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Abstract— One of the crucial aspects in building sociable,
communicative robots is to endow them with expressive non-
verbal behaviors. Gesture is one such behavior, frequently
used by human speakers to illustrate what they express in
speech. The production of gestures, however, poses a number of
challenges with regard to motor control for arbitrary, expressive
hand-arm movement and its coordination with other interaction
modalities. We describe an approach to enable the humanoid
robot ASIMO to flexibly produce communicative gestures at
run-time, building upon the Articulated Communicator Engine
(ACE) that was developed to allow virtual agents to realize
planned behavior representations on the spot. We present a
control architecture that tightly couples ACE with ASIMO’s
perceptuo-motor system for multi-modal scheduling. In this
way, we combine conceptual representation and planning with
motor control primitives for meaningful arm movements of a
physical robot body. First results of realized gesture represen-
tations are presented and discussed.

I. INTRODUCTION

Lifelike acting in a social robot evokes social commu-
nicative attributions to the robot and thereby conveys in-
tentionality. That is, the robot makes the human interaction
partner believe that it has, e.g., internal states, communicative
intent, beliefs and desires [4]. To induce such beliefs, a robot
companion should produce social cues. Forming an integral
part of human communication, hand and arm gestures are
primary candidates for extending the communicative capa-
bilities of social robots. Non-verbal expression via gesture is
frequently used by human speakers to emphasize, supplement
or even complement what they express in speech. Pointing
to objects or giving spatial direction are good examples
of how information can be conveyed in this manner. This
additional expressiveness is an important feature of social
interaction to which humans are known to be well attentive.
Similarly, humanoid robots that are intended to engage in
natural and fluent human-robot interaction should produce
communicative gestures for comprehensible and believable
behavior.

In contrast to task-oriented movements like reaching or
grasping, human gestures are derived to a certain extent
from some kind of internal representation of ‘shape’ [11],
especially when iconic or metaphoric gestures are used. Such
characteristic shape and dynamical properties exhibited by
gestural movement allow humans to distinguish them from
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subsidiary movements and to recognize them as meaningful
non-verbal behavior [24]. As a consequence, the generation
of gestures for artificial humanoid bodies demands a high
degree of control and flexibility concerning shape and time
properties of the gesture, while ensuring a natural appearance
of the movement. Ideally, if such non-verbal behaviors are
to be realized, they have to be derived from conceptual, to-
be-communicated information.

The present paper focuses on the implementation of com-
municative gestures which have to meet the aforementioned
constraints. The overall objective of this research is to enable
a physical robot to flexibly produce speech and co-verbal
gesture at run-time and to subsequently evaluate the resulting
communicative behavior in human-robot interaction studies.
For this, we explore how we can transfer existing concepts
from the domain of virtual conversational agents to the
platform of a humanoid robot. In [21], we address the
production of speech as a further output modality and its
synchronization with gesture. A future aspect of this work
will incorporate an evaluation of the generated multi-modal
robot behavior.

II. RELATED WORK

Up to now, the generation together with the evaluation of
the effects of robot gesture is largely unexplored. In tradi-
tional robotics, recognition rather than synthesis of gesture
has mainly been brought into focus. In the few existing cases
of gesture synthesis, however, models typically denote object
manipulation fulfilling little or no communicative function,
e.g. [2]. Furthermore, gesture generation is often based on
the recognition of previously perceived gestures, thereby fo-
cusing on imitation learning, e.g. [1]. In most cases in which
robot gesture is actually generated with a communicative
intent, these arm movements are not produced at run-time,
but are pre-recorded for demonstration purposes, e.g. [23]
and [7].

Crucially, many approaches are realized on less sophis-
ticated platforms with less complex robot bodies (e.g., less
degrees of freedom (DOF), limited mobility, etc.) that show
no or only few humanoid traits. However, it is not only
the behavior but also the appearance of a robot that affects
the way human-robot interaction is experienced [19]. Con-
sequently, the importance of the robot’s design should not
be underestimated if the intention is to ultimately use it as
a research platform, e.g., to study the effect of robot ges-
ture on humans. MacDorman and Ishiguro consider android
robots a key testing ground for social, cognitive, and neuro-
scientific theories, providing an experimental apparatus that
can be controlled more precisely than any human actor [16].
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This is in line with initial results which indicate that only
robots strongly resembling humans, e.g., being equipped
with a head, two arms and two legs, can elicit the broad
spectrum of responses that people typically direct toward
each other. These findings highlight the benefits of using the
humanoid Honda robot ASIMO as a research platform for
the evaluation of human-robot interaction (HRI). Although
the present work mainly focuses on the technical aspects of
robot gesture generation, a major objective of this research is
the assessment of such non-verbal robot behavior in various
HRI scenarios.

While the generation of gesture, especially together with
synchronized speech, is relatively novel to the research
area of robotics, it has already been addressed in various
ways within the domain of virtual humanoid agents. Over
a decade ago, Cassell et al. introduced the REA system [3]
employing a conversational humanoid agent that plays the
role of a real estate salesperson. Gibet et al. [5] generate
and animate sign-language from script-like specifications,
resulting in fairly natural movement characteristics. Even
in this domain, however, most existing systems neglect the
meaning a gesture conveys or simplify matters using lexicons
of words and canned non-verbal behaviors in the form of
pre-produced gestures [8]. On the contrary, the framework
underlying the virtual agent Max [12] aims at an integrated
architecture in which the planning of both content and form
across both modalities is coupled [10], hence taking into
account the meaning conveyed in non-verbal utterances.
Generally speaking, computational approaches to generating
multi-modal behavior can be modeled in terms of three
consecutive tasks [20]: firstly, determining what to convey
(i.e., content planning); secondly, determining how to convey
it (i.e., micro-planning); finally, realizing the planned behav-
iors (i.e., surface realization). Even though the Articulated
Communicator Engine (ACE) itself operates at the end of
the generation pipeline, i.e., on the surface realization layer,
the overall system used for Max also provides an integrated
content planning and micro-planning framework [10]. In the
present paper, however, we focus on ACE, as it marks the
starting point required for the interface endowing the robot
ASIMO with similar communicative behavior.

III. UNDERLYING MULTI-MODAL PRODUCTION MODEL

The presented approach is predicated on descriptions
specifying the outer form of the multi-modal utterances
that are to be communicated. For this purpose, the XML-
based Multi-modal Utterance Representation Markup Lan-
guage (MURML [13]) is used to specify verbal utterances
in combination with co-verbal gestures. These, in turn, are
either explicitly described in terms of form features (i.e.,
the posture designated for the gesture stroke) using feature-
based MURML specifications or, alternatively, can be de-
fined as keyframe animations. The latter are based on the
specification of different ‘key postures’ for each keyframe,
which describe the current state of each joint as part of the
overall gesture movement pattern and are interpolated at run-
time. In ACE, keyframe animations can be either defined

manually or derived from motion capturing of a human
demonstrator, allowing the real-time animation of virtual
agents. In both feature-based and keyframe-based MURML
descriptions gesture affiliation to dedicated linguistic ele-
ments is specified based on matching time identifiers. Fig. 1
illustrates a sample feature-based MURML specification that
can be used as input for speech-gesture production in ACE
and the resulting gesture executed by the virtual agent Max.
For more information on MURML see [13].

The concept underlying the multi-modal production model
acts on an empirically suggested assumption referred to as
the segmentation hypothesis [18]. It claims that the produc-
tion of continuous speech and gesture is organized in suc-
cessive segments. Each of these segments represents a single
idea unit which is referred to as a chunk of speech-gesture
production. A chunk, in turn, consists of an intonation phrase
and a co-expressive gesture phrase, concertedly conveying
a prominent concept [12]. Levelt [15] defines intonation
phrases to represent units over which the phonological struc-
ture of continuous speech is organized. Accordingly, Kendon
[9] describes gesture phrases as units of gestural movement
comprising one or more subsequent phases: preparation,
stroke, retraction, hold. Although MURML allows for the
specification of both intonation and gesture phrases to pro-
duce multi-modal output in ACE, the present paper focuses
on the generation of gestures only.

Gesture motor control is realized hierarchically in ACE:
During higher-level planning, the motor planner is provided
with timed form features as annotated in the MURML spec-
ification. This information is then passed on to independent
motor control modules. The idea behind this functional-
anatomical decomposition of motor control is to break down
the complex control problem into solvable sub-problems.
ACE [12] provides specific motor planning modules for the
arms, the wrists, and the hands which, in turn, instantiate
local motor programs (LMPs). These are used to animate
required sub-movements. LMPs operate within a limited set
of DOFs and over a designated period of time. For the motion
of each limb, an abstract motor control program (MCP) co-
ordinates and synchronizes the concurrently running LMPs,
gearing towards an overall solution to the control problem.

Fig. 1. Example of a feature-based MURML specification for multi-modal
utterances in ACE and the resulting gesture.
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The top-level control of the ACE framework, however, does
not attend to how such sub-movements are controlled. To
ensure an effective interplay of the LMPs involved in a MCP,
the planning modules arrange them in a controller network
which defines their potential interdependencies for mutual
(de-)activation. LMPs are able to transfer activation between
themselves and their predecessors or successors to allow for
context-dependent gesture transitions. Thus they can activate
or deactivate themselves at run-time depending on feedback
information on current movement conditions.

On-line timing of gestures is achieved on-the-fly by the
ACE engine as follows: The ACE scheduler retrieves timing
information about the synthetic speech at the millisecond
level and defines the start and the end of the gesture stroke
accordingly. These temporal constraints (e.g., how long the
hand has to form a certain shape) are propagated down to
each single gesture component automatically. Subsequently,
the motor planner creates the LMPs that meet both the
temporal and the form constraints. The second aspect of
scheduling, i.e., the decision to skip preparation or retraction
phases, automatically results from the interplay of motor
programs at run-time. Motor programs monitor the body’s
current movements and activate themselves to realize the
planned gesture stroke as scheduled. A retraction phase
is skipped whenever the motor program of the following
gesture takes over the control of the effectors from the
preceding program. This on-line scheduling leads to fluent
and continuous movements.

IV. CONTROL ARCHITECTURE FOR ROBOT GESTURE

Our research aim is to endow the robot ASIMO with
‘conceptual motorics’. In order to achieve this, a robot
control architecture that combines conceptual representation
and planning with motor control primitives for arm and hand
movements is required. This poses several challenges: since
ACE was originally designed for a virtual agent application,
it fails to adequately account for certain physical restrictions
such as motor states, maximum velocity, strict collision
avoidance, variation in DOFs, etc. Ultimately, we need to
tackle these challenges when transferring our virtual agent
framework ACE to the physical robot ASIMO.

Models of human motor control commonly exhibit a
hierarchical structure [22], representing global aspects of a
movement as an abstract goal at the highest level. Control
is passed down through lower levels until all choices about
which motor units to use are made. Latash [14] suggests
that planning of movements is directly performed in terms
of kinematics in the external task space rather than in the
more complex joint space. His proposed general scheme
of motor control forms the basis of our architecture for
robot motor control; it incorporates three different levels:
Firstly, the planning of a movement in which the abstract
goal of the intended movement is described in terms of an
internally simulated trajectory. Secondly, this trajectory is
then translated into motor variables and commands which
control the lower structures, resulting in virtual trajectories.
These, in turn, partially encode certain properties of the

movement, e.g., specific patterns of transition from initial to
final position. Finally, the third level serves to execute these
commands at the lowest level, resulting in a movement that
ideally matches the simulated trajectory.

Control Parameters: Our approach to robot control in
combination with ACE allows for using two different kinds
of control parameters to drive ASIMO: joint angles or task-
space coordinates and orientation. The first method involves
an extraction of the joint angles already from the ACE
kinematic body model, which are then mapped onto the
robot body model. The second method amounts to using
ACE to formulate a trajectory in terms of effector targets
and orientations in task space, based on which a joint space
description using the standard whole body motion (WBM)
controller [6] for ASIMO can be derived. WBM allows to
control all DOFs of the humanoid robot based on given
end-effector targets, thus providing a flexible method to
control upper body movement by only specifying relevant
task dimensions selectively in real-time. In doing so, task-
specific command elements can be assigned to the command
vector at any given instant. This allows the system to control
one or multiple effectors while generating a smooth and
natural movement. Redundancies are optimized with regard
to joint limit avoidance and self-collision avoidance.

We opted for the second approach, task-space control, for
several reasons. First, since ACE was originally designed
for a virtual agent application, it does not entirely account
for certain physical restrictions such as collision avoidance,
which may lead to joint states that are not feasible on
the robot. In contrast, solving IK using ASIMO’s internally
implemented WBM controller ensures safer postures for the
robot. Further, task-space control is in line with results from
human perception studies suggesting that humans largely
track the hand or end-points of one another’s movement,
even if the movement is performed with the entire arm [17].
Evidently, even with a deviation of joint angles the form and
meaning of a gesture can still be conveyed.

However, the given constraints as well as velocity limits
and motor states can affect the performance of the robot.
Thus, the inner states represented within the kinematic body
model in ACE may deviate from the actual motor states
of the physical robot during run-time. For this reason, a
bi-directional interface using both efferent actuator control
signals and afferent sensory feedback is required. This can
be realized by a feedback loop that updates the internal model
of ASIMO in WBM as well as the kinematic body model
coupled to ACE at a sample rate r. For successful integration,
this process needs to synchronize two competing sample
rates: that of the ACE engine, and that of the WBM software
controlling ASIMO. Fig. 2 illustrates the control architecture
we employ for robot gesture based on the ACE framework.

Sampling Rate: Another crucial issue when connecting
the ACE framework to the ASIMO control layer is the rate
at which control parameters are passed from the former to
the latter (sampling rate). A number of alternative mapping
rates might be employed:
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Fig. 2. Control architecture for the realization of robot gesture.

1) sampling at each n-th frame: ACE would send control
parameters at a fixed rate to ASIMO’s WBM con-
troller;

2) sampling only at target positions: ACE would send
only the end positions or orientations of movement
segments and delegates the robot movement generation
entirely to ASIMO’s WBM controller;

3) adaptive sampling rate: ACE would “tether” WBM us-
ing different sampling rates, ranging from one sample
per frame to taking only the end positions.

In our current setup, we employ the first method with a
maximal sampling rate, i.e., each successive frame of the
movement trajectory is sampled and transmitted to the robot
controller (n=1). Given a frame rate of 20 frames per second
(flexibly adjustable with ACE), this can result in a large
number of sample points which, in turn, ensures that ASIMO
closely follows the possibly complex trajectory planned
by ACE. In the following section, we will present results
obtained with this method. Alternatively, the third strategy
would allow for adjusting the sampling rate depending on
the trajectory’s complexity, which may well vary from simple
straight movements (e.g., for gesture preparation) to complex
curved shapes for the gesture stroke phase. If the trajectory
is linear, then we can expect that strategy 2 above might
serve as the best mechanism since only distance information
would likely be required. If, on the other hand, the trajectory

is complex, we can expect that strategy 1 would be optimal,
since a sequence of small movement vectors would likely be
required to guide the robot controller. In a realistic scenario,
in which a particular gesture is formed from several different
types of sub-movement, a composition of both strategies
as possible with an adaptive sampling rate would become
optimal. This is a point of future investigation.

V. FIRST RESULTS AND DISCUSSION

Our first results were produced in a feed-forward manner
constantly transmitting commands of the wrist position from
ACE to ASIMO at a sample rate of 20 frames per second.
Inverse Kinematics is then solved using the whole body
motion controller provided by ASIMO. Fig. 3(a) illustrates
a sample gesture based on a MURML keyframe animation
realized in our current framework, Fig. 4(a) illustrates the
execution of a feature-based MURML specification. We use
the ASIMO simulation software which is restricted by the
original physical constraints and visualizes fairly accurately
the expected movement behavior of the real ASIMO robot.
The kinematic body model representing the internal state of
ACE at each time step is displayed next to the robot. The
screen-shots reveal how ASIMO can only perform the move-
ments with a remarkable delay caused by more restrictive
velocity limits. Figs. 3(b) and 4(b)I. plot each dimension of
the wrist position of both the ACE body model and ASIMO
against time to illustrate this observation. Finally, Fig. 4 (b)
II. plots the Euclidean distance between the current wrist
position of the ASIMO robot and the target position marked
by the ACE body model at each time step during execution
of the given gesture. It indicates that the greatest discrepancy
occurs in the preparation and the retraction phase of a gesture
in which abrupt shifts in direction take place.

Despite the general limitation in speed, these findings
substantiate the feasibility of the proposed approach. Gen-
erally, arbitrary MURML-based gesture representations –
both feature-based descriptions as well as keyframe anima-
tions which can be optionally derived from human motion
capturing data – can now be realized using the current
framework. Extensive tests with multiple various gesture
representations (including both one-armed and two-armed
movements) performed on the physical ASIMO robot further
revealed that task-space control (i.e., disregarding the joint
angles as generated in ACE) does not impair the overall
shape of a gesture. Consequently, controlling the robot via
task space commands turns out to be an appropriate and
safe way to generate arm movement behavior. However, if
this framework is to be used for producing multi-modal
utterances incorporating synchronized speech, the timing of
gesture generation will be important. We will need to find
ways to overcome the difference in time required by the
internal kinematic body model in ACE on the one hand
and by ASIMO’s physically constrained body on the other.
Our approach is to realize this by extending the cross-modal
adaptation mechanisms applied in ACE to allow for a finer
mutual adaptation between robot gesture and speech. This
requires the incorporation of a forward model to predict the
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(a) Comparison between the ACE kinematic body model and the ASIMO robot (left to right, top-down, 0.6 sec intervals).

(b) Plot of the x-, y-, and z-coordinate of the right wrist positions of the ACE body model (solid) and ASIMO (dotted) during gesture execution.

Fig. 3. Sample gesture using a MURML keyframe animation as realized in the current framework.

(a) Comparison between the ACE kinematic body model and the ASIMO robot (left to right, top-down, 0.4 sec intervals).

(b) I. Plot of the x-, y-, and z-coordinate of the right wrist positions of the ACE body model (solid) and ASIMO (dotted) during gesture execution;
II. Euclidean distance between current wrist position of ASIMO robot and target position marked by ACE body model over time.

Fig. 4. Sample gesture using a feature-based MURML specification as realized in the current framework.

time needed for gesture preparation. Additionally, predicted
values must be controlled and, if necessary, adjusted based on
constantly updated feedback information on the robot state.

VI. CONCLUSION AND FUTURE WORK

We presented a robot control architecture to endow the
humanoid robot ASIMO with flexibly produced gestures at
run-time. The proposed framework is based on a speech and
gesture production model originally developed for a virtual
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human agent. The Articulated Communicator Engine (ACE)
is one of the most sophisticated multi-modal schedulers and
allows for an on-the-spot production of flexibly planned be-
havior representations. Our framework combines conceptual,
XML-based representation and planning with motor control
primitives for arm and hand movements. This way, pre-
defined canned behaviors can be replaced by conceptual
motorics generated at run-time. Re-employing ACE as an
underlying action generation engine enables us to draw
upon a tight coupling of ASIMO’s perceptuo-motor system
with multi-modal scheduling. While our first results were
produced in a feed-forward manner, the proposed robot
control architecture will eventually make use of both efferent
control signals and afferent feedback.

The need to ensure temporal and semantic coherence of
communicative behavior by meeting strict synchrony con-
straints imposed by a further output modality, namely speech,
will present a main challenge to our framework in the future.
Clearly, the generation of finely synchronized multi-modal
utterances proves to be more demanding when realized on
a robot with a physically constrained body than for an ani-
mated virtual agent, especially when communicative signals
must be produced at run-time. Currently, the ACE engine
achieves synchrony mainly by gesture adaptation to structure
and timing of speech, obtaining absolute time information
at phoneme level. However, to tackle this new dimension
of requirements, the cross-modal adaptation mechanisms
applied in ACE will have to be extended to allow for a finer
mutual adaptation between robot gesture and speech.

As yet, the generation together with the evaluation of the
effects of robot gesture is largely unexplored. Our results
are a step towards shedding light on conceptual motorics
in robotic agents. Crucially, they provide a proof of con-
cept, highlighting the feasibility of the approach while also
demonstrating the direction for our future research. Once
our robot control architecture has been extended to fully
account for both speech and co-verbal gesture as well as the
fine synchronization of the two modalities, the framework
must be evaluated against different performance evaluation
criteria. Furthermore, it will be assessed in a human-robot
interaction scenario, in which both a human interaction
partner and robot perform a joint task. In a suitable scenario a
human subject will be asked to identify and move differently
shaped and sized objects which will be referred to by ASIMO
using a variety of different gestures. In conclusion, the im-
plementation and evaluation of our robot control architecture
realized on ASIMO will provide new insights into human
perception and understanding of gestural machine behaviors
and how to use these in designing more human-like robot
communication.
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