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Abstract— For autonomous robots to manipulate objects in
unknown environments, they must be able to move their arms
without colliding with nearby objects, other agents or humans.
The simultaneous avoidance of multiple obstacles in real time
by all link segments of a manipulator is still a hard task both
in practice and in theory. We present a systematic scheme
for the generation of collision free movements for redundant
manipulators in scenes with arbitrarily many obstacles. Based
on the dynamical systems approach to robotics, constraints
are formulated as contributions to a dynamical system that
erect attractors for targets and repellors for obstacles. These
contributions are formulated in terms of variables relevant
to each constraint and then transformed into vector fields
over the manipulator joint velocity vector as an embedding
space in which all constraints are simultaneously observed. We
demonstrate the feasibility of the approach by implementing
it on a real anthropomorphic 8-degrees-of-freedom redundant
manipulator. In addition, performance is characterized by
detecting failures in a systematic simulation experiment in
randomized scenes with varying numbers of obstacles.

I. INTRODUCTION

Autonomous robotic agents acting in environments shared

with other agents and humans must be capable of generat-

ing movements that reach a desired target while avoiding

collision with objects and other entities. The scenes an au-

tonomous robot acts in are usually previously unknown, can

be cluttered and subject to sudden changes. These conditions

require schemes of behavior generation that depend only

on locally available data and produce appropriate actions

sufficiently fast to adapt to changing situations.

One theoretical difficulty in the generation of autonomous

behavior is that the number of constraints quickly surpasses

the available degrees of freedom [1]. As an additional

complication, different constraints often act on different

state variables of the system. Solutions to this problem are

usually tailor-made for specific scenarios and do not apply to

other tasks. To our knowledge, there is no general solution

that applies across a wide range of constrained tasks for

autonomous agents.

The dynamical systems approach to behavior generation

deals with these problems by formulating behavioral con-

straints as attractors or repellors in a vector field over a

chosen behavioral variable of a robotic system. The flow

of the vector field is used to generate trajectories for the

behavioral variables, which are realized by a low-level mo-

tor control module. The dynamical systems approach was

successfully applied to steer vehicles in a plane cluttered
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with obstacles [2] and generate reaching movements for a

particular 8 DoF redundant manipulator [3]. It was also used

in a psychological model describing human walking paths in

changing environments [4].

In these scenarios, the dynamical systems approach is able

to deal with the problem of multiple different constraints

by formulating each constraint as an attractor or repellor

for a small set of predefined behavioral variables. This

allows combining the constraints by superposition of the

corresponding vector fields, producing behavior that adheres

to all constraints simultaneously.

Here we attempt a systematic solution to the problem

of generating reaching movements to a target for arbitrary

redundant manipulators while avoiding collision between

all link segments of the manipulator and any obstacle,

using the dynamical systems approach. To reach the target,

the movement direction of the end-effector is important.

For avoiding collisions between a link segment and an

obstacle, the relevant variables are position and direction

and magnitude of the link segment’s movement relative to

the obstacle. Because these different constraints apply to

different segments of the manipulator, and the application

points vary over time, it is not feasible to find a small number

of behavioral variables that are relevant to all constraints

throughout the movement.

To solve this problem, we use two layers of state variables.

Each constraint is formulated as an attractor or repellor in

a behavioral variable that is relevant locally. This term is

then transformed into a vector field over the joint velocities

as a common variable for all constraints. Over this common

state variable, it is possible to superpose the vector fields in

order to generate behavior that adheres to all contributing

constraints.

Related work

There is sizeable literature on the planning of arm trajec-

tories (summarized by [5] and [6]), which includes sophis-

ticated exact approaches (e.g. [7]). These typically require

detailed metric information about the scene and are static

in nature, requiring replanning when the scene changes [8].

The potential field method, originally developed by Khatib

[9] (see also [10]), is probably the heuristic approach most

adapted to dealing with dynamic environments as well as

with imprecise information (see the more recent work of

Khatib’s group, e.g. [11], [12]). Another closely related

solution was proposed by Maciejewski and Klein [13], who

maximize the distance between the whole manipulator and

an obstacle by computing a velocity vector that moves the
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‘avoidance point’, the point on the manipulator closest to the

obstacle, away from the obstacle. To integrate this vector

with the predetermined end-point trajectory, the constraint

equations are combined and a suitable pseudo-inverse is

applied. In comparison, the attractor dynamics approach

presented here enables us to include multiple obstacles and

use one ‘avoidance point’ for each link segment rather than

only one for the whole manipulator.

1) Artificial Potential Field Approach: The Artificial Po-

tential Field Approach (APFA) was introduced by Khatib

for manipulator movement generation [9], though it has

seen widest use in vehicle path planning. Artificial potential

fields that generate attractive forces towards the target and

repelling forces away from obstacles are erected in the scene.

Acting like physical forces on each link segment, they are

transformed into joint torques and then joint accelerations to

generate a movement trajectory.

Our approach is formally similar to the APFA in that both

schemes make use of a vector field over velocity space to

generate movement trajectories. The conceptual difference

is that in the APFA this vector field only depends on the

position of objects in the scene, while the dynamic systems

approach treats the velocity vector as a crucial second

variable affecting the shape of the vector field. While due

to the conceptual inheritance from real potential functions

the APFA has rather strict requirements on the vector fields

it generates, the dynamic systems approach allows more

flexibility in the choice of relevant variables and design

of attractor landscapes. Critically, using the joint velocity

vector as a dynamical variable makes it possible to generate

movement while the system is in or close to an attractor.

For instance, a constant value for the absolute magnitude

of the end-effector velocity, which can easily be achieved

by a fixed-point attractor, is sufficient to keep the arm

moving. Similarly, the heading direction of the end-effector

in workspace is related to the joint velocity vector and can

have a constant or slowly varying value while the arm is

moving. That value can be generated from a fixed point

attractor for heading direction.

As a result, designing a dynamics of the joint velocity

vector that fulfills the constraints of obstacle avoidance and

target acquisition only requires that the system stays in an

appropriate attractor from an initial configuration. There is no

need to ensure that any transient toward an attractor fulfills

the constraints. This is in contrast to the APFA, in which only

the target state is an attractor. The movement is generated as

a transient from an initial state to that terminal attractor. In

this case, spurious attractors emerge near obstacles, in which

the system may get caught, a well known problem, which

can be overcome only with considerable effort (see e.g. [14],

[15]).

A practical advantage over the APFA is that the scheme

presented here is purely kinematic, the technically demand-

ing step of transforming the potential field forces to torques

and then to accelerations, requiring values for the inertial

properties of the manipulator, are not necessary.

2) Dynamic Movement Primitives: Another movement

generation scheme making strong use of dynamical systems

are the Dynamic Movement Primitives (DMP) by Ijspeert

et al. [16]. In this framework, trajectories are learned from

demonstration by a teacher and can then be generalized

to new targets. In a recent paper, Park et al. [17] adapted

DMP to include obstacle avoidance using the APFA for

end-effector trajectory generation and an inverse velocity

kinematics model that constrains the null space to collision

free configurations to avoid link segment collision [13]. Park

et al. also realized the advantage of including velocity infor-

mation to shape the vector field and modified their potential

functions accordingly. Hoffmann et al. [18] combine the

DMP with angular obstacle avoidance based on the dynamic

systems approach on the end-effector level, although without

including link segment avoidance.

A key difference is that in the DMP framework a move-

ment towards a target is planned ahead of movement onset as

an explicit function of time, and is then combined with other

influences, e.g. from obstacles. This is a part of the strategy

of determining movement primitives from imitation, in which

movement trajectories learned from demonstrated samples

are transformed to new initial conditions and new targets.

To the best of our knowledge, generalizing this imitation

strategy to combinations of multiple constraints has not been

met with success yet (see, however, [19] for a first attempt

to do obstacle avoidance in this framework).

II. BEHAVIOR GENERATION

The desired behavior for the manipulator is to acquire

the given target while avoiding collision with obstacles.

We formulate each behavioral constraint as an attractor or

repellor in some locally relevant dynamical variable.

In the following paragraphs, italic letters indicate scalars,

bold letters indicate vectors or points in three-dimensional

cartesian space, bold capital letters are elements of n-

dimensional joint space, and other entities are denoted by

italic capital letters.

As a sigmoid function that rises smoothly from 0 to 1

between two thresholds a,b, we use

σa,b(x) =







0 : x ≤ a,
− 1

2
cos

(

x−a
b−a

π
)

+ 1
2

: a < x < b,
1 : b ≤ x.

(1)

The letter α∗ always indicates a gain factor relevant to ∗.

A. Target acquisition

Similar to a vehicle steering towards a goal, the target

acquisition is pursued by changing the heading direction of

the end-effector towards the direction of the target. The target

angle φ = arccos( 〈v,k〉
|v ||k | ) is defined as the angle between the

end-effector velocity vector v and the direction k = g−p

from the end-effector position p towards the target g. We

define a vector field over φ

fdir = −αφ sinφ (2)
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Fig. 1. Schematic of how the target angle φ , target direction k and
directions of the cartesian acceleration vectors v⊥ and v̂ contributing to
the vector field for target acquisition are defined.

that has a single attractor at φ = 0, meaning the flow of the

vector field makes the end-effector move towards the target.

Changing the target angle φ corresponds to accelerating v

in direction of

v⊥ =

(

k−
〈k,v〉

〈v,v〉
v

)

|v |

|k− 〈k,v〉
〈v,v〉 v |

, (3)

which is the vector orthogonal to v in the plane spanned by

v and k (see fig. 1), so the vector field

fdir = v⊥ · fdir (4)

for the cartesian end-effector velocity realizes the desired

change of target angle fdir. Using the Moore-Penrose pseudo

inverse J+ of the end-effector Jacobian J yields a vector field

in joint space

Fdir = J+ · fdir (5)

that changes the heading direction of the end-effector towards

the target.

In a similar manner, we define a vector field for the

absolute path velocity v = |v | of the end-effector as

fvel = −αvel(v− vdes), (6)

with a single attractor at a desired value vdes for end-effector

velocity. A corresponding vector field for the cartesian ve-

locity vector is

fvel = v̂ · fvel , (7)

with v̂ = v
|v | , and again the vector field in joint space is given

by

Fvel = J+ · fvel . (8)

In close vicinity of the target, heading direction and path

velocity are not suitable coordinates for behavior generation

anymore, so for small distances d = |g−p |, we switch to

an attractor in cartesian coordinates, given by the damped

harmonic oscillator

fpos = −αv

(

v−αp(g−p)
)

, (9)

and again, this is lifted to joint space by

Fpos = J+ · fpos. (10)

A well known problem in second order approaches to

redundant manipulator control is that velocities in the task

variable null space may build up over longer movements

[20]. As persistent null-space velocities are undesired after

the target has been reached, we introduce a homogeneous

damping term

Fdamp = −αdampθ̇ . (11)

This weak damping reduces any velocities previously built up

in the task null space. As a drawback, this term counteracts

control in task space, effectively acting as a perturbation. The

stabilization of the task variable (eq. 9) limits the effect of

his perturbation.

To finalize the target acquisition, we add up these vector

fields to

Ftar = (1−σd)
(

Fdir +Fvel

)

+σd

(

Fpos +Fdamp

)

, (12)

with σd = σd1,d2
(d) shifting the weight from directional

control towards the positional fine control near the end of

the movement.

B. Obstacle avoidance

In order to prevent collision of manipulator link segments

with obstacles in the scene, we change the movement vectors

of link segments away from directions in which obstacles are

positioned. To describe the vector field that achieves this, we

first define the direction in which the repelling force acts, and

then its magnitude depending on the distance and current

movement states.

Both link segments and obstacles are enclosed in cylin-

drical bounding volumes, topped off with half-spheres at the

ends. Obstacle cylinders are always oriented towards the z-

axis. For any link segment S and obstacle O, let s and o be the

points on their respective bounding volumes with minimal

distance to each other.

1) Avoidance direction: To find a candidate for the di-

rection of the repelling force, we look for a vector that is

perpendicular to the movement vector of the segment point

ṡ = vs and points away from the obstacle. To define this

mathematically, let N be the plane that is normal to vs. An

orthonormal base u1,u2 of N is given by u′
2 = e3−

〈vs,e3〉
〈vs,vs〉

vs,

u′
1 = vs×u2, ui =

u′i
|u′i |

, in which the second base vector is

the projection of the z-Axis vector e3 onto N.

Let a and b be the projections of the center points of

the half-spheres at the obstacle bounding volume top and

bottom to N. Due to obstacles always standing upright and

the choice of the base u1,u2, the projected points a and b

lie on a vertical line in N. Assume without loss of generality

that a is the upper point, i.e. 〈a,u2〉> 〈b,u2〉, then the point

on that line segment with minimal distance to the origin is

given by

q =







a : 〈a,u2〉 < 0,
b : 〈b,u2〉 > 0,

〈b,u1〉u1 : otherwise,
(13)
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Fig. 2. Projection of an obstacle to the normal plane N of the velocity vs

of the segment point s with minimal distance δ to a point o on the obstacle.
N is spanned by the orthonormal base u1,u2, the projection of the obstacle
center line segment is the line segment between a and b in N. The smallest
distance of any point on this line segment to the projection of vs is given
by q, with h indicating the distance to the obstacle projection boundary.

and the distance of the obstacle bounding volume projection

to the origin is

h = |q |− r, (14)

where r is the radius of the obstacle bounding volume.

Note that ‘origin’ here means the origin of N, which is the

projection of vs, and all coordinates are assumed to be in N.

Fig. 2 shows the plane N and how an obstacle is projected.

The ‘best’ avoidance direction, i.e. the one changing

the movement direction directly away from the obstacle

direction, is given by −q. For some situations, though, this

is not a suitable choice: when the link segment is moving

horizontally in a plane that intersects the cylinder part of the

obstacle bounding volume, q also lies in that plane, resulting

in a change of link segment movement to one side. If the

link segment is near the base of the kinematic chain, this is

unlikely to result in a path in which the whole manipulator

avoids the obstacle, because either the immobile base or the

rest of the arm up to the end-effector are still on one side of

the obstacle, while the link segment in question is trying to

avoid it by moving around the other side.

To prevent this kind of deadlock, instead of choosing q

itself as avoidance direction, we use a vector that also lies in

N, but is rotated towards u2 by an amount depending upon

the location of the link segment along the kinematic chain.

The angle of −q with u2 is given by

γ = arccos

(

〈−q,u2〉

|q |

)

. (15)

For the j-th link segment of kinematic chain with n joints,

w

w

qq

u1u1

u2u2
γ

γ ′

Fig. 3. The avoidance direction depends upon the link index. Links that
are far away from the base can avoid an obstacle in the direction w = −q

that points directly away from the obstacle (left). For link segments close
to the base, the avoidance direction is tilted upwards (right).

we decrease that angle by applying the ad-hoc function

γ ′ =
3

4

j−2

n−2
γ, (16)

and set

w =

{

−sinγ ′ u1 +cosγ ′ u2 : 〈q,u1〉 ≥ 0,
+sinγ ′ u1 +cosγ ′ u2 : 〈q,u1〉 < 0,

(17)

which is −q rotated towards u2 so that ∠(w,u2) = γ ′. Fig.

3 illustrates this dependency of avoidance direction upon the

link segment index in the chain.

Using this w as avoidance direction is suitable for most

situations. Only for the first segment it does not make sense,

as the direction this segment moves to cannot be chosen with

sufficient freedom. We thus set

w = −
vs

|vs |
: j = 1, (18)

essentially just braking the first segment when it approaches

an obstacle.

2) Magnitude of repelling force: Defining the strength

of the avoidance action for a given situation boils down to

deciding how likely an obstacle collision is in that situation.

Three factors play a role, the distance between the link

segment and the obstacle, the movement direction of the link

segment and how fast it is moving in that direction. For each

of these factors, we define a weight factor, and the product of

these weight factors will give the magnitude of the repelling

force.

For the dependency on distance δ = |o−s |, define

wδ =
(

1−σδ1,δ2
(δ )

)δ1

δ
, (19)

which is zero for distances δ > δ2, 1 for δ = δ1 and grows

towards +∞ for δ → 0.

For the movement direction dependency, let m be the point

on the line s+λ vs,λ ∈R, that is closest to the obstacle, and

om the point on the obstacle bounding volume with minimal

distance to m. Define the obstacle angle as

ψ = atan2(|m−om|, |m−s |), (20)

5375



which is the minimal angle between vs and any vector going

through or touching the obstacle bounding volume. Set

wψ =

{

0 : 〈vs,o−s〉 ≤ 0,
1−σψ1,ψ2

(ψ) : otherwise,
(21)

which vanishes if vs is zero or ψ is too large.

Finally, as a dependancy on the movement speed we just

take that value itself as

wv = |vs|. (22)

With these three weight factors depending on distance,

movement direction and speed, we can define the magnitude

of the repelling force as of the obstacle O on the segment S

as

f S
O = αobs ·wδ ·wψ ·wv. (23)

3) Obstacle vector field: Having defined an avoidance

direction in R
3 and a magnitude f S

O, what remains is to define

a corresponding vector field in joint space. Let

Js =

(

∂ si

∂θ j

)

i, j

(24)

be the Jacobian of the segment point s. Then Jw
s = wT Js gives

the change along w by changes of θ . We use the pseudo

inverse of this to define

FS
O = f S

O · (Jw
s )+ , (25)

which is a vector in joint space that realizes the desired

change in direction w with magnitude f S
O .

For the complete vector field of one obstacle, we just sum

up the vector fields for each of the n link segments S j, getting

FO = ∑
j

F
S j

O . (26)

C. Overall behavior

In a complex scene with a target and multiple obstacles Oi,

we can now define a total vector field to generate behavior

that adheres to all behavioral constraints, i.e. moving the end-

effector to the target without hitting an obstacle with any part

of the manipulator, by just summing up the vector fields for

each of these behavioral constraint, setting

F = Ftar +∑
i

FOi
. (27)

This is a vector field over the joint velocity space, behavior

is generated by using the value of F for the current state as

joint acceleration vector

θ̈ = F. (28)

The resultant joint acceleration vector is numerically inte-

grated twice to generate a joint angle vector, which is then

realized by the hardware servo controllers.

III. IMPLEMENTATION AND RESULTS

The behavior generation scheme described in the previous

section was implemented for the 8 DoF manipulator CoRA

[21]. Experiments that demonstrate successful generation of

movements adhering to the given behavioral constraints were

carried out both with the real manipulator and in a software

simulator. The parameter values used in the experiments can

be found in section V.

A. CoRA

The robotic assistant system CoRA has an anthropomor-

phic seven degrees of freedom arm mounted on a one degree

of freedom trunk. CoRA is built from a modular robotics

system, in which each module is servo-controlled and com-

municates via a CAN-bus interface with the controlling PC.

Above the trunk a two DoF pan/tilt unit carrying a stereo

color camera system and microphones is assembled.

The behavior generation scheme was capable of producing

satisfying movement trajectories for CoRA for scenes with

several obstacles (see fig. 4).

B. Randomized scenes

For a more systematic examination of the behavior gen-

eration scheme, it was tested in a sequence of randomly

generated scenes in the software simulator of CoRA. In each

trial, the initial configuration was randomized (normal distri-

bution). The target was placed randomly in a predetermined

area, and a varying number of obstacles was also placed

randomly in an area ranging from the manipulator to around

the target (uniform distributions). No obstacle was placed

closer than 9cm to the target, allowing a minimal leeway of

3cm for the end-effector, enclosed in a 6cm radius bounding

volume, to reach it. Radius and height of the obstacles was

also randomized, while the manipulator starting configuration

was fixed at θinit (see fig. 5).

Table I shows the results of the experiment. A successful

trajectory to the target was found in the majority of all

trials, overwhelmingly so for small numbers of obstacles and

decreasing only significantly as the scenes get cluttered. An

investigation of the failed trials implied that the reasons for

failing to find a path to the target fall in fairly distinct cate-

gories, which are described below, listed with the reference

letter used in the table.

P: The most prevalent reason was a single high obstacle

near the base of the manipulator that prevented the

link segments close to the base to move towards the

target, reducing the effectively reachable workspace

significantly. This resulted in failures when the target

was located far out in the workspace, though for closer

targets successful trajectories could still be found (an

example of this situation is shown in fig. 5).

W: In a small number of cases, the manipulator reached the

end of the workspace while moving around an obstacle,

and then failed to find a way back.

O: For certain combinations the target was so obstructed by

the obstacles that a configuration that reached the target

without collision was nonexistent or very hard to find.
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Fig. 4. Sequence of CoRA successfully reaching for a toy car while avoiding collision with five obstacles in the scene.

Failures of this kind did not occur for small numbers of

obstacles, and only became frequent in very cluttered

scenes.

X: When one link segment simultaneously approached two

or more obstacles on different sides, the avoidance

directions partly cancelled each other out, until the

obstacle distance had become very small and the corre-

sponding factor wδ in the repelling vector field so large

that the simulation became numerically unstable.

D: When the manipulator avoids an obstacle with a link

segment closer to the base, this results in persisting

motion in the null space of the end-effector even after

the obstacle has been passed. In situations where only

a tight path towards the target is available, that null

space drift prevented the manipulator from successfully

entering that path.

The first three categories of failures are instances of

the general situation where a path that reaches the target

without collision might exist, but can only be found by first

realizing a significant change of manipulator configuration.

As the behavior generation scheme presented here is a local

approach, this shortcoming is to be expected to some degree.

A possible way to prevent the numerical explosions would

be to include a more sophisticated method of regulating

the absolute velocity than the one given by eq. (6), that

reduces the overall velocity in the vicinity of obstacles which

allows more time to change the movement direction away

from possible collision paths. This is not the focus of the

present paper, though. The persistance of null-space drift

after obstacles have been cleared is a real problem, though

more a theoretical one as the small number of occurences

Fig. 5. Randomly generated scene with three obstacles. The manipulator
is in the reference configuration θinit . The target was randomly placed in
the green box, the obstacles distributed over the orange box.

indicates, and we plan to investigate different methods of

solving it in the future.

C. Special cases

In addition to the randomized scenes, we set up two special

cases with obstacle configurations where it would seem

particularly hard to find a successful trajectory as qualitative

demonstration of the practical applicability of our presented

scheme. In the first case, the target is encircled within several

large obstacles, leaving only a narrow path from above for

the manipulator to reach through (fig. 6, upper panel). The

second scene is a border case of the failed random trials,
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Fig. 6. Two sequences of simulated movements of CoRA reaching for a target. The obstacles were manually arranged to pose interesting challenges.

TABLE I

RESULTS OF EXPERIMENTS WITH RANDOMIZED SCENES

No. of success failure Failure reasons (%)
obst. N (%) (%) P W O X D

1 1000 99.7 0.3 0.1 0.2 - - -

3 1000 99.1 0.9 0.7 0.1 - 0.1 -

6 1000 95.4 4.6 2.5 0.3 0.9 0.7 0.9

10 1000 92.7 7.3 3.5 0.5 2.0 0.7 0.6

15 500 87.0 13.0 6.4 0.4 4.6 1.2 0.4

20 200 83.0 17.0 7.0 - 8.0 1.5 0.5

with a large obstacle near the first link segments, but chosen

in a way that the manipulator has barely enough freedom

to find a path above it (fig. 6, lower panel). In both cases

the behavior generation scheme finds viable trajectories that

reach the target and avoid obstacle collision.

IV. CONCLUSIONS AND FUTURE WORK

We presented a general scheme for the autonomous gen-

eration of collision free reaching movements for arbitrary

redundant manipulators. Multiple constraints from the target

and different obstacles were formulated as attractors or

repellors in locally relevant variables and then combined

by transforming them into a vector field over the joint

velocities. As a demonstration the system was implemented

for an 8 DoF robotic arm. Extensive experiments showed

the capability of the behavioral scheme to successfully find

paths in a wide array of situations, some of them through

very cluttered scenes.

Shortcomings revealed by the experiments include a can-

cellation effect in which contributions from different ob-

stacles push the joint configuration into opposite directions

in joint space, effectively weakening the avoidance effect.

This may allow the manipulator to come very close to the

obstacle surfaces. The associated dynamic contributions from

obstacle avoidance then becomes very large and the overall

dynamical system becomes numerically unstable. A second

source of error is insufficient damping of velocities in the

task null-space that may prevent the system from finding

valid trajectories toward the movement target. Both errors

occurred only in a small numbers of cases. A more severe

downside is the disability to find paths that require significant

configuration changes, but this is a general disadvantage of

local approaches to movement generation. While it should

be added that many successful paths did realize such con-

figuration changes, there is definitely room for improvement

in this matter, and all of these points are directions of future

refinements of our system.

Finally, the relatively large number of parameters that play

a role in the dynamical system may be problematic. For the

present work, these parameters were tuned by hand, depend-

ing on the experience and insight of the designers. In the past,

we have successfully used automatic parameter adaptation

through evolutionary optimization in related mathematical

settings [22]. These methods will be applied to the dynamical

approach to arm movement system in future work.

Overall, more work is still necessary to examine the

robustness of the system and its applicability to real world

scenarios. Although the problems of joint angle limits and

of constraints on velocities, accelerations and torques have

not been attended to yet, solutions within the framework of

attractor dynamics are conceivable, including setting repel-

lors in the directions in joint velocity space that point to the

undesired values.

Other areas of future work include different types of

obstacles, e.g. surfaces, objects located higher up in the

workspace, and self-collision of link segments with each

other. Also, moving obstacles will be used to demonstrate

the capability of the scheme to generate behavior in dynamic

environments. So far only reaching was modelled, because

the focus lay on the obstacle avoidance part. In order to

be usable in real world scenarios, we will include actual

grasping of objects. A key aspect for this is achieving a

desired orientation of the hand relative to the target, which

will be formulated as an attractor in orientation space to

be consistent with the dynamic systems approach. Another

factor is the shape of the generated trajectories, which

tend to turn away from obstacles rather sharply. This is a

disadvantage for collaboration between humans and robots

in a shared environment, as it makes prediction of the

manipulator movements difficult for humans.
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V. PARAMETERS

A. Target acquisition

αφ = 10; vdes = 150mm/sec; αvel = 15;

αp = 5; αv = 25; αdamp = 10;

d1 = 5mm; d2 = 15mm

B. Obstacle avoidance

δ1 = 15mm; δ2 = 50mm;

ψ1 = 0.25rad; ψ2 = 1.5rad; αobs = 50

C. Implementation and experiments

computation cycle length: 25ms

θinit =
(

0.2, 0.0, 0.4, 0.0, 0.5, −0.3, 1.0, 0.0
)

rad;

σi = 0.1rad2,1 ≤ i ≤ 8

target area center:
(

−250, 450, 250)mm

target area extensions:
(

500, 700, 400)mm

obstacle area center:
(

−100, 550, 0)mm

obstacle area extensions:
(

800, 700, 0)mm

obstacle radius: 35–60mm

obstacle height: 100–400mm
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