
Component-based Refactoring of Motion Planning Libraries

Davide Brugali, Walter Nowak, Luca Gherardi, Alexey Zakharov, Erwin Prassler

Abstract— Most of the current state of the art motion
planning software libraries are not easily interchangeable,
because core concepts are represented with different data
structures, application programming interfaces (API) are not
compatible, or algorithms are encapsulated in modules or-
ganized in mutually exclusive abstraction hierarchies. These
problems limit the possibility to reuse different libraries in the
same application interchangeably and to compare their quality
attributes (performance, completeness, etc.). An approach to
overcome these shortcomings is refactoring, a technique that
aims to restructure a set of existing software libraries without
affecting their external behavior in order to harmonize their
architecture, data structures, and APIs.

This paper presents a component-based refactoring approach
that has allowed the transition from motion planning libraries,
taking the object-oriented framework CoPP as basis, to a
component-based system. In particular we describe a four-step
application of well-known architecture refactoring patterns that
redistributes the responsibilities among the classes, harmonizes
the common data structures and reduces the coupling degree.
The obtained system represents a composition of reusable
components that are easy to customize and offer different
algorithms to resolve the same problem. In this way the user
could quickly compile a new motion planning application by
simply choosing which algorithm to use for each functionality.

I. INTRODUCTION

In robotics software engineering we are observing an

increasing need for composing new software applications

out of reusable building blocks. Software reuse allows re-

searchers to focus on their core problems instead of con-

stantly re-writing each other’s code. For example, experts

in motion planning could experiment new path planning

algorithms for a mobile robot relying on reusable imple-

mentation of obstacle avoidance and self-localization func-

tionalities. Reuse of consolidated and shared implementation

of common functionality allows different teams to test their

new algorithms on common benchmarks in order to assess

performance objectively.

Today, a huge corpus of software applications, which

implement the entire spectrum of robot functionality, algo-

rithms, and control paradigms, is available in robotic research

laboratories and potentially could be reused in many dif-

ferent applications. For various reasons, the interoperability

between different frameworks or their extentions towards

novel applications is limited or would require high efforts.

The work described in this paper has been funded by the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. FP7-ICT-231940-BRICS (Best Practice in Robotics).

D. Brugali and L. Gherardi are with the Dept. of Information Tech-
nology and Mathematics, University of Bergamo, 24044 Dalmine, Italy
brugali@unibg.it, luca.gherardi@unibg.it

W. Nowak, A. Zakharov and E. Prassler are with GPS GmbH,
Nobelstr. 12, 70569 Stuttgart, Germany {nowak, zakharov,
prassler}@gps-stuttgart.de

In this paper we report on our experience in analysing

and comparing open source implementations of best practice

algorithms for motion planning in the context of the BRICS

project (Best Practice in Robotics) funded by the European

Commission. The domain of motion planning for mobile

manipulators has made tremendous progress in the last years.

Many problems are now well-understood and can be tackled

with standard solutions [1]. Several sophisticated software

frameworks exist. Unfortunately it is still rather difficult to

compare them in an objective manner, due to significant

variation in the software representation of common concepts

(e.g. robot configuration, path, configuration space) and in

the libraries’ APIs. For this reason, in BRICS we have de-

fined a methodology to harmonize motion planning libraries

based on the concepts of software refactoring and software

components.

Refactoring is the process of applying a series of small

behavior-preserving transformations to an existing software

system in order to improve its software quality. Component-

based engineering is the state-of-the-art technology to de-

velop modular, reusable, and interoperable software systems.

The set of guidelines we propose shows how to refac-

tor existing software architectures in order to facilitate the

integration of different implementations of algorithms in a

common framework and to support the process of bench-

marking different algorithms. Benchmarking is the process

of assessing the relative performance of algorithms. But

when algorithms are benchmarked, the algorithms are not

compared themselves, instead two of their specific imple-

mentations. In order to obtain significant results it is of

critical importance that the two implementations use the

same data structures and differ only in details specific to

the algorithms under consideration.

In this paper we report a specific example of application of

these guidelines to the CoPP motion planning library, trans-

fering it into the new component framework BRICS MM.

The transition is also put into context to other state-of-the-art

motion planning libraries that have applied similar concepts

to varying extents. However our guidelines are more general

and can be used on every software architecture.

The paper is structured as follows.

Section II presents a survey of motion planning libraries,

while Section III describes relevant aspects of their imple-

mentation related to interoperability issues. Section IV illus-

trates two software transformation patterns for refactoring

motion planning libraries into software components. Section

V presents the detailed design of the Path Planning compo-

nent framework. Finally VI draws the relevant conclusions.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4042

II. OPEN SOURCE MOTION PLANNING LIBRARIES

The focus in this paper is on path planning problems with a

high number of degrees of freedom, as typically encountered

in mobile manipulation tasks. In this context, several classes

of probabilistic, sample-based planners have been evolved,

most notably variants of Probabilistic Roadmaps (PRM) and

Rapidly Exploring Random Trees (RRT), amongst others;

see [1] for a comprehensive overview. These algorithms

typically work in the configuration space (C-space) of the

robot. Elements of the overall planning tasks (can) comprise

[13]:

• representation of robot’s configuration space

• representation of paths and trajectories

• kinematic or dynamic constraints

• sampling new points in the C-space

• measuring distances in the C-space

• interpolating between two points in C-space

• computation of forward or backward kinematics

• the global planner algorithm itself

• specification of start and goal conditions

• local planner for quickly connecting two configurations

• representation of the robot’s geometry and the environ-

ment in the Cartesian 3D space

• collision checking

• updating path according to changing environments

• handling graph- or tree-like structures for roadmaps or

discretisation of the C-space

In particular collision checking is known to play often a

crucial role for sample-based planners, taking up most of

the processing time. Many of the items mentioned above

are addressed in current software libraries, in more or less

explicit ways. An overview of these libraries is given below.

The Motion Strategy Library (MSL) [5] was developed

by the research group of Steven LaValle at the University of

Illinois. The library includes support for multiple planners

(including variants of RRT, PRM and Forward Dynamic Pro-

gramming FDP), collision checkers (PQP) and visualization

in multiple formats. Originally deployed only under Linux,

a Windows version was published in 2008.

The Motion Planning Kit (MPK) [6] was developed by

the research group of Jean-Claude Latombe at Stanford Uni-

versity. It implements a fast single-query bi-directional prob-

abilistic roadmap path planner with lazy collision-checking

(SBL) and relies on PQP for collision detection.

The Motion Planning Kernel (MPK) [7] was first devel-

oped by Ian Gipson at the Computational Robotics Lab

at Simon Fraser University. It comes with a full suite of

collision detection algorithms (V-collide and SOLID amongst

others) and implements path planners for RRT and PRM.

Components for Path Planning (CoPP) [9] was developed

by Morten Strandberg at the Royal Institute of Technology

(KTH) in Stockholm, Sweden, with the aim of a clearly

structured object-oriented planning framework. Several func-

tionalities such as samplers, metrics, local planners, interpo-

lators, and collision checkers (PQP, YAOBI) are explicitly

distinguished with separate base classes. The library includes

planners for PRM, RRT and PCD and provides support for

visualizing via Coin and VRML.

OpenRAVE [8] developed by Rosen Diankov is a frame-

work that covers the whole development cycle around manip-

ulation and grasping, including support for different sensor

inputs, controllers and physical simulation. Plugins are meant

to provide an easy way for users to add various custom func-

tionalities. OpenRAVE integrates to ROS and has interfaces

to Octave, Matlab and Python.

The Object-Oriented Programming System for Motion

Planning (OOPSMP) [10] was developed at Lydia Kavraki’s

lab. It includes a large variety of motion planners and can

handle kinodynamic constraints. Several general purpose

data structures and functionalities for the domain of motion

planning are provided.

Open Motion Planning Library (OMPL) [11] developed

by Ioan Sucan stands out from the other libraries in the way

that it explicitly concentrates on the core path planning algo-

rithms. Other elements such as collision checking, simulation

or motion control are handled by integration into the ROS

framework. OMPL provides various planners including RRT,

EST, SBL and KPIECE, and an inverse kinematics solver

(GAIK) based on Genetic algorithms.

KineoWorks is the only framework mentioned here which

is not available as open source. Originally developed as

Move3D [12] at LAAS, it was put into a product by Kineo.

It is meant to provide a component-based architecture that

supports easy integration into applications. But as it is not

free, we will not provide further information here.

All of the libraries discussed above but KineoWorks are

published as open source or are free for non-commercial use.

Most of them are under active development, while only a few

seem to be discontinued.

Notably all libraries above are written in C++. Some

include scripting support for other languages or interfaces

to tools such as Octave or Matlab. All of them offer some

kind of 3D visualization, some also support for simulation

and physics engines; with the special note of OMPL that

relies on the ROS environment for all those aspects.

III. INTEROPERABILITY ISSUES

Most of the libraries cannot be easily interchanged and it

is rather difficult to compare individual algorithms between

libraries. One of the reasons is that they rely on some base

classes, which sometimes are very detailed or include certain

dependencies and that cannot easily be replaced or changed.

Thus it is difficult to plug one algorithm, including all rele-

vant aspects, into some other piece of software. In addition,

many of the more internal aspects of planning algorithms,

such as samplers or metrics, may not be made explicit. In

order to exchange them, the algorithms’ source code would

have to be changed. The dependency of base classes on

external frameworks may also restrict the transfer of a library

onto real robots possibly with embedded PCs and limited

resources. It should be noted that in particular the newer

4043

libraries include several mechanisms and design aspects that

aim at minimizing the before-mentioned problems.

Nearly all libraries provide some kind of support for

different implementations of functionalities, most commonly

in the form of inheritance from a base class. This holds

true for the main planner classes, but for example also

collision checking engines are nearly always made explicit

and interchangeable.

As an example, MSL is built around the classes Model

(representing kinematic and dynamic systems), Geom (geo-

metric objects for collision checking), Problem (general

class to represent aspects of a path planning problem),

Solver (base class for path planning algorithms), Scene,

Render and GUI for visualization. New functionality may

be added by inheriting from these main classes. In this

specific library, metrics and interpolators for example may be

changed by overriding virtual functions in the Model class.

OpenRAVE and OOPSMP in addition provide the concepts

of plugins, where different kinds of functionalities may be

attached from outside. Those plugins have to inherit from

base classes as well, but can then be loaded during runtime

from dynamic libraries.

In OpenRAVE a central class EnvironmentBase glues

all parts together. This is a container for all other elements,

including physics and visualization. Most elements refer

back to this container, e.g. loading from XML, connecting

robots with collision checkers, or drawing is handled via calls

to EnvironmentBase.

In OOPSMP the composition and configuration of plan-

ning problems is done via customized XML files. A parser

translates the XML elements into calls to dynamic libraries.

That way OOPSMP can be flexibly configured without

touching any source code. On the other hand some kind

of dedicated plugin functionality is needed to extend it.

Similar to OpenRave, one container class CoreRobotData

includes pointers to all components such as workspace, state

space and smoother, with these components inheriting from

CoreRobotData.

In contrast to the previous frameworks, OMPL is inher-

ently integrated into ROS. The environment representation

for the collision detector can be provided at runtime by an

appropriate ROS node. The representation of the robot is

loaded from URDF files. When paths have been planned,

they are published to the ROS network. OMPL implements

a number of abstract base classes such as Planner, Path,

or Goal.

A major step concerning interoperability has been made

in the ROS project. There a plenitude of standard interfaces

for various aspects, from trajectories to robot kinematics

and environment modeling, have been introduced in a data-

centric way, without unnecessary functional dependencies.

The libraries OpenRAVE and OMPL can be used over those

interfaces, increasing the interoperability significantly. That

way they come close to the ideas of refactoring as presented

in section IV and V.

In the following we provide an overview on how some

of the key concepts for motion planning tasks are imple-

mented in the different software libraries. These includes data

structures to represent Configuration (Table I), Path (Table

II), C-Space, (Table III), Robot Kinematics (Table IV), and

functionality such as Metric, Interpolator, Sampler (Table

V), Collision Detection, and Environment Modeling (Table

VI). Many of these concepts are represented in semantically

similar ways. But the remaining differences constitute several

of the major problems concerning interoperability between

libraries.

TABLE I

CLASSES FOR POINT IN C-SPACE

Library Main class Notes

MSL MSLVector double array, includes size

MPKKernel Configuration vector <double>, includes calls to

OpenGL

CoPP Config vector <double>

MPKKit mpkConfig vector <double>, includes various

functions

OpenRave TPOINT vector <dReal>, includes, veloci-

ties and time

OOPSMP State t double array

OMPL State double array

TABLE II

CLASSES FOR PATH OR TRAJECTORY

Library Main class Notes

MSL Planner list<MSLVector>, located directly

in planner’s base class

MPKKernel PA Points vector<Configuration>,

includes calls to OpenGL

CoPP Path list<Cinfigurations>, includes

time

MPKKit sblPlanner list<mpkConfig>, includes various

functions

OpenRave Trajectory vector<TPOINT>,

vector<TSEGMENT>, includes

elements for dynamic motion control

OOPSMP Path includes interfaces for time, splitting

and more. Base class with various im-

plementations

OMPL Path points to a SpaceInformation, de-

rived classes include array of State

TABLE III

CLASSES FOR C-SPACE

Library Main class Notes

MSL Problem, Model includes upper/lower limits, start and

goal configuration. control inputs and

system simulation

MPKKernel Universe,

RobotBase

includes upper/lower limits, start and

goal configuration

CoPP DOF Properties stored in multiple places, where

needed

MPKKit limits are implicitly in planner

OpenRave ConfigurationState includes limits and number of DoF

OOPSMP StateSpace includes bounding box and various

other functions, many concrete imple-

mentation

OMPL SpaceInformation includes start and goal

configurations, dimension,

StateDistanceEvaluator,

StateValidityChecker

4044

TABLE IV

ROBOT KINEMATICS DATA STRUCTURES

Library Main class Notes

MSL Model includes kinematic structure and control

MPKKernel RobotBase vector <LinkBase*>

CoPP KinematicNode vector <DOF_Properties>, lim-

its are stored in Robot class as well

MPKKit mpkBaseRobot includes pointer to a parent joint, spa-

tial transforms, triangulated link model,

PQP and SoQT data

OpenRave KinBody vector vector<Joints>

vector <Links>

OOPSMP StateSpace implicitly defined via StateSpace

and related classes

OMPL based on ROS using URDF files

TABLE V

INTERFACES FOR METRICS; INTERPOLATOR; SAMPLER

Library Notes

MSL Model (and Problem) with virtual functions for

Metric and Interpolator. Sampling as virtual function

ChooseState in each planner class

MPKKernel Sampler and metric as virtual functions in planner base

classes. Interpolation hard-coded in planner

CoPP classes Metric; Interpolator;

ConfigSpaceSampler

MPKKit non-virtual functions in class mpkConfig for metrics and

interpolating. Sampling hard-coded in planner

OpenRAVE classes DistanceMetric; SampleFunction; four in-

terpolation methods hard-coded in Trajectory

OOPSMP distance function in StateSpace; classes

PathGenerator; ValidStateSampler

OMPL classes StateDistanceEvaluator;

StateSamplingCore; interpolation done in planners

TABLE VI

INTERFACES FOR COLLISION DETECTOR AND ENVIRONMENT MODELING

Library Notes

MSL Geom with derived class for PQP

MPKKernel CollisionDetectorBase. Universe has an array of

Mesh which can model various objects.

CoPP ObjectSet. Base class Geom stores a position, with

inherited classes for triangles and convex objects.

MPKKit mpkCollDistAlgo uses PQP or own collision detector

OpenRAVE CollisionCheckerBase. KinBody includes

TRIMESH and GEOMPROPERTIES for modelling triangle

meshes

OOPSMP CollisionDetector. Workspace holds list of Part,

support of polygons

OMPL Based on ROS with interfaces of CollisionSpace and

various geometry messages

IV. REFACTORING TOWARDS COMPONENTS

”A software component is a unit of composition

with contractually specified interfaces and explicit

context dependencies only. A software component

can be deployed independently and is subject to

composition by third parties.” [2]

Software components come with well-defined component

specifications, which are abstractions from the details (data

structures and operations) of their (possibly many) imple-

mentations. A component specification explicitly declares

which functionality (provided interfaces) are offered to its

clients, the public obligations (contracts) with its clients in

the form of various kinds of constraints (e.g. preconditions,

postconditions, invariants) on how to access the functionality,

and the dependencies (required interfaces) to the functional-

ity that are delegated to other components.

A component implementation, on the other hand, defines

how the component supports those features and obligations

in terms of a collaborative structure of realizing objects (class

instances) and algorithms implementing the functionality

declared in the component specification.

Separating the specification of components from their

implementation is desirable for achieving modular, inter-

operable, and extensible software and allows independent

evolution of client and provider components. If client code

depends only on the interfaces to a component and not on

the component’s implementation, a different implementation

can be substituted without affecting client code. If a coherent

set of required interfaces can be defined that specify the

most frequently used robot services and capabilities, and if

robotics applications are designed around those interfaces,

then every component implementing compatible provided

interfaces has the potentiality to be reused in those appli-

cations.

The transition from a motion planning class library such

as CoPP to a motion planning component system has re-

quired the redistribution of responsibilities (i.e. functional-

ities) among the original classes and added new classes.

In addition, it involves the aggregation of class instances

(objects) into components and the definition of component

interfaces that make components functionality available to

their clients. In particular, the refactoring process of the

motion planning library consisted of the ordered application

of the following four well-known architecture refactoring

patterns [3], which provide concrete guidelines to restructure

the architecture of software systems: Move Behavior Close to

Data, Split up God Class, Eliminate Navigation Code, and

Transform Conditionals into Registration. We describe the

first two transformations in the following as they are mostly

related to the definition of components interfaces, and the

remaining two in next section as they are mostly related to

components implementation.

A. Transformation I: Move Behavior Close to Data

We have first analyzed the data structures used in the

various motion planning libraries, cf. section III, in order to

identify similarities. As expected, nearly all the algorithms

rely on the concept of robot configuration, but the data

structures used to represent them show subtle differences.

While an array or vector of double values is used in all

cases, they differ concerning additional information such as

time and flags, and whether the number of dimensions is

included or not. For some versions it is trivial to convert

between each other, while for others it is a problem due to

different kind of information stored.

The refactoring pattern Move Behavior Close to Data sug-

gests introducing data containers that harmonize existing data

structures and assigning them the responsibilities to create,

initialize, update, transform, and elaborate encapsulated data.

4045

PathPlanningNextConfig

GraphUpdating

ShortestPathComputing

CollisionChecking

Configuration Space

<< Component >>

SetConfig / GetConfig

ConfigurationInterpolating

Cartesian Space

<< Component >>

SpaceBrowsing

Robot Kinematics

<< Component >>

ConfigurationUpdating

ConfigurationMetric

UpdateGeometry

Collision Checker

<< Component >>

Path Planner

<< Component >>

SetPosition / GetPosition

SpaceUpdated

Graph

<< Component >>

Fig. 1. The components system resulting from refactoring motion planning libraries

The guidelines of this pattern have lead us to the definition

of the new ConfigurationSpace component (see Fig. 1). It is

in charge of maintaining the representation of the robot con-

figuration space. Configuration is represented as a vector of n

values, each representing a point in the robot’s configuration

space. The ConfigurationSpace component stores at least the

following configurations:

• lowerConfig is the configuration that represents the

lower bound of the configuration space

• upperConfig is the configuration that represents the

upper bound of the configuration space

• currentConfig is a list of robot’s configurations at given

instants of time.

Depending on the type of configuration space, additional

data may be required for example to represent rotational

joints or a rigid body moving in 2D space, resulting in

SE(2).
The ConfigurationSpace component offers services that

were implemented as separated class hierarchies in the

original motion planning libraries, such as the algorithms

for configuration interpolating and for measuring distances

between pairs of configurations. The configuration pair may

be provided by the client or may correspond to two current

configurations at different instants of time. We have defined

the following three provided interfaces:

• ConfigurationSetup

• ConfigurationInterpolating

• ConfigurationMetric

The ConfigurationSpace component does not implement

any required interface. Thus it has no dependency to other

components and can be reused independently of other motion

planning components as building block for the implementa-

tion of robot functionality where robot’s configurations need

to be represented, such as motion control, navigation, and

manipulation.

We have applied the refactoring pattern Move Behavior

Close to Data to the original motion planning libraries

iteratively. It has lead us to the identification of two more

components that behave as data container with provided

interfaces only (see Fig. 1):

• The CartesianSpace component encapsulates the geo-

metric representation of the robot’s environment and

implements interfaces for updating and browsing it.

• The Graph component is a wrapper of external graph

management libraries that implements standard inter-

faces for creating, updating, and processing data orga-

nized as graph structures.

B. Transformation II: Split up God Class

Motion planning algorithms are often implemented by

structuring the code according to the functional decompo-

sition approach, where most of the logic of the functionality

is provided by a single ”god class”, like MotionPlanner. God

classes are hard to extend, modify or subclass because they

assume too many responsibilities and changes affect large

numbers of methods or instance variables. The Split up God

Class pattern refactors a procedural god class into a number

of simple, more cohesive classes.

The iterative application of this pattern to the motion

planning class libraries has generated three components:

RobotKinematics, CollisionChecker, and PathPlanner. The

first iteration has produced the clear separation of two core

functionalities, i.e. collision checking and path planning.

Most class libraries already offer distinct specialization hier-

archies for the implementation of collision checking and path

planning algorithms, but their high level abstract classes are

incompatible and in some cases have a long list of methods

with a large number of parameters.

The CollisionChecker component maintains an inter-

nal representation of the robot environment, which is

an algorithm-specific approximation (e.g. using bounding

boxes) of the Cartesian space. This internal representation

needs to be updated when the robot’s Cartesian space gets

4046

modified, for example when the robot or other objects change

their position. For this purpose, this component requires the

SpaceBrowsing interface of the CartesianSpace component

and implements the SpaceUpdated event listener. The pro-

vided interface CollisionChecking defines the operations that

the path planner can invoke to check and inspect collisions

among objects in the robot’s environment.

The RobotKinematics component stores the robot’s kine-

matic model and implements only provided interfaces for

invoking the forward and inverse kinematic transformations.

Finally, the PathPlanner component implements the algo-

rithms that generate a robot path as a sequence of collision-

free configurations. The simplified interaction between the

seven components in Fig. 1 consists of the following se-

quence of steps: PathPlanner generates (samples) a new

robot configuration, updates ConfigurationSpace, gets the

new robot position from the RobotKinematics component,

updates CartesianSpace, checks if the new configuration is

collision free and, if this is the case, updates Graph.

Thus, it is clear that the PathPlanner component uses and

integrates the services of the other components to build a

specific robot functionality and that these components can

be reused as building blocks for the implementation of other

functionality.

V. PATH PLANNING COMPONENT FRAMEWORK

The separation of interface and implementation facilitates

component interchangeability: a component can be replaced

with another one that implements the same provided inter-

face. The various implementations of a component may differ

in functional characteristics (i.e. different algorithms for mo-

tion planning), non-functional properties (i.e. performance,

maintainability, documentation quality, reliability), realizing

technology (e.g. the description of the geometric space may

be stored in a relational database or as XML files) and

even programming language (if components are build on a

middleware or multi-language run-time infrastructure).

Despite of these differences, components that implement

the same interfaces and offer similar functionality are typi-

cally implemented around common entities and mechanisms,

which are core aspects of the provided functionality (e.g. the

concepts of Path and Configuration in motion planning) and

can be represented as stable data structures and operations.

In contrast, those aspects of a component implementation

that are more likely to be affected by the evolution of the

application domain represent its variation points.

Component frameworks enable a clear separation between

stable and variable aspects of a component implementation.

A component framework is a skeleton that can be specialized

to produce custom components. As such it represents a

family of component implementations, which can be derived

from its design and built on its data structures and operations

without changing them.

In this section we describe how we have refactored the

components depicted in Fig. 1 into corresponding component

frameworks. In particular, we illustrate the PathPlanner com-

ponent framework depicted in Fig. 2, which clearly separates

stable data structures (black boxes), variation points (blue

boxes), and concrete variants (red boxes).

The classes used to represent a robot path are stable enti-

ties of the component framework. They have been structured

according to the Composite design pattern [4]. PathLeg is a

sequence of Configuration objects. Let us consider a mobile

manipulator that navigates inside a building. A path leg

may correspond to the sequence of configurations of the

mobile platform from a place inside a room to a place

close to the door. Another path leg may then correspond

to the sequence of configurations of the manipulator to open

the door. CompositeLeg is a composition of path legs. The

Composite design pattern allows the hierarchical composition

of even more complex paths, which can be browsed through

a uniform interface implemented by the Path abstract class.

The variation points are abstract classes that implement

stable data structures and operations that are common to a

family of similar algorithms. From the analysis of motion

planning libraries we have identified four core variation

points: GlobalPlanner, LocalPlanner, Sampler, and PathUp-

dater. The component developer customizes the component

framework by supplying concrete subclasses (e.g. PRMPlan-

ner, BinaryConnector, UniformSampler, and ElasticStripUp-

dater) that implement specific algorithms and represent pos-

sible variants of each variation point.

After stable data structures, variation points and variants

had been identified, we refactored the motion planning

library according to the two refactoring patterns described

in the following sections.

A. Transformation III: Transform Conditionals into Regis-

tration

Components frameworks can be customized at design

time, when the software developer implements specific vari-

ants (e.g. algorithms) for each variation point, or at run

time, when one of several alternative variants is selected

according to current execution context. For example, variants

of a specific family of algorithms could be switched through

a graphical user interface in order to benchmark and compare

their performance during experiment sessions. Alternatively,

the robot could select the most effective algorithm au-

tonomously according to situation awareness (e.g. a fast path

planner in open space environments and a powerful path

planner in cluttered environments).

Both situations require a component’s client (e.g. the GUI

or the robot controller) to switch among several variants.

This is potentially implemented as long methods consisting

almost entirely of case statements, which make the code

more difficult to maintain.

The pattern Transform Conditionals into Registration aims

at reducing the coupling between component variants and

clients so that the addition or removal of variants does

not lead to changing the code of the clients. Therefore

the pattern suggests introducing a registration mechanism

to which each variant is responsible for registering itself.

The component clients are then transformed to query the

registration repository instead of performing conditionals.

4047

+connect(in from : Config, in to : Config) : Path

LocalPlanner

BinaryConnector

+getPath(in start : Config, in end : Config) : Path

+nextConfig(in currentConfig : Config) : Config

GlobalPlanner

Path

RRTPlannerPRMPlannerPCDPlanner

PlannerComponent

PathLegCompositeLeg

Configuration

+selectGlobalPlanner(in criteria : string, in param : vector<T>)

+selectUpdater(in criteria : string, in param : vector<T>)

+selectLocalPlanner(in criteria : string, in param : vector<T>)

+selectSampler(in criteria : string, in param : vector<T>)

«interface»

PlannerSetup
+getPath(in start : Config, in end : Config) : Path

+nextConfig(in currentConfig : Config) : Config

«interface»PathPlanning

+updatePath()

PathUpdater

ElasticStripUpdater StaticUpdater FADPRMUpdater

+getSample() : Config

Sampler

AdvancedSampler

UniformSampler

+updatePath()

«interface»

PathUpdating

1

1

1

1

1 1

1

*

*

1

<<use>>

<<use>>

1
1

<<use>>

+instantiate()

VariantDescriptors

1

*

1

1

Fig. 2. The Path Planner Component Framework

We defined class VariantDescriptor that encapsulates the

information necessary for registering, querying, instantiating,

and using each component variant and class VariationMan-

ager that is queried by the component clients to check the

presence of and instantiate specific variants. For each vari-

ation point (e.g. GlobalPlanner) class PlannerComponent

encapsulates a member variable that points to the current

selected variant.

B. Transformation IV: Eliminate Navigation Code

A component’s clients need to access functionality, which

in most cases are provided by specific variant objects. For

example, the GlobalPlanner variation point represents the

core logic of the PathPlanner component and is available in

several variants, each one implementing a specific algorithm

for global planning. The GlobalPlanner and its variants

implement interface PathPlanning, which defines the fun-

damental operation Path getPath(Configuration

start, Configuration end).

The analysis of the motion planning libraries described in

Sections II and III reveals that clients of these libraries (e.g.

the robot control application) typically have direct access

to the objects that implement planning algorithms. In our

case, direct access to variant objects would require navigating

through classes PlannerComponent and VariationManager in

order to get a reference to individual variant objects. This

would violate component encapsulation and would couple

clients and variant objects unnecessarily.

Pattern Eliminate Navigation Code suggests preventing

these problems by transforming object containers into service

providers. This is the case of PlannerComponent, which

maintains pointers to current variant objects. It implements

interface PathPlanning and delegates the execution of its

operations to the current variant of GlobalPlanner.

By applying Transformation III and Transformation IV,

we defined two distinct provided interfaces for the Path-

Planner component. Interface PlannerSetup allows clients

configuring the component by selecting specific variants for

each variation point. Interface PathPlanning allows clients

accessing component’s functionality. It is clear that different

clients can access the two interfaces independently. For

example, the GUI (one client) can switch two variants of the

same variation point (e.g. LocalPlanner) that will be used to

compute paths for the robot controller (another client).

VI. CONCLUSIONS

Economic efficiency and competitiveness as well as sci-

entific and technical quality create an increasing pressure

on robot software engineers to refrain from so-called ”from

scratch” and ”me too” developments of robotic software but

instead refer to existing, reusable software components. Un-

fortunately the notion of reusability has gained only limited

attention in the robotics software developer community so

far.

In the BRICS project we have been developing a method-

ology that shall make off-the-shelf software libraries for

robot functionalities reusable. In this paper we described an

approach to refactor existing object oriented software into

reusable software components developed in this project. We

presented guidelines in section IV and V in form of four

transformation steps that aim at increasing the reusability of

software in the domain of motion planning.

4048

Although very sophisticated libraries have been created for

this task in the last years, a focus on object-oriented designs

puts limits to reusability and interoperability. In addition,

ideas similar to the presented refactoring steps have often not

been made as explicit. We have actually applied these steps

to the CoPP library, which was designed to foster a good

object-oriented design. These steps, together with various

other extentions, have lead to the component framework

BRICS MM which is available as open source from the

website www.best-of-robotics.org.

The work presented in this paper is ongoing work. Al-

though the benefits of software reuse may appear obvious, we

still lack objective, measurable and agreed indicators which

demonstrate the use and the economic and scientific gain of

reuse.

The BRICS project will undertake a significant effort to

identify such objective and measurable indicators which are

agreeable by the community of robotics software engineers

and developers.

VII. ACKNOWLEDGMENTS

The authors would like to thank all the partners of the

BRICS project for their valuable comments.

REFERENCES

[1] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[2] C. Szyperski. Component Software: Beyond Object-Oriented Program-

ming. Reading, MA: Addison-Wesley, 2002.
[3] S. Demeyer, S. Ducasse, O. Nierstrasz. Object-Oriented Reengineering

Patterns. Morgan Kaufmann, 2008
[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[5] S. LaValle, P. Cheng, J. Kuffner, S. Lindemann, A. Manohar, B.
Tovar, L. Yang, and A. Yershova. ”MSL - Motion strategy library”.
http://msl.cs.uiuc.edu/msl/

[6] J.-C. Latombe, F. Schwarzer, and M. Saha. ”MPK - Motion Planning
Kit”. http://robotics.stanford.edu/˜mitul/mpk/.

[7] I. Gipson, K. Gupta, and M. Greenspan. ”MPK: An open extensible
motion planning kernel”. Journal of Robotic Systems, Volume 18, Issue
8, pp 433 - 443, 2001. http://ramp.ensc.sfu.ca/mpk/

[8] Rosen Diankov and James Kuffner. ”OpenRAVE: A Planning Ar-
chitecture for Autonomous Robotics”. Tech. Rep. CMU-RI-TR-08-34.

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July
2008. http://openrave.programmingvision.com

[9] M. Strandberg. ”Robot path planning: an object-oriented approach”.
Doctoral thesis, Royal Institute of Technology (KTH) Stockholm,
Sweden, October 2004. http://sourceforge.net/projects/copp/

[10] E. Plaku, K. E. Bekris, and L. E. Kavraki. ”OOPS for motion planning:
An online, open-source, programming system.” In Proc. of the IEEE

International Conference on Robotics and Automation (ICRA), April
2007. http://www.kavrakilab.org/OOPSMP/index.html

[11] Ioan Sucan. ”OMPL - Open Motion Planning Library”.
http://www.ros.org/wiki/ompl

[12] T. Simeon, J. P. Laumond, and F. Lamiraux. ”Move3D: A generic
platform for path planning”. In Proc. of the IEEE International

Symposium on Assembly and Task Planning, May 2001.
[13] Ioan A. Şucan and Lydia E. Kavraki. ”On the Implementation of

Single-Query Sampling-Based Motion Planners”. IEEE International

Conference on Robotics and Automation (ICRA), May 2010.

4049

