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Abstract— BVP Path Planners generate potential fields whose
gradient descent represents navigational routes from any point
of the environment to a goal position. The resulting trajectories
are smooth and free of local minima. In this paper, we proceed
with our comprehensive study on possible forms for the core
equation of the planner. The main goal is to allow the planner
to deal with inhomogeneous environments. The navigational
potential is calculated independently in different patches of
the environment. Each patch has its own bias for potential
concavity (or convexity), then creating regions with higher or
lower traveling preferences. By using simulated experiments
we compare the performance of the new BVP with some recent
proposals.

I. INTRODUCTION

Path Planners based on Boundary Value Problems (BVP)
have two important properties. First, if the core partial
differential equation(PDE) is well chosen the resulting nav-
igational potential is smooth and free from local minima.
Second, the shape of the potential carries global environment
information. If a passage is interrupted in a maze, the whole
map changes and with it a new path towards the goal is
found, if it exists.

A possible criticism that can be attributed to BVP planners
is the lack of intuitive understanding of the relationship
between the terms in the PDE and the behavior of the robot
in the environment. In other words, it is relatively hard to
program behaviors using this kind of potentials. The BVP
planners have two forms of programming: we can either
adjust the boundary conditions that are related to the way
that the potential connects to the obstacles and goals, or we
can adjust the core PDE itself. In the later years we have
systematically explored the second possibility and we are
beginning to understand the concepts that can help to create
a user friendly way of potential programming.

The first planner based on BVP was the Harmonic Func-
tions Path Planner [1], [2] with the Laplace Equation as the
core equation. The resulting trajectories represent a com-
promise between length and safety, since the paths reduce
the obstacle hitting probability[1]. A certain but limited
freedom to redesign the paths can be obtained by changing
the boundary conditions from Dirichlet to Neumann. For
instance, using Neumann conditions, the robot exhibits the
tendency to stay close to the c-space obstacles surface [2]. In
cases where the robot needs to avoid specific environment

regions or to constrain its motion direction an anisotropic
harmonic potential field can be used[3], [4].

Some years ago we proposed an extension on the Path
Planner based on Laplace’s Equation [5]. We added to the
PDE a new term that is a homogenous function of the
potential gradient. It therefore vanishes when the gradient
vanishes what prevents local minima. With the new term, ad-
justable parameters were introduced and assigned to patches
of the environment. That makes possible to control the robot
behavior in a specific way in different environment regions.
This is what is expected, for instance, in Robotic Soccer[6] or
in pedestrians behavior in realistic outdoors scenes[7]. This
could not be done with the Laplace’s Equation since it lacks
controllable parameters.

There is some freedom for the choice of the gradient term
and we have tried a few functional forms over the years
[5], [8]. In this paper, we introduce yet a new form with
some advantages over the last proposal discussed in [8]. First,
we eliminate the need of the knowledge of the harmonic
potential vector field to be used as input to the PDE. Second,
in a hierarchy of preferred regions the robot always chooses
to pass in the more preferred region, while in the previous
form the robot would sometimes cut corners passing in a less
preferred region. As consequence the new results have been
significantly improved.

All improvements can be easily incorporated in the map-
ping or localization strategies already described in [9], [5],
[10]. The preferences could guide the robot in its mapping
task favoring regions where self-localization is more accu-
rate. This gives rise to integrated exploration techniques [11],
[12], [13], [14] that produce more quality maps than the maps
generated by solution where this integration is absent.

This paper is divided as follows. In Section II, we discuss
the basic idea behind the method by showing results in 2D
environments. In Section III, we present results in different
environments and finally in Section IV, we conclude.

II. THEORETICAL APPROACH

The original BVP path planner [5] generates paths using
the potential information computed from the numeric solu-
tion of

∇2 p(r) = εv · ∇p(r) , (1)

with Dirichlet boundary conditions, where v ∈ <2 and |v| =
1 corresponds to a vector that inserts a perturbation in the
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potential field; ε ∈ < is the intensity of the perturbation
produced by v; and p(r) is the potential at position r ∈ <2,
respectively. Both v and ε must be defined before computing
this equation.

In the numeric implementation, the environment is divided
into a regular mesh, where each mesh cell is associated to
a square environment region and stores a potential value.
By using the Dirichlet boundary conditions, the cells that
are associated to obstacles store high potential values (1),
whereas the cells associated to the goal position store a low
potential value (0). Other cells have their potential computed
iteratively using a finite difference equation[5], [9]. After the
potential convergence, the robot uses the gradient descent of
this potential to reach the goal position.

Eq. 1 indicates that, different from Harmonic Potentials,
the potential p(r) is locally convex or concave1. The Lapla-
cian is the trace of the Hessian matrix, then if it is positive
the function is locally concave and if negative it is locally
convex. Therefore the curvature of the potential can be
controlled by ε and v. But, if a function has constant
convexity or concavity it will eventually present an extremum
(a minimum or a maximum). That is the reason why the
added term has to be proportional to the gradient (and
therefore a homogenous function of the gradient), so the
convexity/concavity vanishes if the function approaches to
an extremum. Apart from degenerate cases when the second
derivative also vanishes, this is enough to guarantee that the
potential does not present local minima or maxima[15].

The effect of changing the curvature of a limited region
can be better visualized in a 1D environment as shown in
Figures 1 and 2. They show three regions where the central
region has the parameters set to present a curvature while the
others have just the harmonic potential (the straight line in
this case). The results illustrate how the inclination of the
potential in the external regions adapts to the curvature of
the central region. As the BVP Planner uses the direction of
the gradient descent for navigation, the convexity/concavity
of the potential is irrelevant in 1D environments. But it
is determinant in 2D since adjacent regions with different
curvatures could steer paths in many different ways as we
will demonstrate in Section III.

Eq. 1 in 2D has an extra control parameter that is the
direction φ of v = (cosφ, sinφ). The curvature of the
potential is therefore also dependent on the angle θ that v
makes with the streamlines of the potential represented by
its gradient ∇p(r). In terms of θ we can write the r.h.s. of
Eq. 1 as

εv · ∇p(r) = ε|∇p(r)| cos(θ(r)) (2)

For instance, if v is parallel to the gradient (θ(r) = 0),
increasing a positive ε would in principle make the laplacian
more positive, and the potential more concave with a faster
ascent ( see Figure 1 ). But, in 2D, a change in ε might also
change the streamlines and therefore the angle θ(r). Observe

1In this work, convexity and concavity are defined as if the potential is
the surface of a solid object.

Fig. 1. Unidimensional mesh divided in 3 Regions: R1, R2, R3. The
regions R1, R2, R3 have ε1 = 0, ε2 = 0.2, and ε3 = 0.

Fig. 2. Unidimensional mesh divided in 3 Regions : R1, R2, R3. The
regions R1, R2, R3 have ε1 = 0, ε2 = −0.2, and ε3 = 0.

that φ is a controllable parameter, but θ(r) is a function of
ε and φ. This coupling makes hard to determine in advance
suitable values for φ, specially if the environment is complex.

In order to avoid this incertitude we proposed in [8] to set
v parallel to the streamlines of the harmonic potential of the
environment. Then, Eq. 1 was changed to

∇2 p(r) = ε(r) v(r) · ∇p(r), (3)

where ε : <2 → < associates a specific distortion intensity
to the position r; v(r) = ∇ph(r)/|∇ph(r)| is the input
vector, defined previously, and ∇ph(r) is the gradient of the
harmonic potential at position r. The solution of Eq. 3 is
obtained computing first the Harmonic Potential through the
Eq. 3 with ε(r) = 0 ∀r and saving its vector field as v. After,
we use this field together with the desired function ε(.) to
calculate p(r).

Like in 1D, Eq. 3 relies on a single parameter. When ε(.)
is positive the potential concavity increases, i.e., potential is
steeper near obstacles and flatter close to the goal. Whereas
when ε(.) is negative the potential convexity increases, i.e.,
the potential is flatter near obstacles and steeper close to
the goal. Figures 3(b), (c) and (d) shows the level curves of
the potential when ε(r) = 0, ε(r) = 0.2 and ε(r) = −0.2,
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(a) (b) (c) (d)

Fig. 3. Level curves of the potential in a (a) Test environment using (b) ε = 0, which corresponds to Laplace Equation, (c) ε = 0.2 and (d) ε = −0.2.

respectively, over the environment (∀r) shown in Figure 3(a).
This environment is limited by four walls, that correspond to
obstacles, and contains a goal region at the top wall. When
ε(.) > 0, we observe that the potential in Figure 3(c) decays
quickly from the obstacles augmenting the influence of the
goal, indicated by regions where the potential is close to 0
(blue zone). When ε(.) < 0, the influence of the goal is
diminished as we can see in Figure 3(d).

The results in [8] showed that through the change of cur-
vature we can manipulate the region traversing preferences.
A low preference region can be created by locally increasing
its potential convexity, while higher preference is linked to
higher concavity. Fig. 4(a) shows a set of navigational paths
to an environment similar to the one in Fig. 3 (a). In this
environment, ε(r) = −1.2 for the dark region (indicating
that this region has low preference) and ε(r) = 0 for the
white region. We can see that some paths produced by Eq. 3
can cross low preference regions, even for low values of ε(.).
Observe that to avoid local minima, we should use |ε(.)| < 2,
as discussed in [5] .

(a) (b)

Fig. 4. Environment with one low preference region (dark region). (a)
paths (in red) followed by robot to reach the goal at top. (b) paths (in red)
followed by robot and the cosine(in gray scale) between the vector field
generated by Eq. 3 and the vector field generated by Harmonic Functions.

The solution to these drawbacks is obtained making a deep
analysis of Eq. 3 and rewriting it as

∇2 p(r) = ε(r)|∇p(r)| cos(θh(r)) (4)

where θh(r) is now the angle between the distorted po-
tential and the harmonic potential streamlines. The factor

|∇p(r)| is necessary to avoid local minima, since the concav-
ity/convexity diminishes or decreases proportionally to the
variation of the potential. But the factor cos(θh(r)) can be
a nuisance in the regions where the desired potential vector
field is approximately orthogonal to the harmonic potential
vector field. Figure 4(b) shows in gray scale the value of
the cosine between these vector fields for the example of
Figure 4(a). White and black correspond to cosine equals to
1 and 0, respectively. In the dark regions in Fig. 4(b), the
right side of Eq. 4 is near to 0 and as consequence we loose
the curvature control, what causes some paths to cross the
undesired region. To circumvent this problem, in this paper
we propose to eliminate the term cos(θh(r)) altogether from
Eq. 4 changing it to

∇2 p(r) = ε(r)|∇p(r)| (5)

what is equivalent to assume that v(r) is parallel to ∇p(r).
Since the computation of |∇p(r)| is numerically time

consuming, here we use the triangular inequality,

|∇p(r)| ≤
∣∣∣∣∂p(r)∂x

∣∣∣∣ +
∣∣∣∣∂p(r)∂y

∣∣∣∣
to obtain a more efficient equation,

∇2 p(r) = ε(r)
(∣∣∣∣∂p(r)∂x

∣∣∣∣ +
∣∣∣∣∂p(r)∂y

∣∣∣∣) (6)

Observe that r.h.s. of Eq. 6 is still a homogeneous function
of the potential gradient , so it does not present local minima.

A. Algorithm

The basic relaxation algorithm is simple and can be
executed in parallel with other modules of the robotic system.
Basically, it iteratively computes the harmonic potential
(Line 10) until its convergence. After, the function ε(c) is
updated(Line 14-18) by the preference defined by the user, or
computed by the robot according to the information gathered
by its sensors. This function is used to distort the harmonic
potential (Line 12). This relaxation algorithm can be easily
integrated in the step 3 of the algorithm presented in [9].
That makes our method a solution for path planning problem
in known environment or for exploration and mapping of
unknown environment.
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In the algorithm, each cell c has a position (x, y) in
the mesh; a potential p(c) and a parameter ε(c) according
to Equation 6. Cells cn, cs, cw, ce have position (x, y + 1),
(x, y − 1), (x − 1, y), (x + 1, y), respectively. The value
h(c) corresponds to the harmonic potential, ∇2p(c) =
0, and the term ε(c)d(c)/4 corresponds to the distortion
ε(c)

(∣∣∣∂p(c)
∂x

∣∣∣ +
∣∣∣∂p(c)

∂y

∣∣∣) .

Algorithm 1 Basic Algorithm
1: for all cell c that does not contain the goal do
2: set its potential value to high potential . p(c)← 1
3: initialize ε(c)← 0
4: end for
5: for all cell c that contain the goal do
6: set its potential value to low potential . p(c)← 0
7: end for
8: while TRUE do
9: for all cell c that represents an environment free-space do

10: h(c)← 1
4
(p(cn) + p(cs) + p(cw) + p(ce))

11: d(c)←
(∣∣ p(cn)−p(cs)

2

∣∣ +
∣∣ p(cw)−p(ce)

2

∣∣)
12: p(c)← h(c)− ε(c)

4
d(c)

13: end for
14: if potential converged then
15: for all cell c do
16: ε(c)← preference(c)
17: end for
18: end if
19: end while

The algorithm extension to handle dynamic environment
or preferences collected in real-time by the robot is straight-
forward. We need only to add lines to save the cells pref-
erences from the data collected by robot sensors or to save
the new features in the map and update the potential of the
corresponding cells.

III. RESULTS

This section presents several results obtained in simulation
to demonstrate the ideas discussed in the previous sections.
All experiments use the environment shown in Figure 3(a)
represented by an array of 100× 100 cells.

A. Experiment with Laplace Equation

Figure 5 shows an experiment using Laplace Equation.
Several paths(black lines) starting near the bottom wall are
displayed. We can see that the robot tends to approach the
environment center, since it diminishes the hitting probability
with obstacles.

In what follows we discuss the role of the distortions
in concavity/convexity and its relation with preferences in
crossing a region. In order illustrate that, we produce in
Figures 6 and 7 the two-dimensional equivalents of Figures
1 and 2. In these figures, a small square region is introduced
at the center of the environment shown in Figure 3(a). In
Figure 6 we investigate the effect in the paths when we distort
the potential using ε > 0 while in Figure 7, ε < 0 is used.

Fig. 5. Experiment with Laplace Equation. Paths (black lines) produced
by Laplace Equation from several robot starting positions.

B. Zone with High Preference (HP): ε > 0
Figures 6 (a) and (b) show the paths followed by the robot

using Eq. 3 and Eq. 6, respectively. In both cases, there exists
a HP region at the environment center with ε(r) = 1.2 for all
position r at this region. Observe that the concavity of the
potential in this region is increased giving rise to an effective
attractive force that pulls the trajectories towards this region.
The bigger the ε the more the paths approach the center of the
region. Figures 6(c) and (d) illustrate the paths (black lines)
over the level curves of the potential field computed in (a)
and (b), respectively. Observe that the low potential zone is
stretched diminishing the high potential zone, as compared to
the harmonic potential (Figure 5). The distortion produced by
Eq. 6 , show in (c), is stronger than the distortion generated
by Eq. 3, show in (d). As a consequence, this region becomes
still more attractive since the potential decays more quickly
augmenting the influence of the goal.

C. Zones with Low Preference (LP): ε < 0
Figures 7(a) and (b) show the paths followed by the robot

using Eq. 3 and Eq. 6, respectively, in an environment with a
low preference region with ε(r) = −1.2. We can observe that
increasing the convexity in a region decreases its preference
for path planning. Figures 7(c) and (d) illustrate the paths
(black lines) over the level curves of the potential field
computed in (a) and (b), respectively. The high potential zone
is stretched diminishing the low potential zone, as compared
to the harmonic potential (Figure 5). The paths tend to avoid
the convex region. Again, we can see that Eq. 6 produces a
distortion stronger than Eq.3 for the same ε value. Besides,
in (a), we can see that some paths cross the low preference
region. In (b), this does not happen and the robot changes
its direction before getting too close to the low preference
region.

D. Several zones of different preference levels

Figures 8(a) and (b) show an experiment in an environment
with a barrier of alternating LP and very low preference
(VLP) zones using Eq. 3 and Eq. 6, respectively. In both
cases, ε(r) = −0.6 at the LP region and ε(r) = −1.2 at the
VLP region. Observe the robot crosses LP regions to reach
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(a) (b)

(c) (d)

Fig. 6. Environment with one high preference region. This figure shows
the path followed by robot to reach the goal at top using the potential field
computed with (a) Eq. 3 and (b) Eq. 6 . In both cases, ε(r) = 1.2 for all
position r at high preference region. Whereas (c) and (d) show the level
curves of the potential field used in (a) and (b), respectively.

the goal, since the environment does not provide a viable
path that avoids them2. This indicates that what determines
the region to be crossed is the relative convexity/concavity
between regions and not its absolute value. In (b), the robot
tends to pass in the middle of LP region avoiding the
VLP region. In (a), some paths cross the VLP region and
others pass very close to it. This happens mainly due to the
cosine term discussed in Section II. This term diminishes
the distortion applied to the harmonic potential field, and as
result we do not obtain a strong “repulsion force”.

Figures 9 and 10 illustrate the differences between the
paths generated by Eq. 3 and Eq. 6 in two different environ-
ments with higher complexity. Figure 9 presents a checker-
board configuration of LP (dark) and HP (gray) zones.
Whereas Figure 10 shows an example of an environment with
a random distribution of LP (white) and HP (dark) zones. To
permit a better visualization of the paths and the regions, we
have only two preference degrees. In Figure 9, ε = 1.0 for
HP and ε = −1.0 for LP zones. While in Figure 10, ε = 1.0
for HP and ε = −1.5 for LP zones.

In both figures, Eq. 3 produces good results controlling
the region convexities(concavities) of the potential field.
However, the results produced by Eq. 6 are still better. For
instance, in Figures 9(a) and 10(a), Eq. 3 makes the robot
to travel big distances over LP zones, while in Figures 9(b)

2If these regions were considered obstacles, the potential below them
would be flat with a null vector field that does not provide any information
for the robot to navigate.

(a) (b)

(c) (d)

Fig. 7. Environment with one low preference region. This figure shows
the path followed by robot to reach the goal at top using the potential field
computed with (a) Eq. 3 and (b) Eq. 6 . In both cases, ε(r) = −1.2 for
all position r at low preference region. Whereas (c) and (d) show the level
curves of the potential field used in (a) and (b), respectively.

(a) (b)

Fig. 8. Environment with alternating zones of low (LP) and very low
preference(VLP). This figure shows the path followed by robot to reach the
goal at the top using the potential field computed with (a) Eq. 3 and (b)
Eq. 6. In both cases, ε(r) = −0.6 at the LP region and ε(r) = −1.2 at
the VLP region.

and 10(b), Eq. 6 minimizes expressively the amount of steps
in the LP zones, leading the robot whenever it’s possible to
HP zones. In some cases, the robot has to cross LP zones,
because there is no viable path towards the goal that crosses
only HP zones. These paths are exclusively produced by the
concavity and convexity of the regions since this environment
has no obstacles.

IV. CONCLUSIONS

In this work, we introduce a new PDE to be used as
core of our BVP Path Planner. This new equation eliminates
the need of prior knowledge of the vector field to be used
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(a) (b)

Fig. 9. Environment with a checkerboard configuration of LP (dark) and
HP (gray) regions. In red the path followed by robot to reach the goal at
the top using the potential field computed with (a) Eq. 3 and (b) Eq. 6 . In
both cases, ε(r) = −1.0 at the LP region and ε(r) = 1.0 at the HP region.

(a) (b)

Fig. 10. Environment with a random distribution of HP (dark) and LP
(white) regions. In red the path followed by robot to reach the goal at the
top using the potential field computed with (a) Eq. 3 and (b) Eq. 6 . In both
cases, ε(r) = −1.5 at the LP region and ε(r) = 1.0 at the HP region.

as input to the PDE. That corresponds to an advantage
over our last proposal discussed in [8], since the use of a
static vector field minimizes the intensity of the attraction
or repulsion force associated to the HP and LP zones,
respectively. As consequence, this new equation generates
better results minimizing the amount of robot steps in LP
regions.

The attraction and repulsion forces are defined based on
local convexity and concavity, respectively. Two adjacent
regions compete based on their potential curvatures, and the
winner is the one where the potential decays more quickly
towards the goal potential. This competition can happen with
regions both convex or both concave. What defines if a region
is more preferred than another is its relative curvature. The
preference of a region does not imply a rigid constrain in the
sense the boundary conditions are. A LP region is different
from an obstacle since it can be crossed by the robot if the
local conditions of the potential demand it. This fact can be
seen in Figure 8

Our proposal is not constrained to path planning in inho-
mogeneous environments, i.e., weighted region problem[16],
but it can be integrated to exploratory tasks [5], [9] and other
domains like robotic soccer[6] or simulation of pedestrians
behavior in realistic outdoors scenes[7]. Basically, in all these
domains, local control of convexity/concavity permits to

endow the robot or agent with different behaviors according
to environment features or sensors information.

As the potential field needs several steps to converge, the
method presented in this paper is expensive computationally.
To atenuate this problem, in [17], we propose a strategy
that computes the potential field hierarchically using the Full
Multigrid Method[18].
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