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Abstract— Home monitoring plays an important role within
pervasive healthcare, particularly for monitoring the elderly
and patients with chronic disease. For assessing activities of
daily living, one of the most challenging problems for research
remains that of accurate transition detection and characterisa-
tion. Early detection of a change in these transitions, such as
difficulty getting up from a seated position, can be an indicator
of further complications which often precede a fall. Such
changes can also accompany early stage neurological disorders
which can be treated effectively to improve quality of life. In this
paper, we present a system for the accurate characterisation of
motion based upon the fusion of ambient and wearable sensors.
A probabilistic, privacy respectful method for the extraction of
detailed 3D posture information is proposed and fusion with an
ear-worn accelerometer and gyroscope is discussed. We present
results detailing high accuracy in the recognition of complex
motions over four subjects.

I. INTRODUCTION

Postural change is an important factor in the care and
rehabilitation of elderly patients. Changes in gait can signal
the onset of neurological diseases such as Parkinson’s [1],
whilst changes in how routine tasks are performed – such
as getting out of a chair – can indicate an increase in frailty
and a loss of muscle strength which can increase the chance
of a fall [2]. By characterising motion within the home
it becomes possible to provide a more accurate picture of
elderly patients’ health and wellbeing.

Unfortunately, there are various difficulties associated with
monitoring specific activities, particularly those related to
transitions. Firstly, these motions represent only a small per-
centage of daily activity. Secondly, they can occur anywhere
within the home and the subject may be oriented in any
direction. Finally, a high level of subject detail and context is
required. In this paper, we present a motion characterisation
framework based on the fusion of both wearable and ambient
sensors. We use a probabilistic method for detailed posture
extraction which utilises only four cameras and provides a
detailed, but privacy respectful, rotationally invariant signa-
ture of posture. Data from a wearable accelerometer is fused
with optical flow to provide both local and global motion
detection which is robust to the relative positioning of camera
and subject. We further discuss our method for the fusion of
gyroscope and video data which provides both the advan-
tages of detailed local posture features along with a global
estimation of posture through an ear mounted gyroscope.
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The results derived demonstrate that complex motions can
be detected and distinguished between accurately.

II. BACKGROUND

Motion characterisation has been the subject of extensive
research – generally separated into one of two areas: sensor
based and image based. These can be further understood in
terms of model based and feature based systems. Bidargaddi
et al. [3] adopt a wavelet based approach to extract sit-to-
stand transitions from a waist worn accelerometer, using the
time taken to transition as an indicator of subject mobil-
ity, whilst in [4] a trunk worn accelerometer was used to
gather sit-to-stand motion data before the complexity of the
acquired signals is determined using a fractal measure – the
approach presuming that more able subjects will have a less
complex signal. Culhane et al. [5] provide a review on the
use of accelerometers for elderly care with a particular focus
on gait, sit-to-stand transitions and activity monitoring.

Image centred, model based systems presume that motion
is subject to particular constraints – defined by the specific
model used, and these can be further separated into 2D
and 3D variants. Of the former, a star approximation of
a skeletal whole body posture model has been determined
through extremity detection and topology formation from
the background segmented centre of mass – analysis of
lower extremity movement should then correspond to that
of the legs [6]. Whilst 2D approaches have the advantage
that few cameras are required, projection of 3D posture into
2D space loses information. Projection is also viewpoint
dependent, creating inconsistencies when only a single model
of motion is used. More realistic models have been proposed
to reconstruct 3D posture [7], [8], however they typically
require many synchronised cameras.

Feature based systems also come in both 2D and 3D
variants and are characterised by the absence of under-
lying models of motion. Petkovic et al. [9], propose a
2D system where specific features associated with different
tennis strokes are extracted from 2D silhouettes of players.
Such a system is especially suited to tennis due to the
overall consistency of player orientation. Consequently, the
existence of particular image features can be associated with
individual strokes. Yamato et al. [10] utilise a mesh feature to
characterise the distribution of foreground/background within
an image, reducing this to a series of codewords for temporal
recognition. Whilst 3D feature based systems share some
of the problems inherent to 3D model based systems, they
preserve much more information regarding the evolution
of posture than a 2D approach, since projection onto the
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image plane is not performed. Chu et al. [11] present a 3D
system which reconstructs a 3D visual hull and describes
the evolution of hierarchical shape descriptors using multiple
Hidden Markov Models (HMMs) and there are various other
shape descriptors within the literature which can be used to
this effect [12], [13].

III. SYSTEM OVERVIEW

The system introduced in this paper takes a 3D feature
based approach and fuses extracted decisions with those
obtained using a wearable sensor. We introduce a proba-
bilistic visual hull for deriving rotation invariant metrics of
posture. The sensor used is the ear mounted e-AR [14].
During training of our algorithm, the accelerometer output
is combined with the optical flow from the surrounding
vision sensors to provide a viewpoint independent estimate
of subject motion. Key postures are then learnt with a HMM
and the relative likelihood of these postures over time is used
to characterise posture evolution, with the gyroscope utilised
to estimate subject attitude.

A. Probabilistic Visual Hull

To create a traditional visual hull, we first collect a set of
reference images simultaneously before combining these to
generate an estimate of subject posture. Images are acquired
using multiple video sensors, whilst an approximate 3D
model of the subject can be generated using the Image-Based
Visual Hulls [15] method. This approach consists of two
stages. First, the subject is segmented from the background
of each individual reference image, typically using an adap-
tive statistical background model [16]. Secondly, assuming
full calibration, the two-dimensional binary silhouettes are
reprojected into 3D using epipolar geometry. The 3D model
is finally generated by sampling the intersection of the 3D
reprojected silhouettes.

Within the scenario proposed above, a key problem lies in
the hard binary segmentation performed early in the 2D im-
age space. If one reference image is erroneously segmented,
the error will propagate to the 3D model. To tackle this,
we adopt a probabilistic fusion based approach. Previously,
Franco and Boyer [17] have presented a solution using
Bayesian inference. Instead of labelling the foreground and
the background in the image space, this operation is delayed
until the 3D reprojection stage. The state of each individual
voxel is then inferred from the foreground probabilities of
every image. More recently, Jean-Yves Guillemaut et al [18]
have taken a similar approach by performing simultaneous
segmentation and 3D reconstruction.

B. Subject-Centric Shape Descriptor

In order to generate a viewpoint-invariant representation of
the probabilistic visual hull, a canonical coordinate system
is defined. By definition, the canonical coordinate system
must be invariant to the relative position and orientation
of the subject with respect to the video sensors, thus a
subject-centred coordinate system is used. A Kalman filter
[19] tracks the user’s head – initialised at the beginning of

the video sequence using a naı̈ve detector which assumes
the subject is standing. Whilst the motion of the head is
not linear and therefore cannot be perfectly modelled by a
Kalman filter, its use can help to reduce noise.

Two general options can be taken to ensure a rotation-
independent representation of the model. A model-
normalised orientation can be determined through the use of
Principal Component Analysis (PCA). Such normalisation is
sensitive to noise, as the canonical orientation depends on the
model sampling quality – alternatively, a rotation-invariant
descriptor can be used. For the current application, the 3D
descriptor needs to be rotation-invariant in the horizontal
plane, but not in the vertical. For this reason, a vertical
cylindrical coordinate system centred in the subject’s head
is used to project the 3D model, as illustrated in Figure 1.
The maximal extent of the model is projected on the cylinder,
building a cylindrical 2D depth map, which is then composed
over 360 degrees to create a rotationally invariant signature.

Fig. 1. Cylindrical maximal extent sampling performed on a subject 3D
model. Left: 3D human model being sampled. Right: resulting sampling for
one given angle. Note that this depth map is composed over all angles to
obtain a rotationally invariant signature of pose.

IV. SYSTEM OPERATION

Initially, the system needs to be trained to recognise key
postures of a given motion along with the associated angular
variance. This does not require detailed labelling, as we
leverage our motion detection subsystem to automatically
select posture subsets. Postures are chosen after periods
of motion have been observed, through analysis of fused
accelerometer and optical flow data. We assume that after
periods of motion there is an increased likelihood that posture
has significantly changed. These postures are characterised
by training a HMM with Gaussian observed values on the
2D signatures returned by our posture detector. The angle
travelled between postures is then recorded using the gyro-
scope and motion recognition occurs through the analysis of
posture detector interaction, and the angular variance during
motion. Figure 2 provides an overview of the system.
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Fig. 2. An overview of the motion recognition system. Multiple features
are generated from the projection of the 3D visual hull created using
our probabilistic method, Section III-A. For each posture selected through
motion analysis, Section IV-B, a 2D posture signature is learnt using a
Hidden Markov Model with Gaussian observed values. We utilise both the
relationship between confidence in recognition and the angular variance
between postures to characterise movements. In the example provided above,
we witness the antiphase behaviour of two posture detectors as a motion
is performed contiguously eight times toward the end of the data set. The
angular distance travelled by the user during a motion is given by θ .

A. Fusion of Accelerometer and Optical Flow Data

In order to provide a viewpoint independent estimate of
subject motion, the average unit normalised intensity of the
sample optical flow field, M is calculated for each frame, and
for each camera using the Horn-Schunck method [20]. Nc is
equal to the number of cameras used for posture recognition,
Rk is the resolution of the optical flow field sampling for
camera k and OFk(i, j) is the unit normalised optical flow at
position (i, j) in camera k’s field of vision. Due to the use
of normalised optical flow, M is necessarily unit normalised.

M =
∑

Nc
k=1 ∑

Rk(y)
j=1 ∑

Rk(x)
i=1 OFk(i, j)

∑
Nc
k=1 Rk(x)Rk(y)

(1)

This is then combined with the unit normalised root mean
square acceleration, A, over all three axis collected using
the wearable sensor. Ax represents the acceleration obtained
on the x axis of the sensor, whilst Asat is the maximal (or
saturated) value on all axes of the accelerometer.

A =

√
Ax

2 +Ay
2 +Az

2√
3×Asat

2
(2)

These are combined to create a single motion metric,
V , using mixing parameter ω which expresses the relative
importance of global/local motion in posture selection;

V = (1−ω)M +(ω)A (3)

To improve noise resilience, V is further processed using
a Savitzky Golay [21] smoothing filter, which removes high
frequency noise, whilst maintaining key features of the

Fig. 3. Demonstrating output for the combined motion detector. Areas
marked in yellow are those extracted by our algorithm as corresponding to
a change in posture. Signatures returned from the posture detector during
these periods are then used to train individual posture recognition detectors
– in this case for posture A and posture B. How these detectors interact
over time is used along with the angular motion detected by the gyroscope,
to characterise the entire motion, see Figure 2.

motion distribution. Turning point maxima and minima are
then extracted.

B. Posture Selection & Recognition

In order to select key postures for recognition during the
training phase, we first perform peak detection on V to
extract both global and local motion maxima and minima. We
assume that the period between maxima and minima char-
acterises a possible new posture, since motion necessarily
precedes posture change (although it does not imply it). A
key challenge is determining the resolution at which motion
detection should operate. Too high and every small motion
performed by the subject will trigger the posture recognition
subsystem to characterise and learn a new posture, too low
and key changes to posture will be overlooked. Furthermore,
each motion must be observed in each training instance, with
similar characteristics. We demonstrate this problem in Fig-
ure 3, which shows the motion trace for three repetitions of
the same complex motion. We note firstly that each repetition
is characterised by a large maxima, at the start of section
A, with a smaller maxima, at the start of section B. For
each repetition, these represent the largest, and second largest
motion maxima respectively – with the low or decreasing
motion period directly after, corresponding to a new posture
held by the subject under observation.

Our algorithm for posture selection operates as follows.
Firstly, after hand segmentation of the performed activities,
all motion maxima are extracted. Secondly, a proportion of
these are discarded dependent upon a sensitivity parameter,
α , supplied to the algorithm. Each maxima is then ranked
by magnitude, with the algorithm ensuring that these maxima
occur consistently in the same order. Repetitions deviating
from this pattern are discarded, provided no more than a
specified fraction of performances are removed from consid-
eration. If this threshold is passed, the sensitivity parameter,
α is decreased and the algorithm re-run. The maxima left
now represent our estimate of when posture has changed
dramatically. In order to mark these regions we select the
global minima between the remaining maxima – leaving the
yellow areas of Figure 3 for cylindrical feature extraction
and posture learning.
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Fig. 4. Illustrating interaction between three posture recognition HMMs
trained on the maximal extent feature for the action “pick up object from the
floor, place it on a high object.” This sample is taken from video in which
the action was performed ten times. HMMs were trained only upon the
data from the first five attempts, with the three postures selected using the
algorithm outlined in Section IV-B. Note, log-likelihood has been artificially
scaled and transformed into the positive axis.

C. Posture Evolution

In order to recognise a particular motion, we rely upon
the interaction of posture detectors. This encodes the relative
similarity between postures in a compact manner. Consider
Figure 4. This shows the output from three posture detectors
for the action “pick up object from the floor, place it on a
high object.” Postures were automatically selected using the
algorithm outlined in Section IV-B. The data is from a set of
ten repetitions of the action, where only the first five were
used to train the posture detector HMMs.

It can be seen that there is clear evidence of a repeated sig-
nature and thus it appears possible to recognise a rapid tran-
sitional motion through posture detector interaction. There
is an obvious anti-phase relationship between dark blue and
light blue signatures, with the red minima preceeding the
dark blue minima on each repetition. In order to characterise
this, a further HMM using three observed Gaussians can be
utilised to generalise this temporal relationship, in the same
manner that the postural recognise generalise the spatial
relationship with the user and their environment.

D. Fusion of Ambient and Wearable Sensing Modalities

In this system, fusion occurs at the decision level. After
training, cylindrical features are continually exposed to spa-
tial HMMs to determine the likelihood of a given posture,
and the output passed to temporal HMMs to extract the
likelihood that a given temporal pattern has occurred. This
framework exists for each motion within the system, and
thus an ensemble of detectors must be composed in order
to reach a decision. Further to this a gyroscope subsystem
utilises five 3D Gaussians – to characterise the variance on
each dimension of the gyroscopes’ motion for each action.

Depending upon data alignment, not all vision based
classifiers are guaranteed to respond with a likelihood. In
this scenario, we assume that since the data is out of range,

the possibility of a match with the associated motion is
negligible, so this motion is removed from consideration. Our
algorithm proceeds by calculating the number of responding
classifiers. If greater than one T in Equation 4 is calculated,
where Ctr is a set of classifier outputs containing a likelihood
entry for each responding classifier. If only a single classifier
responds, the vision system is ignored and the gyroscope
is used for classification, since there is no possibility to
determine comparative confidence between motions.

T =
|max(Ctr)|

|max(Ctr)−max(Ctr\max(Ctr))|
(4)

In order for the output corresponding to max(Ctr) to
identify the motion being performed, T in Equation 4 must
be minimised (assuming negative log-likelihood). When min-
imised, the following is assumed. Firstly, that the individual
classifier is confident in its selection. This is determined
by minimisation of the numerator. Secondly, that there is a
suitable amount of discrimination between other classifiers –
consider that it would not be possible to discriminate between
motions if the output from the respective classifiers was very
similar. In order to account for this, the second largest output
from a motion classifier is obtained, and subtracted from the
largest output – the denominator of Equation 4. To provide
a level of both individual classifier confidence and distance
from the nearest potential class we permit the vision sensors’
decision to be used only if T < 1. If this constraint is not met,
the decision returned using the gyroscope data is referenced.

V. EXPERIMENT PROCEDURE

In order to validate our approach, we provide results that
demonstrate the ability of our system to determine several
complex motions: 1) Reach for an item on the floor, place
this at waist level; 2) Reach for an item above head level,
hold this forward at waist level, hold this to the right hand
side; 3) Reach for and item on the floor and place this above
the head; 4) Dress self with a shirt; 5) Brush teeth. These
activities were performed at a fixed location within a single
room such that the coverage from each of the four cameras
used was favourable.

Subjects were initially asked to perform each of the above
activities ten times in a constrained manner, pausing at the
steps outlined in Figure 5 – we call these static attempts. This
allows our motion detection subsystem described in Section
IV-B to determine the key sub-postures for these motions.
This can be considered a training step for the system.
Subjects were then asked to perform the same activities a
further ten times in a fluid fashion i.e. with no requirement
to stop.

To test the efficacy of our system, we perform two
experiments. Firstly, for each subject and each motion, the
first five static attempts were used to train the system –
including sub-posture selection, posture detector interaction
and gyroscope variance clustering. The trained system was
then exposed to the remaining five static attempts along with
the fluid attempts for that subject. For this experiment, hand
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Fig. 5. Illustrating sub-steps of the motions performed during experimentation.

segmentation of the motions was utilised. Secondly, in order
to test the ability to automatically select candidate sequences
for motion characterisation (auto-segmentation), we train a
posture detector on the first five start and finish postures
for each motion using cylindrical data up to five frames
away. For each experiment, per-subject training and testing
was performed, with the average result over four subjects
presented. In both experiments, only the maximal extent
feature was extracted from the visual hull, Figure 1, and
subsequently used for posture recognition.

VI. RESULTS & DISCUSSION

Table I provides the accuracy of the system in motion
recognition when exposed to all remaining motion attempts,
along with the static and fluid motions alone, for gyroscope
only, vision only and the fused system. NA appears as an
entry for Motion 5 since, as there is no difference between
static and fluid attemps, only ten performances were cap-
tured. Tables II and III illustrate the accuracy and precision
of the segmentation subsystem respectively.

A. Classification Accuracy

From the results derived, we can observe the way in which
the motion is performed appears to have an effect on the
classification accuracy, regardless of the modality used. Fluid
motions are almost always distinguished at a lower rate than
static counterparts. In the case of the gyroscope, this may be
explained by an actual change in the variance of the signal –
since under static attempts the user will spend a longer time
stationary. This is a limitation of the approach that needs
to be addressed in subsequent research. In the case of the
vision subsystem, this may again be explained with respect
to a deformation of the posture likelihood curves in the time
dimension. Whilst the temporal HMM should be able to cope
with this, the implementation discussed here uses time as a
feature in posture recognition, reducing time warping ability.

In general, it appears that the gyroscope and vision subsys-
tem are complementary. Motion 2 appears well recognised
by the gyroscope, but poorly determined by the vision
subsystem, whilst the opposite is true of Motion 5. After
fusion, there is a notable increase in Motion 3 All, and Motion

(%) 1/2s 1s 2s 4s 8s 16s
Motion 1 7.83 12.30 24.35 58.28 73.73 73.73
Motion 2 4.50 13.83 50.23 65.38 74.60 75.80
Motion 3 5.68 10.33 28.95 67.13 74.00 75.25
Motion 4 9.53 12.65 29.30 52.73 74.65 77.65
Motion 5 17.63 24.25 48.90 50.90 55.53 55.53
Average 9.03 14.67 36.35 58.88 70.50 71.59

TABLE II
THE PERCENTAGE OF BOUNDARY POINTS MATCHED AS THE SEARCH

AREA IS INCREASED FROM 1/2 SECOND TO 16 SECONDS. AVERAGED

OVER 4 SUBJECTS.

2 Static, both of which outperform the results from either the
wearable or vision based system alone. In general, fusion
offers an overall increase in accuracy of 6.4% over a vision
based system, and 17.2% over a gyroscope alone.

B. Segmentation Subsystem

Given the output from the auto-segmentation algorithm,
we provide results showing both the accuracy and precision
of segmentation, Tables II and III, using a greedy matching
algorithm as the allowable distance between true and de-
tected segmentation boundary is increased. In the first table
we see that only 9% of boundaries are recognised to within
half a second, but as the distance is increased, this reaches
71.6% of boundaries with a sixteen second search space.
Most notable, however, is that whilst the allowable search
space is increased, the majority of matches between detected
segments and true boundaries are close, with an average
frame distance of 63.04 at sixteen seconds. Since the frame
rate is 25 per second, this corresponds to an average distance
of around 2.5 seconds – a perfectly acceptable approximation
which can be passed to the motion characterisation algorithm
as a starting point for a local search.

VII. CONCLUSION

In this paper, we have presented a framework to char-
acterise posture evolution with high accuracy through the
fusion of both ambient and wearable sensing modalities. We
have validated our approach to sensor fusion and shown
preference over each individual sensor alone. A system for
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(%) Gyroscope Vision Fusion
All Static Fluid All Static Fluid All Static Fluid

Motion 1 32.3 50.0 22.5 68.0 80.0 67.1 62.3 75.0 55.2
Motion 2 85.0 80.0 87.5 51.5 55.0 50.0 75.5 90.0 68.8
Motion 3 68.3 80.0 62.6 87.2 100.0 97.2 98.3 100.0 93.8
Motion 4 62.8 80.0 56.3 37.7 35.0 38.3 40.1 55.0 34.6
Motion 5 41.7 NA NA 100.0 NA NA 100.0 NA NA

TABLE I
AVERAGE CLASSIFICATION ACCURACY OVER FOUR SUBJECTS. All DENOTES THAT THE CLASSIFIER WAS TRAINED ON THE FIRST 5 PERFORMANCES,

WITH THE REMAINDER USED FOR TESTING (A MIXTURE OF STATIC AND FLUID PERFORMANCES). Static AND fluid DENOTE THE SAME CLASSIFIER

TRAINING WITH TESTING OCCURRING ON THE REMAINING STATIC AND FLUID ATTEMPTS RESPECTIVELY. WHERE FUSION PERFORMS AS WELL AS, OR

BETTER THAN BOTH MODALITIES ALONE, ENTRIES ARE GIVEN IN BOLD TYPE.

(Frames) 1/2s 1s 2s 4s 8s 16s
Motion 1 5.75 8.33 28.80 51.55 67.95 67.95
Motion 2 3.33 9.98 28.63 49.83 57.63 63.29
Motion 3 1.85 8.00 35.72 52.75 58.45 65.63
Motion 4 3.58 5.45 23.35 51.05 72.68 81.55
Motion 5 6.75 10.06 20.25 26.98 36.78 36.78
Average 4.25 8.36 27.35 46.43 58.68 63.04

TABLE III
THE AVERAGE DIFFERENCE (IN FRAMES) BETWEEN TRUE AND

DETECTED BOUNDARY POINTS AS THE SEARCH AREA IS INCREASED

FROM 1/2 SECOND TO 16 SECONDS. AVERAGED OVER 4 SUBJECTS.

auto-segmentation has also been provided to extract candi-
date sequences for recognition and learning. The high level
of subject detail extracted by cylindrical projection enables
complex postures to be detected in a privacy respectful
manner – a property which is essential for home monitoring
environments. In further work we intend to investigate addi-
tional features of cylindrical projection which can be readily
considered by spatial HMMs with increased dimensionality.
We also intend to further validate our probabilistic approach
to convex hull generation. The extent to which this method
can provide improved convex hulls with fewer cameras than
traditional approaches is of key concern for home monitoring
environments. In this vein, we also plan to investigate the
quality of motion characterisation with varying degrees of
camera coverage i.e. at different locations within a room, and
within different rooms with varying camera configurations.
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