows the composition of
the negative gradient of f2 and of the force fti: the compo-
sition of these two actions drives the robots to converge to
the curve C, and then move along it.

The role of the term fdi is to take the robot i at the desired
distance from the other robots. This force is given by the
composition of two terms:

fdi =
n∑

j=1;j �=i

frij +
n∑

j=1;j �=i

fqij (7)

The term frij implements a repulsive action if robot i and
robot j are closer than the safety distance ds. The value of ds

is the minimum distance that ensures that collisions between
two robots never happen. More specifically:

frij = −∇xiVrij (xi, xj) (8)

and

Vrij (xi, xj) =
{

0.5Kr(dij − ds)
2 if dij ≤ ds

0 otherwise
(9)

where dij (t) = ‖xi (t) − xj (t)‖, and Kr is a positive
constant.

To regulate the relative positions of the agents along the
curve we introduce the term fqij . In fact, the term frij

regulates only the euclidean distances among the agents.
The fact that the euclidean distances between each couple
of agents are equal to the desired one doesn’t imply at all
that the agents are deployed along the curve as desired.

Let u be a curvilinear abscissa, defined on the curve C.
The term fqij is active only when robot i and robot j are on
the curve C. This term implements a repulsive action based
on the value of the curvilinear abscissa that corresponds to
the positions of robot i and robot j on the curve C. Given the
position of the robot xi ∈ R

2, the corresponding curvilinear
abscissa ui is defined as the value of the curvilinear abscissa
that corresponds to the point of the curve that is closest to
xi.

The force fqij is tangent to the curve C in the position
of robot i. This force implements a repulsive action if
the distance between robot i and robot j. Let ui and uj

be the value of the curvilinear abscissa corresponding to
the positions of robot i and robot j respectively, and let
uij = |ui − uj |. The magnitude of fqij is defined as follows:

‖fqij‖ =
{

Ku|uij − ud| if uij ≤ ud

0 otherwise
(10)

where Ku is a positive constant. The direction of fqij is
tangent to C in the position of robot i, and the orientation is
defined to implement a repulsive action.

6090

To ensure collision avoidance, we assume that the forces
frij and fqij are much stronger than −K∇f2 and fti. This is
obtained by means of an appropriate choice of the parameters
Kr and Ku.

We want to remark that the force frij should be active only
for collision avoidance. This means that, to avoid interference
between frij and fqij , we must choose the parameter ds so
to define a region much smaller than the one defined by
ud. Furthermore, the curve must be defined such that its
curvature do not cause any collision among the agents.

Proposition 1 The robots asymptotically converge to the
curve C and, after the transient, never leave it

Proof: The motion of the robots can be considered as
the composition of two components of motion:

• the motion in direction parallel to the curve C,
• the motion in direction perpendicular to the curve C.

Namely:
ẋi = ẋi⊥ + ẋi‖ (11)

To prove the convergence of the motion to the curve C, we
are only interested in the perpendicular component, namely
ẋi⊥.

As defined so far, the forces fti and fqij don’t have any
component in the direction perpendicular to the curve C.
Thus, these forces do not influence the dynamics of ẋi⊥.

The force frij is active only for collision avoidance: this
means that it can be different from zero only during the
initial transient, when the robots start moving from their
initial positions, and it can happen that two or more robots
are closer than the safety distance. Therefore, frij can be
considered zero after the initial transient.

Thus, from Eq. (1) and Eq. (2), we obtain the following
dynamics:

ẍi⊥ = −K∇f2 − bẋi⊥ (12)

To prove that the robot converges to the curve, we need to
prove the asymptotic stability of:{

xi ∈ C
ẋi⊥ = 0 (13)

Consider the following Lyapunov candidate function:

V (xi) = Kf2 (xi) + 0.5 ‖ẋi⊥‖2 (14)

which is trivially non–negative, and equal to zero only when
the conditions in Eq. (13) are verified. The time derivative
of this function is the following:

V̇ (xi) =
(
K∇f2 + ẍi⊥

)T
ẋi⊥ (15)

From Eq. (12) we obtain:

V̇ (xi) = −b ‖ẋi⊥‖2 (16)

which is always less than or equal to zero. The asymptotic
stability can be proved by invoking LaSalle’s principle.

Proposition 2 After the transient, once on the curve the
robots move along the curve at a constant speed

Proof: With respect to the decomposition of the motion
of the robot described in Eq. (11), in this case we are
interested in the component of the motion which is parallel
to the curve C, namely ẋi‖.

By definition, the gradient of f2 doesn’t have any com-
ponent in the direction parallel to C. As stated before, the
force frij can be considered zero after the initial transient.

Thus, from Eq. (1) and Eq. (2), we obtain the following
dynamics:

ẍi‖ = fti +
∑

j

fqij − bẋi‖ (17)

As stated before, the forces fqij are much stronger than fti.
Therefore, if the robots are on the curve and the distance
between two neighbors is less than the desired one, the forces
fqij make them deploy along the curve as desired. Once the
robots have deployed along the curve, the forces fqij are no
longer active, and Eq. (17) can be rewritten as follows:

ẍi‖ (t) = fti (t) − bẋi‖ (t) (18)

Since we are considering only the dynamics in direction
parallel to the curve, it follows from Eq. (6) that, along this
direction, fti (t) ≡ ω. Thus, Eq. (18) can be rewritten as
follows:

ẍi‖ (t) = ω − bẋi‖ (t) (19)

The differential equation in Eq. (19) can be easily integrated,
thus obtaining

ẋi‖ (t) = (ω/b) + ce−bt (20)

where c is an arbitrary constant. As time goes to infinity, we
have

lim
t→∞ ẋi‖ (t) = (ω/b) = constant (21)

This proves that, asymptotically, the robots move along the
curve C at a constant speed proportional to ω.

We want to remark that, since all the terms of the control
strategy are independent of the total number of robots,
sudden addition or subtraction of robots is managed automat-
ically, as shown in the experiments described in Section V.

The main drawback of the control strategy presented so
far is that, even if many curves can be represented as implicit
function, with this formulation it is not possible to represent
completely arbitrary shaped curves.

III. PATHS DESCRIBED WITH PARAMETRIC FUNCTIONS

Generally speaking, a closed curve in R
2 can be described

by means of a parametric function x = g (u), with x ∈ R
2

and u ∈ R. In the literature, many methods can be found
to define these parametric functions. For example, arbitrary
shaped closed curves can be defined by means of Bezier
curves, B–splines or NURBS [10].

Since, in general, it is not always possible to obtain an
implicit formulation of the curve C from its parametric
formulation, we adapt our algorithm to avoid the use of the
implicit formulation.

Let L be the length of the curve C, i.e. the curvilinear
abscissa u ∈ [0, L]. Since the curve C is closed, g(0) = g(L).

6091

We slightly modify the control law in Eq. (2), in order
to be able to compute the forces without the expression of
f (x).

The gradient descent of f2 is approximated as follows.
Let xi be the position of the i–th robot. At each time, the
robot finds the closest point of the curve, i.e. the value u∗

of the curvilinear abscissa such that

u∗ = argminu∈[0,L] ‖xi − g (u)‖ (22)

It can happen that u∗ is not uniquely defined, i.e. more than
one point of the curve have the same minimum distance from
the i–th robot. In particular, this can happen when the i–th
robot is approaching the (non–convex) curve, and u∗ defines
the point where the robot enters the curve. In this case, u∗ can
be chosen randomly among the minimum distance points.
Once the robot is on the curve, this ambiguity will not happen
anymore.

In any point, the negative gradient of f2 is perpendicular
to the curve C, and points towards it. Thus, we approximate
it with a force that attracts the robot to g (u∗), namely:

−K∇f2 ≈ −∇Uatt (23)

where
Uatt = 0.5K ‖xi − g (u∗)‖2 (24)

Furthermore, we need to approximate the force fti. We
approximate the composition of the negative gradient of f2

and of the force fti as follows:

−K∇f2 + fti ≈ −∇Uω
att (25)

with

Uω
att = 0.5K ‖xi − g ((u∗ + ω) mod L)‖2 (26)

where (u) mod L is the reminder of the division of u by L.
This term approximates the composition of the negative

gradient of f2 and of the force fti, as described for example
in Fig. 1. More specifically, the robot is not attracted to
g (u∗), but it is attracted to g ((u∗ + ω) mod L), where
ω ∈ R is proportional to the desired speed along the curve.

• When the robot is not on the curve, it is attracted to the
curve C as desired, since g ((u∗ + ω) mod L) is clearly
a point of C.

• When the robot is on the curve, the point g (u∗)
is the robot’s own position. Thus, being attracted to
g ((u∗ + ω) mod L) it is forced to move along the
curve, at a speed proportional to ω.

The other terms of the control law are defined as described
in the previous section.

Thus, the approximated control law introduced in this sec-
tion implements both the actions perpendicular and parallel
to the curve C, making the robots converge to the curve and
move along it.

We remark that the choice of the value of ω must be
related to the shape of the curve, to guarantee a good tracking
performance. In fact, if the curve, for instance, presents a
sharp bend, a high value of ω will make the robots cross the
bend according to a straight line, instead of following the
curve as desired.

IV. MULTIPLE OBJECTIVES: LOGICAL LAYER OF

CONTROL

In this section we introduce a strategy to deal with
multiple objectives, i.e. multiple curves to be tracked. More
specifically, we want to make a group of mobile robots
autonomously spread among a certain number of paths,
to complete different tasks. For example, in an industrial
end–of–line application, there can be different kinds of goods
to be delivered from different machines to different locations
in the warehouse. The objective is to obtain an emerging
behavior by which the group of robots automatically spreads
among the different tasks, given the number of robots needed
by each task.

To this aim we introduce a higher control layer, that en-
ables each robot to select the right task. More specifically, we
introduce an algorithm based on the following assumptions
and definitions:

1) The robots can communicate, by means of message
passing, when their distance is less then a certain
communication radius.

2) Each robot has a unique identifier (UID).
3) As stated in the previous sections, let L be the length

of the curve, and let ud be the desired distance
between two neighboring agents on the curve. Then,
(L/ud) = N ∈ N. In other words, ud is defined so that
so that an exact number N of robots is allowed to track
the curve.

4) If the distance between two robots is less than or equal
to ud, they can communicate.

5) The k–th robot is attracted to the curve C by means of
the control strategy presented so far, while n robot are
already moving along the curve C. Thus, if it finds that
n ≥ (L/ud), the k–th robot will move to a different
task.

6) Let Δj+1 = |uj+1 − uj| and Δj−1 = |uj−1 − uj | be
the distances, in terms of curvilinear abscissa, between
the j–th robot and its neighbors along the curve.

Thus, the proposed algorithm is the following:

• The k–th robot sends to the j–th robot a message with
its own UID, UIDk.

• The j–th robot starts Algorithm 1.

Algorithm 1 Reply of the j–th robot to the k–th robot
request

1: if (Robot j is not on the curve) then
2: Robot j → Robot k: msg = [0, 0]
3: else
4: if ((Δj+1 > ud) AND (Δj−1 > ud)) then
5: Robot j → Robot k: msg = [1, 1]
6: else
7: Robot j → Robot j + 1: msg = [UIDk, UIDj , 0]
8: Algorithm 2
9: end if

10: end if

6092

Algorithm 2 Message passing among the robots on the
curve, to understand if one more robot is allowed to track
the curve as well
msgin = incoming message
msgout = outgoing message
The i–th robot receives msgin:
msgin = [UIDk, UIDj , m], m = 0, 1

1: if msgin (2) == UIDi then
2: Robot i → Robot k: msgout = [1, msgin (3)]
3: else
4: if msgin (3) == 1 then
5: Robot i → Robot i − 1: msgout = msgin

6: else
7: if (Δi+1 > ud) then
8: Robot i → Robot i − 1:

msgout = [UIDk, UIDj, 1]
9: else

10: Robot i → Robot i + 1:
msgout = [UIDk, UIDj, 0]

11: end if
12: end if
13: end if

Algorithm 1 describes how the j–robots computes the reply
message to the request of the k–th robot. The reply message
is a two–bit message, and its meaning is the following:

• msg = [0, 0]: the j–th robot is not on the curve C.
• msg = [1, 0]: the j–th robot is on the curve C, and

n ≥ (L/ud). The k–th robot must move to a different
task.

• msg = [1, 1]: the j–th robot is on the curve C, and
n < (L/ud). The k–th robot can move along the curve
C.

If the condition in line 4 of Algorithm 1 is true, then the
distance between the j–th robot and its neighbors is strictly
greater than ud. Thus, under Assumption 3, the number of
robots on the curve C is less than the maximum allowed, and
the k–th robot is allowed to move along the curve C as well
(Fig. 2(a)).

Otherwise, if this condition is not verified for the j–th
robot, we must check whether it is verified for another
robot on the curve C (Fig. 2(b)). This is the purpose of
Algorithm 2. In this case, the message is a vector with three
components:

1) The first component is the UID of the k–th robot.
2) The second component is the UID of the j–th robot.

This is the robot that started the message passing along
the curve.

3) The last component can be 0 or 1:

• it is set to 0 if the k–th robot is not allowed to
move along the curve C.

• it is set to 1 if the k–th robot is allowed to move
along the curve C.

If the condition in line 7 of Algorithm 2 is true, then the
distance between the i–th robot and its following neighbor

is strictly greater than ud. Thus, under Assumption 3, the
number of robots on the curve C is less than the maximum
allowed, and the k–th robot is allowed to move along the
curve C as well (Fig. 2(c)). Thus, the third component of the
outgoing message is set to one, and this message is sent back
to the previous robot. The message is delivered to the j–th
robot, that allows the k–th robot to move along the curve C.

Conversely, if the condition in line 7 of Algorithm 2 is
not verified for any robot on the curve C, then the number
of robots currently on the curve is greater then or equal to the
maximum allowed (Fig. 2(d)). In this situation, the message
passes through all the robots, and no one of them sets to 1
the third component of the message.

When the message comes back to the to the j–th robot,
the condition in line 1 is true. The message passing among
the robots on the curve ends, and the j–th robot sends to the
k–th one the correct answer.

jud
ud

j + 1

j − 1

Δj−1 > ud
Δj+1 > ud

k
[1, 1]

(a)

jud
ud

j + 1j − 1

k [k, j, 0]

(b)

j

ud

ud

ud

ud ud

i

k

Δi+1 > ud

[k, j, 1]

[1, 1]

(c)

j

ud
ud

ud

ud

k
[1, 0]

(d)

Fig. 2. Message passing algorithm

To quantify the complexity [1] of this algorithm, we
consider the worst case: starting from the j–th robot, the
message passes through all the robots until it reaches the
(j − 1)–th, and then goes back until it reaches the j–th one
again. Let n be the number of robots currently on the curve
C. In the worst case, the message passing along the curve
involves 2 (n − 1) messages. Furthermore, one message is
sent from the k–th to the j–th robot, and the answer is sent
back. Thus, the total number of messages exchanged in the
worst case is 2n. Hence, the communication complexity of
this algorithm is linear with the number of robots involved.

6093

V. SIMULATIONS AND EXPERIMENTS

To validate our control strategy, we performed both Matlab
simulations and experiments on real robots. Some examples
are shown in the accompanying video clip.

In the simulations we considered point mass agents,
tracking the desired curve C, defined by means of the
B–spline formulation. In the accompanying video clip some
examples are presented. The agents, starting from random
initial positions, reach the curve C and move along it. The
speed of the agent is not uniform along the curve: this is
obtained by means of a non–uniform discretization of the
curve. This is useful to make the robots move faster in some
zones and slower in some other zones. For example, this
strategy can be exploited to slow down the robots while
loading or unloading goods on them.

Furthermore, we performed several experiments on real
robots, a group of E–Puck robots [8], moving in a 2.0m ×
1.5m arena. The positions of the robots are measured by
means of a camera placed above the arena, and robots are
tracked by means of colored markers. To deal with the fact
that these robots are nonholonomic systems, we applied the
feedback linearization technique presented in [9].

During the simulations and the experiments, the follow-
ing values have been used for the parameters: K = 100,
Ku = Kr = 500, b = 15, ω = 5, with curves defined by 400
points.

Both simulations and experiments show the effectiveness
of the control strategy described so far: in fact, after the
transient, the robots correctly deploy along the curve and
track it. The tracking is not perfect in some zones, where
the agents move a little far from the curve: this is due
to the discretization of the curve. In fact, in these zones
the discretization is coarser than the rest of the curve. A
non–uniform discretization is useful if in some zones a
precise tracking is not needed (e.g. because in some zones of
the environment there are no obstacles), because it reduces
the number of points to be stored to describe the curve.

As shown in the video clip, collisions among the robots
are avoided, and sudden addition or subtraction of robots is
managed automatically.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a control strategy to make
a group of mobile robots track a trajectory given by an
arbitrary shaped desired curve.

This control strategy is a completely decentralized algo-
rithm, since there is no need for any centralized controller
or global synchronization.

By means of this control strategy, a group of mobile
robots, starting from random initial positions, is able to reach
the desired curve and then move along it. Once reached
the curve, the robots never leave it. Furthermore, collision
avoidance and desired spacing between neighboring robots
is ensured.

With respect to previous works on trajectory tracking, the
main advantage of this control strategy is the fact that it com-
bines trajectory tracking with the coordination of multiple

mobile robots. Furthermore, this result is obtained without
any global controller, and without the need of knowing
information about the whole group of robots. This ensures
the correct behavior even in presence of sudden addition or
subtraction of one or more robots.

In Section IV we have presented how to extend our control
strategy to deal with multiple tasks, by means of message
passing between the robots.

The application of this control strategy in the end–of–line
industrial scenario is clearly not the only possible field of
application. Another possible applications is the boundary
tracking, for example around a nuclear plant. Generally
speaking, this control strategy can be used to make mobile
robots move around the perimeter of a given zone, for
example for surveillance purposes.

Future work aims at studying the initial transient behavior,
in order to control it by means of an appropriate tuning
of the parameters. Furthermore, we want to extend the
control strategy presented so far. More specifically, we are
investigating how to realize decentralized control strategies
to obtain more complex cooperative behaviors, which can be
of interest in industrial environment.

REFERENCES

[1] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic
Networks. Applied Mathematics Series. Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[2] Y. Cao and R. Fierro. Dynamic boundary tracking using dynamic
sensor nets. In Proceedings of the 45th IEEE Conference on Decision
and Control, 2006.

[3] M. Egerstedt, X. Hu, and A. Stotsky. Control of mobile platforms
using a virtual vehicle approach. IEEE Transactions On Automatic
Control, 11 2001.

[4] S. Jang, G. Song, and S. K. Hong. Dynamic boundary tracking in
active sensor networks. In Proceedings of the International Conference
on Control, Automation and Systems, 2007.

[5] Z. Jin and A. L. Bertozzi. Environmental boundary tracking and
estimation using multiple autonomous vehicles. In Proceedings of
the 46th IEEE Conference on Decision and Control, 2007.

[6] O. Khatib. Real–time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research, 1986.

[7] L. S. Marcolino and L. Chaimowicz. No robot left behind: Coordina-
tion to overcome local minima in swarm navigation. In Proceedings
of the IEEE International Conference on Robotics and Automation,
2008.

[8] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J. C. Zufferey, D. Floreano, and A. Martinoli. The e-
puck, a robot designed for education in engineering. In Proceedings of
the 9th Conference on Autonomous Robot Systems and Competitions,
pages 59–65, 2009.

[9] G. Oriolo, A. De Luca, and M. Vendittelli. WMR control via dynamic
feedback linearization: Design, implementation, and experimental val-
idation. IEEE Transactions On Control Systems Technology, 11 2002.

[10] L. Piege and W. Tiller. The NURBS Book. Springer–Verlag, 1995-
1997.

[11] L. Sabattini, C. Secchi, and C. Fantuzzi. Potential based control strat-
egy for arbitrary shape formations of mobile robots. In Proceedings
of the IEEE/RJS International Conference on Intelligent Robots and
Systems, 2009.

[12] S. Susca, F. Bullo, and S. Martı́nez. Synchronization of beads on a
ring. In Proceedings of the 46th IEEE Conference on Decision and
Control, 2007.

[13] M. T. Wolf and J. W. Burdick. Artificial potential functions for
highway driving with collision avoidance. In Proceedings of the IEEE
International Conference on Robotics and Automation, 2008.

6094

