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Abstract—This paper presents a novel 3D measurement
system, which yields both depth and color information in real
time, by calibrating a time-of-flight and two CCD cameras. The
problem of occlusions is solved by the proposed fast occluded-
pixel detection algorithm. Since the system uses two CCD
cameras, missing color information of occluded pixels is covered
by one another. We also propose a robust object recognition
using the 3D visual sensor. Multiple cues, such as color, texture
and 3D (depth) information, are integrated in order to recognize
various types of objects under varying lighting conditions.
We have implemented the system on our autonomous robot
and made the robot do recognition tasks (object learning,
detection, and recognition) in various environments. The results
revealed that the proposed recognition system provides far
better performance than the previous system that is based only
on color and texture information.

I. INTRODUCTION

In the area of intelligent systems, the use of 3D informa-
tion is crucial. The autonomous mobile robots, for instance,
are expected to have an ability to recognize their surrounding
environments in real time and three-dimensional way in
order to complete complex tasks. In recent years the 3D
measurement technology has been developed remarkably and
many methods have been proposed. These methods roughly
fall into two categories. First one is based on passive sensors
such as multiple view 3D reconstruction using CCD cameras.
Although the baseline stereo camera is widely used these
days, quality of the reconstructed 3D information is not high
enough in general. Moreover, it is impossible to measure
the distance to the textureless region in principle and the
computational cost for searching corresponding points is in-
dispensable. On the other hand active sensors including laser
range finder (LRF) are very robust to illumination conditions
and provide really accurate range information. However, the
3D laser scanning system is large and very expensive. Hence,
such system is not suitable for home assistant mobile robots.
Instead of using expensive laser scanner system, it is possible
to use the motor-driven horizontal line laser scanner for 3D
SLAM in mobile robot applications. Such system, however,
does not provide 3D information in real time.
The infrared ray (IR) time-of-flight (TOF) cameras [1],

which overcome these problems, are of current interest, since
they are capable of obtaining 3D information around 30
fps. The TOF camera is relatively small and less expensive
compared with 3D LRF. Although the TOF camera is not
comparable in accuracy to 3D LRF, its performance is far
better than that of commercially available stereo camera.
These active measurement systems still have the problem that
no color information at each pixel location is accompanied.

In this paper we present a realization of novel 3D measure-
ment system, which yields both depth and color information
in real time by integrating a TOF and two CCD cameras.
The calibration is carried out by estimating the internal
and external camera parameters for both TOF and CCD
cameras. Another problem to be solved in this paper is oc-
clusions between TOF and CCD cameras. These occlusions
occur because the viewpoints of all sensors are different.
To cope with this problem fast occluding pixel detection
algorithm is proposed. Since the system consists of two CCD
cameras, missing color information of an occluded pixel is
compensated by the other camera. The proposed 3D visual
sensor makes it possible to simultaneously capture accurate
3D information and corresponding color information in real
time.
The latter half of this paper is devoted to the proposed

object recognition system using the 3D visual sensor. Thanks
to the real-time 3D visual sensor, the integration of multiple
cues, such as color, texture and depth, is possible for object
recognition. The depth information, among others, improves
robustness considerably. As a feature vector for the depth
information, Histogram of Depth (HOD) is proposed in this
paper. We also combine Shape Distribution (SD) [2], which
is normally utilized for the 3D model retrieval, with HOD.
These features are invariant to scale and rotation, which
is a desirable property for object recognition. Furthermore,
HOD can be computed really fast. As for color and texture,
histograms of hue and vector quantized dense SIFT (Scale
Invariant Feature Transform) are utilized, respectively.
Related works include applications of TOF cameras and

a huge number of works for object recognition. As we
mentioned earlier, IR-TOF camera is of current interest and
some applications have been proposed for the last few years.
In [3], 3D SLAM using TOF camera for rescue robots has
been proposed. The estimation of camera motion and 3D
pose has been proposed in [4] and [5]. The TOF camera has
been also found application in head pose and object tracking
[6][7]. These works, however, use only 3D information
which is captured by TOF camera. On the one hand, [8]
has proposed the combination of TOF and CCD cameras
for virtual reality applications. However, the work does not
deal with problems of the calibration and occlusions between
sensors. There are very few examples of the home assistant
robot with calibrated TOF and CCD cameras at present.
Although the range calibration for TOF camera has been
discussed in [9][10], few papers mention the compensation
of missing color information caused by occlusions between
sensors.
Regarding object recognition, existing methods are
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Fig. 1. DiGORO, the robot with the proposed 3D visual sensor.

roughly divided into two groups; appearance (2D)-based
method and 3D shape-based one. The matching of local
features, e.g. SIFT [11], is now the most popular method
of appearance-based object recognition. It is well known
fact that SIFT is invariant to scale change and rotation.
However, it cannot deal with affine transform. In [12],
Bag of Keypoints model, which utilizes the histogram of
vector quantized SIFT(visual words), has been discussed. In
either case, it is difficult to recognize textureless objects.
In the area of 3D model retrieval, Shape Distribution [2]
has been proposed for measuring the similarity between two
3D models. Although the SD works well for the 3D model
retrieval, it is obvious that discrimination of different ob-
jects, which have similar shapes with different colors and/or
textures, is impossible. To be precise, there is a difference
between 3D model retrieval and the problem considered in
this paper, i.e. object recognition based on 2.5 dimensional
depth information.
In [13], the original 2D SIFT has been extended to N-

D SIFT. The N-D SIFT has been applied to MRI data and
proven to be beneficial in matching of N-D volume data.
Since the proposed visual sensor gives 2.5D information, the
application of N-D SIFT is not straightforward. Moreover,
N-D SIFT is not suitable for real-time robotic applications,
since the computational cost of N-D SIFT is too high because
of its very high dimensional feature vector.
In [14], authors have proposed color CHLAC features,

which are based on 3D and color information, for detecting
the object in a complex 3D scene. However, the color
CHLAC feature is not rotation invariant. Moreover, it seems
that the feature is affected to some degree by changes in
illumination since color information is directly incorporated
in the feature.

II. REALIZATION OF 3D VISUAL SENSOR
The proposed vision sensor is depicted in Fig.1. The sensor

can acquire color and accurate depth information in real time
by calibrating a TOF and two CCD cameras. In order to
calibrate two different types of cameras, following problems
are required to be considered. First, the CCD camera has
much higher resolution (1024 × 768) than the TOF camera
(176 × 144). Second, each camera has its own parameters
such as focal length, lens distortion, relative position, and
so forth. The occlusion problem, which caused by relative
positions of sensors, has to be resolved as well. These
problems are discussed in this section.

A. TOF Camera
The distance measurement capability of TOF camera is

based on the TOF principle. In TOF systems, the time taken
for light to travel from an active illumination source to
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Fig. 2. Coordinate system transformation.

(a) (c)(b)

Fig. 3. An example of the color mapping: (a)color image (1024 × 768),
(b)depth image (176 × 144), and (c)mapped color image (176 × 144).

the objects in the field of view and return to the sensor
is measured. In this paper, an off-the-shelf TOF camera
SwissRanger SR4000 [15] is used. It emits a modulated
near-infrared (NIR) and the CMOS/CCD imaging sensor
measures the phase delay of the returned modulated signal
at each pixel. These measurements in the sensor results in a
176 × 144 pixel depth map.

B. Camera Calibration
In the geometric camera calibration, the parameters that

express camera pose and properties can be classified into ex-
trinsic parameters (i.e. rotation and translation) and intrinsic
ones (i.e. focal length, coefficient of lens distortion, optical
center and pixel size). The extrinsic parameters represent
camera position and pose in 3D space, while the intrinsic
parameters are needed to project a 3D scene onto the 2D
image plane.
We use Zhang’s calibration method in our proposed sys-

tem, since the technique only requires the camera to observe
a checkerboard pattern shown at a few different orientations.
For the calibration of TOF camera, the reflected signal
amplitude can be used to observe the checkerboard pattern.
Therefore, it is straightforward to apply the same calibration
method.

C. Color Mapping
Suppose that the geometric relationship between the cam-

era coordinate systems is represented as in Fig. 2. Then, the
coordinate of a point P can be written as,

[
x2

y2

z2

]
= [R|t]

⎡
⎢⎣

x1

y1

z1

1

⎤
⎥⎦ , (1)

R = R2R−1
1 , t = t2 − R2R−1

1 t1, (2)
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Fig. 4. An illustration of occlusion: (a) the point that can be measured by
all sensors, (b) the point that cannot be measured by some sensor, and (c)
compensating data by other sensors.

(a) (c)(b)

Fig. 5. Detection and compensation of occluded regions: (a)color mapping
without removal of the occluded regions, (b)detection of occluded regions,
and (c)compensation of occluded regions.

where (R1, t1) and (R2, t2) denote extrinsic parameters
for TOF and CCD cameras, respectively. R and t represent
the rotation matrix and the translation vector for the CCD
camera. It should be noted that lens distortions are assumed
to be compensated by the estimated intrinsic parameters.
Since the TOF camera provides (x1, y1, z1) directly, we can
transform 3D information for all pixels of the TOF camera
into the CCD camera coordinate system using (1). Finally,
color mapping is carried out by the following perspective
projection,

u2 = f2
x2

z2
, v2 = f2

y2

z2
, (3)

where (u2, v2) and f2 represent pixel location on the CCD’s
image plane and the focal length of the CCD camera,
respectively. Fig. 3 shows a result of the color mapping
process.

D. Occlusion
Occluded regions must be considered in the integration

of multiple sensors. When two sensors are involved, the
following four regions are possible:
1) The region which is observable from both of TOF and
CCD cameras (Fig. 4(a)).

2) The region which is observable only from the TOF
camera (Fig.4(b)).

3) The region which is observable only from the CCD
camera.

4) The region which is unobservable from both of TOF
and CCD cameras.

Since color information, which is captured by the CCD
camera, is mapped to a corresponding pixels of the TOF’s
depth map, we have to take care of the second case. In this
case, the CCD camera observes a different point (marked
with × in Fig.4(b)) from the point where the TOF camera
sees. Obviously this situation leads to a false mapping of
color information and a pseudo object appears as shown in
Fig.5(a). Therefore, occluded regions have to be detected

and removed. The Z-buffer method, which is widely used
in the area of computer graphics, is applicable. However,
it requires a 3D data with polygon mesh representation.
Instead, we propose a fast occlusion detection algorithm that
works in the color mapping process. The basic idea is to use
the property for alignment sequence of corresponding pixels
between TOF and CCD cameras. If there is no occlusion,
the corresponding pixel location of the CCD camera moves
to the same direction as the horizontal scanning direction
of the TOF camera’s depth map. On the other hand, the
corresponding pixel location of the CCD camera moves to
the opposite direction when the occluded region starts. The
algorithm for detecting occluded regions is described as
following steps:
1) Find all pixels in the CCD camera that have corre-
spondence with Nu × Nv pixels of the TOF camera.
Now, let (U(u2), V (v2)) be a coordinate of the CCD
camera’s image plane that corresponds to (u2, v2) on
the TOF camera. Set u2 = 2 and v2 = 1.

2) Find the pixel which can be written as U(u2) <
U(u2 − 1), for any v2. If it is found then go to 3),
if it is not found increase u2 and keep searching. If
u2 = Nu go to 4).

3) Find the pixel which can be written as U(u2) <
U(u2 + k) by increasing k. If it is found, set u2 =
u2+k then go back to 2), if it is not found then remove
corresponding point of (u2 + k, v2) and go back to 3).
If u2 + k = Nu then go to 4).

4) Increase v2 and set u2 = 2, then go back to 2). The
process is finished when v2 > Nv .

Fig.5(b) shows a result of the proposed occlusion detec-
tion. It should be noted that the algorithm above is for the
left-CCD and TOF cameras. For the right-CCD camera, the
scanning has to carried out from right to left direction (from
u2 = Nu in decreasing direction).
Since our proposed system has two CCD cameras, which

are mounted on both sides of the TOF camera, color informa-
tion of occluded pixels are compensated by the other camera
as shown in Fig.4(c). More precisely, the left-CCD camera
is mainly used for the color mapping in our system and the
right-CCD camera is used for compensating occluded pixels.

III. ROBUST OBJECT RECOGNITION
In this section we discuss a robust object recognition

method using the 3D visual sensor described in the previous
section. The overview of the proposed method is illustrated
in Fig.6.

A. Object Detection
Object detection is required as the first step in the object

learning and object identification subsystems. In general,
object detection under complex background is not an easy
task. Here we use the following two different methods, which
use the information acquired by the proposed sensor.
1) Object Detection based on Motion Attention: When

the user shows a target object to the robot, the object can be
segmented out by paying attention to the motion cue. The
motion-attention based method uses a motion detector for
extracting an initial object region and then the object region
is refined using the color and depth information of the initial
region. Please refer to [16] for more details. An example of
object detection based on the motion attention is shown in
Fig.7.
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Fig. 6. Schematic of the proposed recognition system.

(a) (c)(b)

Fig. 7. The result of object detection; (a)input image, (b)object probability
map, and (c)extracted object.

2) Object Detection based on Plane Detection: If objects
are on the table, the plane detection technique is beneficial
to detect the objects. The 3D Randomized Hough Transform
(3DRHT) is utilized for fast and accurate plane detection.
Since we can acquire highly accurate 3D information from
the TOF camera, we can detect plane in high accuracy. Then,
all 3D points except for top of the table itself are projected
onto the detected plane. Finally, connected components anal-
ysis (labeling) is performed on the plane and each object
is segmented out. It is worth noting that high resolution
image for the segmented object can be obtained by using
the correspondence between TOF and CCD cameras. Fig.8
shows the result of detected objects on the table.

B. Object Learning
Since k-Nearest Neighbor (k-NN) classifier is used for

the object identification, object database is generated in the
learning phase. The user is supposed to show the target
objects in various directions to the robot in the learning
phase. The other scenario is that the robot detects the
object on the table and observes it in various directions
by grasping it. In any case, object detection is carried out
in many frames and feature vectors are computed. These
feature vectors are stored for the object database. Here, we
need features which are invariant to scale change, rotation,
and translation. The histogram-based feature is employed on
our proposed method because it makes features rotation and
translation invariant. Moreover, we can use 3D information
for normalizing the scale, which results in the scale invariant
features. Since it is difficult to realize the feature that has
view invariance, this property is ensured by matching of all
features from various view points, which are accumulated

(a) (b)

Fig. 8. Object detection based on plane detection. (a)Detected plane, and
(b)Detected objects.
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Fig. 9. Schematic of HOD.

in the learning phase. We will explain the features that are
employed on this research.
1) Histogram of Depth: As one of features using 3D

information, we propose Histogram of Depth (HOD). This is
a histogram of depth values of all pixels in an object region
as shown in Fig.9. Since the histogram would vary by the
distance to an object, we normalize the histogram using the
mean distance of the object region. In consideration of the
accuracy of the TOF camera, the histogram bin size is chosen
to be 5 mm. The HOD is very fast computable and is also
invariant to scale change, rotation, and translation. However,
it should be combined with another feature, since it is not
powerful enough to distinguish the shapes of objects.
2) Shape Distribution: We use Shape Distribution (SD) as

the second feature. The SD represents various characteristics
of the object 3D shape by calculating a metric among ver-
tices. We utilize distances between all combinations of two
vertices in the object region as shown in Fig.10, followed by
taking the histogram of these distances as an object feature.
The SD has been proposed to measure the similarity between
3D models. Although the SD for 3D models has view
invariance property, it is viewpoint dependent in our case
since the depth information is 2.5D in principle. There is no
need for generating point clouds randomly from 3D polygon
mesh, since 3D information is obtained as point clouds
in our proposed system. Moreover, the SD is invariant to
scale change, rotation, and translation. However, it has high
computational complexity since all combinations of two ver-
tices in the object is taken into consideration. We solve this
problem by decimating vertices. In fact, the decimation by a
factor of five makes the computation reasonably fast without
degrading the recognition performance. By combining HOD
and SD, improvement of the recognition performance can be
expected since SD contains size information of the object.
3) Color and Texture Information: We have discussed

features, which are based on 3D information. In order
to distinguish similar shaped objects with different color
and/or textures, we also utilize color and texture information
for the object identification. Here, the 2D histogram of
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hue and saturation in HSV color space is used as color
information. As for texture, we utilize a dense version of
SIFT (DSIFT). Unlike the original SIFT, DSIFT is not
invariant to scale change since it omits the time-consuming
key points detection and calculates densely sampled features.
Instead, the scale change can be normalized using the depth
information in our system. Before taking histogram, DSIFT
is vector quantized using the predetermined 500 dimensional
codebook, which is generated by k-means clustering of many
images of indoor random scenes.

C. Object Identification
In the object identification subsystem, the object region

is segmented out at first using the motion-attention based
method or the plane detection based one. Then, the feature
vector is extracted from the input object region. The identifi-
cation is based on Bhattacharyya distance between the input
feature vector and the reference one, which is selected from
the database. Now let the histogram of a reference data, the
histogram of an incoming data, and size of the histogram
be Href , Hin, and N , respectively. Bhattacharyya distance
D(Href , Hin) can be written as

D(Href ,Hin) =

√√√√1 −
N∑

i=1

√
Href (i) × Hin(i). (4)

Likelihood P is given by

P = exp{−λ{D(Href , Hin)}2}, (5)

where λ is a coefficient to adjust the variance of D and
dependent on the type of a feature. This coefficient is set to
be inversely proportional to the average of D2 for specific
feature vectors in the learning data and works as a weight
for each feature in the recognition phase. The likelihood P
is calculated for all features, i.e. color, texture, and depth,
and then the integrated likelihood for the candidate object
is obtained by multiplying all of these likelihood values.
Furthermore, reliability of color and texture information
largely depends on the illumination condition during the
recognition. Here, we presume that the maximum likelihood
value of all likelihoods, which are calculated for all data in
the database, as a reliability value of that feature. We do
not use the feature if the maximum likelihood value is lower
than the predefined threshold.
Finally, k-NN classifier is employed to make a final

decision. Since we are aiming at robust object recognition
using a robot in this research, it is also possible to change the
viewpoint actively and observe an object in multi-frame, if
the reliability of the current input is low. In particular, more
distinctive 3D information could be obtained if the robot

(a) (b)

Fig. 11. Experimental environment: (a)living room, and (b)objects used in
the experiment.

place1 place4place3place2

(approx. 400Lux) (approx. 650Lux) (approx. 150Lux) (approx. 50Lux)

Fig. 12. Varying illumination conditions.

category1 category2 category3 category4 category5

Fig. 13. Object categories.

changes the viewpoint. Thus, it is possible to improve the
recognition performance by integrating multi-frame informa-
tion.

IV. EXPERIMENT
An experiment is carried out in the living room shown in

Fig.11(a) using 20 objects in Fig.11(b). A user shows each
object in various angles to the robot and database, which
contains feature vectors of 50 frames per object, is generated
by the robot in the learning phase. In the recognition phase,
200 frames of images for each object are identified. These
images are captured at four different locations (50 frames
per location), which have different illumination conditions
as shown in Fig.12. It should be noted that the learning
phase is carried out in the location 1. We use three different
combinations of features as color and texture (2D informa-
tion), HOD and SD (3D information), and integration of all
features. The standard SIFT approach is also involved for
the purpose of reference. Since the recognition performance
depends deeply on characteristics of the target objects, we
categorize 20 objects into 5 categories as shown in Fig.13
and the recognition rate is computed for each category.
Fig.14 shows the results of recognition for each object

category. The results for each location are given in Fig.15.

A. Recognition by Color and Texture Information
It can be seen from Fig.14 that objects in categories 1 to 3,

which are objects with well-defined color and/or have many
textures, can be recognized almost perfectly using color and
texture information. As a matter of course, it is difficult to
recognize white objects in categories 4 and 5 under varying
illumination conditions.
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The standard SIFT approach shows a similar tendency to
this case. The color information gives rise to difference in
the recognition rate since color information is not included
in SIFT.

B. Recognition by 3D Information
By using 3D information, fairly different behavior of the

recognition result from the one using 2D appearance is
observed. First of all, it can be confirmed from Fig.15 that
HOD and SD are not sensitive to changes in illumination.
Moreover, Fig.14 suggests that HOD and SD work reason-
ably well for white objects in categories 4 and 5, which
are very difficult to recognize using color and/or texture
information.
On the contrary, performance degradation is observed

for the objects in categories 1 to 3. The reason for this
degradation is the similarity in shape. Particularly with the
category 3, objects are similar in shape and size. In spite
of the common flat surface, the objects in category 2 are
discriminable because of the difference in size.

C. Recognition by Integrated Information
Not surprisingly, the integrated features yield the best

result. It can be seen that the recognition rate for pure white
objects with no texture (e.g. white dish, mug etc.) is as
high as 90%. Furthermore, it can be easily confirmed that
the proposed recognition system is extremely robust to the
illumination change.
It seems that the change of viewpoint to an object mainly

caused the false recognition in this experiment. It is impos-
sible to observe an object from equally spaced viewpoints,
since a user shows the object to the robot. These kind of
biased samples are responsible for deviation of the voting
process.

V. CONCLUSION
In this paper, we have proposed 3D visual sensor based on

the calibration of TOF and two CCD cameras. The proposed
sensor can provide accurate 3D depth with registered color
information in real time. We have also proposed a robust
object recognition system by integrating color, texture, and
3D information based on the proposed sensor. The results
given in this paper indicates that the proposed system is
very robust to illumination change and applicable to various
objects.
Currently, we are working on the development of a robot

that can learn objects in a perfectly automatic manner based
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Fig. 15. Recognition results for each location.

on the proposed method. Improvement of the recognition
performance is also an issue in the future.
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