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Abstract— We consider how prior information can be ex-
ploited to improve the quality of SLAM. Prior information,
such as aerial imagery, can be readily obtained for many
environments. However, this information is often collected at a
different time, using different sensors, different representations
and from different vantage points than those used by the
robot undertaking SLAM. In this paper, we describe a general
probabilistic framework to overcome these difficulties. Our
framework models the environment as a random set of latent
structures which are observed by a set of sensing sytems. Each
sensing system gives rise to a different kind of map and, by
associating features from the same structure across the different
maps, parameterised constraints between the sets of features
can be constructed. These parameterised constraints make it
possible to transfer information between map representations.
We demonstrate the use of the framework in a simulated
environment to illustrate how geometric features of different
dimensions can be fused together.

I. INTRODUCTION

SLAM is arguably one of the most important capabilities
for an intelligent mobile platform. The ability to create
and refine maps of the world in real-time is important
for many tasks that range from path planning to multi-
robot coordination. However, despite its apparent simplicity,
SLAM poses numerous theoretial and practical problems.
However, almost all SLAM research is founded on the
assumption that no prior information is available. Although
this leads to algorithms of great generality and flexibility, it
does so at the cost of neglecting potentially valuable sources
of information. In many situations, prior information can be
readily obtained from many sources. For example, urban
environments are often mapped in great detail to aid in
planning or disaster management [4], [8]1. Low-quality aerial
and ground imagery is readily available through sources such
as Google2 and OpenStreetMap3.

Some researchers have begun to develop methods to
exploit this prior information. Given a “Manhattan-world” as-
sumption, features are often assumed to cluster on planes [9],
[13] and the planes can often be assumed to be locally or-
thogonal to one another [2]. Folkesson attempted to formalise
these approaches through the development of M-space [6],
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Fig. 1. Left: satellite image with line segment features extracted by hand.
Right: ground view with extracted corner features, which could correspond
to salient features from a 3D laser scan. These represent heterogeneous
features obtained from two different views of the same building.

which projects measurements of features into measurement
subspaces. The approach has been applied to fuse visual and
laser scanned data together [16]. Although these methods
exploit domain knowledge about the structure of the prior
information, they do not exploit the prior information itself.

The only author we are aware of who exploits the prior in-
formation directly is Kümmerle, who considered the problem
of incorporating information from an aerial map into a robot
using a 3D laser scanner [10]. Specifically, the aerial map
was used in a Monte-Carlo Localisation-type step to improve
the estimated pose of the robot which, naturally, improves
the quality of the map as well. However, Monte Carlo
Localisation methods treat (temporally correlated) map errors
as independent sensor noises [5]. Therefore, this approach
cannot handle out-of-date and incorrect maps. Furthermore,
the method only handles geometric information — more
general types of prior information (such as texture priors
over semantic labels) might be available as well.

In this paper we consider the problem of applying prior
information from a qualitatively different source to a robot
performing SLAM. The structure of the paper is as follows.
Challenges are outlined in Section II. In Section III we de-
scribe our parameterisation of the environment and introduce
the concepts of latent structures and feature maps. Section IV
presents the framework for exploiting this information. We
provide a concrete implementation of this framework in
Section V, showing how it can be implemented for a sys-
tem performing incremental SLAM using a geometric prior
map. The performance of this framework is demonstrated
in simulation in Section VI, and we draw a summary and
conclusions in Section VII.
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II. CHALLENGES WITH PRIOR INFORMATION

Consider the situation shown in Figure 1. A robot conducts
SLAM in an urban environment using a camera or laser range
finder to pick up point features on the walls of buildings. The
robot has not been on the ground in the area before and thus
this precludes the use of place recognition. However the same
environment has also been imaged using a satellite, which
collected high altitude imagery several years before. From
the satellite data, the footprints of buildings can be extracted
and, from these, a set of line segments determined. It is
clear that this prior geometric information could be used to
constrain the position of the landmarks in the map generated
by the robot. However, there are several challenges in using
this information:

1) The satellite data was taken from a different vantage
point. As a result, it provides details about the plane
of the wall, but not features on the wall.

2) The satellite data was taken using a different sensing
system. Imagery data contains no information about
range. Therefore, the height of the building is not
known but varies across the structure. The robot, on the
other hand, uses a 3D LIDAR system which supports
close-range Cartesian information in 3D.

3) The signal processing and representation algorithms
are different. The aerial data is processed (in this
case manually) to determine a set of line segments.
The robot uses point features which were extracted
automatically using 3D shape descriptors.

4) The resolution of the sensors differ. In the satellite
data, walls are approximated as perfectly straight lines.
However, no building wall is straight. Windows are set
into a wall, window ledges project from the wall. Such
details can be readily detected by the robot.

5) The aerial data was taken a significant time previously.
As a result, it might no longer to be an accurate
representation of the state of the environment at the
time the robot undertakes its operations.

To exploit the prior information, these difficulties must be
overcome.

III. MODELLING PRIOR INFORMATION

A. Structures and Feature Maps

We assume that the world is populated by a set of instances
of latent structures. The number and location of these
structures are not known. Although structures could describe
high-level objects in the environment (such as buildings), for
our purposes they need only support part-of relationships:
for example a window can be part of a wall, a wall may
be part of a building, and a building may be part of a city.
All structures are an instance of one of the set of structure
classes π, π ∈ {1, . . . , N}. For the structure class sn, an
oracle Λ can partition the world into the set of all instances
of this structure, the ith instance being denoted sn{i}.

Instances of structures cannot be measured directly. In-
stead, a sensing system (which consists of the physical sensor
together with feature detection algorithms) induces certain

Fig. 2. Left: Example of features that may be induced from structures.
The large crosses represent the centroids of the building, car and tree, while
the small crosses represent salient points detected by the LIDAR. Right:
Example structure class hierarchy corresponding to the top picture, defined
by the oracle Λ with the feature maps xp and xb being produced from
them, along with labels of what they represent. In this case sv and sb are
structure classes at the same level, and sw is at a level lower as it is derived
from sb. Feature maps may be produced from instances of structure classes
at all levels of the hierarchy.

features on a structure. Features must be stable, repeatedly
observable, and can be represented by a state, such as a set of
points in space, texture patches or the centroid of a geometric
body. Different sensing systems will, in general, induce
different sets of features with different dimensionalities on
different parts of the same structure. In the example in
Figure 1, the features in the aerial map are the lines and
the features detected by the robot are points.

The features for all the sensing systems are grouped into
a set of feature maps, m ∈ {1 . . .M} (or simply maps).
Each map contains features of the same type and they are
all parameterised the same way.

The mth feature map consists of Nm features and can be
written as

xm =
{
xm{1},xm{2}, . . .xm{Nm}

}
where xm{i} is the state of the ith feature in the map.

We can generalise this to form a more complex network
for several feature maps obtained from structure instances
within a structure class hierarchy composed of several struc-
ture classes, as shown in Figure 2. In this example, feature
maps are produced from three structure classes (buildings,
trees and cars). The features within two feature maps may
not be mutually exclusive, and there may be overlapping
features.

A system makes observations of subsets of these features
to create an estimate of a feature map.

B. Observations of Feature Maps

Consider feature map m. Given the sensing system and
feature detection algorithms associated with this map, the
observation model at time step k returns a set of Mmk

observations

zm(k) =
{
zm{1}, zm{2}, . . . zm{Mmk}

}
k
,

which are related to the map state through the observation
model

zm(k) = hm (Xv(k),xm,wm(k)) ,
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where Xv(k) is the robot pose, and wm(k) is observation
noise.

Maps are inferred from a set of observations z = z(1 :
k). The discrete data association parameter c(1 : k) as
commonly used in SLAM [7], which we consider part of
the observation model, determines which map feature the
observation goes with. Thus the estimate of the pth feature
map is p(xp|zp).

Having formally defined how we consider systems to
produce a set of feature maps, and how there is shared infor-
mation between them if they came from a common structure,
we can now describe the form of this shared information, and
perform inference as to whether this information applies.

IV. A FRAMEWORK FOR FUSING FEATURE MAPS
TOGETHER

A. Implicit Functional Relationships Between Feature Maps

Information can be exchanged between features in differ-
ent feature maps if they were generated by the same structure
instance sw{s}. We use the binary indicator function

d
(
xp{i}, sw{s}

)
=

{
1 if sw{s} generated xp{i}
0 otherwise

to denote if this relationship exists. To express the relation-
ship that multiple features, such as a point i in the feature
map p and a line n in feature map l were generated by the
same structure, we use the expression

d
(
xp{i},xl{n}, sw{s}

)
= d

(
xp{i}, sw{s}

)
� d
(
xl{n}, sw{s}

)
= din,s. (1)

This can be directly extended to any number of features and
any number of feature maps. This means, for example, it can
express the situation in which a single feature in one map
can be associated with multiple features in another map.

If two features in two different feature maps arise from
a common structure, this implies that a relationship exists
between the features. We represent this relationship as a
parameterised, joint implicit function [12],

f
(
xp{i},xl{n}

)
=

{
θin for din,s = 1

∅ otherwise
(2)

The parameter θin encodes any degrees of freedom that
exists within the relationship. Continuing the point and line
example, no wall facade is ever genuinely a flat surface.
It includes, for example, intrusions due to windows and
extrusions due to ledges.

The form and value of θin depends upon the choice of
the joint implicit function. The prior on this parameter,
p(θin|din,s = 1) serves a key role in propagating information
between the maps.

This prior depends on the structure instance that generated
the features, in this case sw{s}. However it may be the case
that we do not know if din,s = 1; rather we may only
know that din,S = 1, where S covers a number of structure
instances including s.

An example of this is if w corresponds to building
structures. Then s is a particular building which is part
of a group of buildings S. We know that i and n were
generated from the group of buildings, but we do not know
the particular building s. In this case we wish to form a
prior p(θin|din,S = 1) from the priors over the individual
buildings, p(θin|din,s = 1), s ∈ S.

We can do so by marginalising over individual instances,
the interpretation being that the structure instance that xp{i}
and xl{n} were generated from is itself part of structure
further up the hierarchy; this embodies the concept of “aggre-
gation relationships” discussed in [11], and includes concepts
such as wall structures being part of building structures.

Thus

p(θin|din,S = 1) =∑
s∈S

p(θin|din,s = 1) p(din,s = 1|din,S = 1), (3)

where p(din,s = 1|din,S = 1) is a prior for the features
i and n being generated from a particular structure subset
s, and can be conditioned on other information such as
observations.

Because p(θin|din,S = 1) is in effect a weighted sum
of the distributions for the individual instances we would
expect it to apply to more features, but be less informative
given that it is more general. Thus provided we have the
distributions for the individual instances we can trade off
between applying weaker constraints to more features or
stronger constraints to fewer.

B. Fusion of Feature Information Between Maps

Consider the problem of fusing two features xp{i} and
xl{n} in two feature maps p and l4. The maps were
constructed using the observation sequences zp and zl re-
spectively. To fuse these features, we need to determine
the probability that the relationship holds and, given that,
compute the joint distribution. Both these quantities can be
derived from Bayes Rule. Suppose din,s = 1. In this case,
the posterior probability of the joint distribution of both maps
is

p(xm|din,s = 1, zm) =
p(din,s = 1|xm) p(xm|zm)

p(din,s = 1|zm)
, (4)

where we have used the notation xm = {xp,xl} and zm =
{zp, zl} for brevity. The probability that the features came
from the same structure is the evidence in this equation, and
its value is given by marginalising over xm,

p(din,s = 1|zm) =

ˆ
p(din,s = 1|xm) p(xm|zm)dxm.

Normally din,s is unknown, so we would have to es-
timate it jointly with the state from the observations,
p(xm, din,s|zm), however the high dimension of the states

4The analysis can be extended directly to the case in which sets of features
in p can be associated with sets of features in l.
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makes it intractable to do so. Thus we approximate this by
finding the maximum a posteriori (MAP) estimate for din,s,

dMAP
in,s = arg max

din,s

p(din,s|zm), (5)

then condition the maps on this estimate using (4), esti-
mating p(xm|dMAP

in,s , zm), in a similar manner to [3].
We can compute (5) as follows. Since we are testing the

hypothesis that the sets of features are associated through
the common structure instance sw{s}, we can rewrite this
expression terms of the parameter of the joint implicit
function. Specifically, note that

p(din,s = 1|xm) =

ˆ
p(din,s = 1|θin)p(θin|xm)dθin.

Therefore,

p(din,s = 1|zm)

=

ˆ ˆ
p(din,s = 1|θin)p(θin|xm)p(xm|zm)dθindxm

=

ˆ
p(din,s = 1|θin)p(θin|zm)dθin

We can transform this expression to be in terms of the
prior of the parameter through the application of Bayes Rule
again. Specifically,

p(din,s = 1|θin) =
p(θin|din,s = 1)p(din,s = 1)

p(θin)
,

where

p(θin) = p(θin|din,s = 1)p(din,s = 1)

+ p(θin|din,s = 0)p(din,s = 0).

The distribution p(θin|din,s = 1) is the prior determined
by the relationship with the structure. Since θin is not
defined when din,s = 0, we use the uniformative likelihood
p(θin|din,s = 0) = 1.

Thus, if we find that p(din,s = 1|zm) is significantly
probable (where this depends on the application), we can
decide that din,s = 1 and condition the state on it.

V. INCREMENTAL SLAM IMPLEMENTATION

In this section we describe how the framework can be im-
plemented in a full covariance, EKF-based SLAM algorithm.

Consider the motivating example again from Figure 1.
Suppose xp{i} is a point which might lie on the wall of
a building, and xl{n} is a model of the walls of the building.
xl{n} is parameterised by its two end points x1

l{n} and x2
l{n}.

In this case, θin is the orthogonal distance of xp{i} from
xl{n}. Its value is computed from

θin =
det
([

x2
l{n} − x1

l{n} x1
l{n} − xp{i}

])
∣∣∣x2

l{n} − x1
l{n}

∣∣∣ .

If xp{i} and xl{n} were generated by the same structure
and the model for xl{n} were correct, then θin = 0. However,
as explained earlier, these models are not correct and thus

this will generally not be the case. Therefore, we allow for
some uncertainty.

We have discussed detailed implementations else-
where [14]; here we focus on the calculation of the joint
distribution and inferring the structure.

A. Inferring the Structure

We first need to determine the probability p(din,s =
1|zm). Although it is possible to use multiple hypothesis
tracking to account for the evolution of this quantity over
time [15], we have found that very similar performance can
be achieved at a lower cost by delaying the application of
constraints until p(din,s = 1|zm) > paccept, an acceptance
threshold.

We compute this as follows. At time step k, Mahalanobis
gating is first applied to identify the subset of J features I =
{i1, . . . , iJ} in feature map p, xp{I} that potentially relate to
a set of map line segment features N = {n1, . . . , nL}. The
mapping is not one-to-one: several points can be associated
with the same line.

Thus we have a vector of indicators which evaluate to a
binary vector D, where the jth element is

Dj = d
(
xp{Ij},xl{Nj}, sw{Sj}

)
.

Assuming Gaussianity, the likelihood corresponding to the
set of elements M , DM is given by

p(θMIN = 0|z) =
(

(2π)
c
2

√
|S|
)−1

exp

(
−1

2
νTS−1 ν

)
where c is the dimension of ν, ν and S are the innovation
and innovation covariance, ν = f(xp{IM},xl{NM}) and S =

∇f Pm∇T f , where ∇f is the Jacobian of f(·).
We seek the most probable estimate for D, DMAP by

permuting what happens within l and s. We enumerate
over all combinations of D to obtain a set of hypotheses
D1 . . . DN , and then compute the probability distribution
p(DJ |zp(1 : t), zl) over these hypotheses. In our EKF-
SLAM based implementation, we cannot revise incorrectly
applied constraints. Therefore, it is important to ensure that
DMAP is sufficiently probable that it is likely to be the
correct hypothesis. We have found that paccept = 0.7 is
sufficient for this case.

In our implementation we use a constant prior for
p(d
(
xl{n}, sw{s}

)
= 1), the probability that wall fea-

tures come from walls (encompassing spurious features),
where the s wall structure instance is defined in terms
of producing line xl{n}. We also use a constant for
p(d(xp{i},sw{s})=1|d(xl{n},sw{s})=1) , the probability that the
point xp{i} came from the sth structure instance de-
fined as having generated the line segment xl{n} (with
p(d(xp{i},sw{s})=1|d(xl{n},sw{s})=0)=0 ). Furthermore we as-
sume that the structure instance heritage of independent
features is independent.
P (din,s = D) can then be inferred from the structure

of the hierarchy as products of these density functions,
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considering that

P (din,s = D) = p(dI,S = A|dN,S = B) p(dN,S = B),

where AB = D.
For instance for the set of K points xp{K} that may come

from the same wall structure sw{s} as the nth line segment
xl{n},

P (dKn,s = D) ={
p(dn,s=0)+p(dn,s=1)

∏
j∈K p(dj,s=0|dn,s=1) if D=0

p(dn,s=1)
∏

j∈K p(dj,s=Dj |dn,s=1) otherwise
.

Although we have used constant priors, we could condition
these on observations through the use of classifiers.

Having computed the probabilites of all hypotheses
D1 . . . DN , we accept DMAP (the mode) if its probability
exceeds an upper threshold paccept.

We can attempt to form such a hypothesis by marginal-
ising over the hypotheses of some features (in effect they
are removed from all D), and thus we do not attempt to
determine whether a common structure holds in their case.
If the most probable hypothesis is that D = 0 then we do
not apply any constraint information, and repeat the process
at a future time step.

B. Computing the Joint Distribution

Given that din,s = 1, we evaluate (4) as follows. At
timestep k p(xp|zp(1 : k)) and p(xl|zl) are the map esti-
mates from the SLAM state and prior map respectively; here
the observations zp(1 : k) and zl are assumed independent
however this condition is not required. In the EKF these are
represented by their mean x̂p, x̂l and covariance Pp,Pl. The
a priori joint map estimate is

x̂m =

[
x̂p

x̂l

]
,Pm =

[
Pp 0
0 Pl

]
.

Then (4) constitutes a pseudo-observation [14] between
some features in xm. The innovation ν = 0−f(x̂p{i}, x̂l{n}),
with covariance S = ∇f Pm∇T f , where ∇f is the Jacobian
of f(·). A Kalman update then gives the posterior joint map
estimates p(xp,xl|din,s = 1, zp(1 : k), zl),

K = Pm∇T f S−1,

x̂+
m = x̂m + K ν,

P+
m = Pm −KSKT ,

where x̂+ and P+ are the posterior mean and covariance.
The joint map estimate can be represented in a way that is
more robust to linearisation and other errors [14].

VI. SIMULATION STUDIES

We have used simulations to investigate the effect of using
a geometric prior map to aid a vehicle performing EKF-
SLAM in a large urban environment, as used by [14] (we
also use their Dual Representation form). We chose the
EKF because it is well studied and maintains an explicit

Fig. 3. The simulated environment, units in m. The dashed line
shows the trajectory, which starts near the centre and completes an
anti-clockwise loop before ending at the top. The dashed rectangles
show occlusion boundaries.

covariance matrix. Although several alternatives to the EKF
could be used, they suffer from their own drawbacks, such
as inconsistency in the case of FastSLAM [1].

The robot is a steered bicycle (with velocity and steer
1σ errors of 0.5 m and 3◦) equipped with a range-bearing
sensor (with 0.01 m and 1.15◦ 1σ errors), starting at a known
location and travelling at 14 m/s along the 1.4 km trajectory
shown in Figure 3. The SLAM system builds up a 2D metric
map of point beacons, and has a noisy prior map with a 1 m
std. dev. error consisting of line segment feature estimates
representing the outer surfaces of building walls sw, as can
be obtained from OS MasterMap. The structure between the
two maps results in points lying on line segments, in which
case the normal distance is 0; however 40% of the beacons
in the environment lie close to but not on the building walls,
and 11% of the line segments in the prior map are spurious;
thus the algorithm must determine which features have a
common structure before it can use this to inform the SLAM
process (otherwise the estimate will be erroneous). We use
p(d
(
xl{n}, sw{s}

)
= 1) = 0.89 and p(d

(
xp{i}, sw{s}

)
=

1|d
(
xl{n}, sw{s}

)
= 1) = 0.6. We use paccept = 0.7.5

The results are presented for the average over 30 Monte
Carlo runs. Because we do not use map-management tech-
niques such as submapping, for computational reasons we
ran the filter as a sliding window, removing beacons not
seen for 6 seconds (84 m robot travel distance).

Figure 4 shows the absolute error in the robot pose
estimate, along with the 3σ bound of the error estimate.
The SLAM system using the prior map shows a dramatic
improvement in consistency and accuracy from the prior
information, showing that relationships can be determined
robustly by computing the posterior probability of their
holding, and thus a geometric prior map can be used to

5This optimistic threshold gave the best results in our case; we expect
that this is because of the inconsistency exhibited by regular EKF-SLAM.
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Fig. 4. Robot x, y and θ pose error over the trajectory for regular SLAM
without a prior map, and with a prior map of 1 m std. dev. error.

Fig. 5. Log number of constraints applied correctly (thin line) and
incorrectly (thick line) to features in the state, with the thin dotted line
indicating how many were from spurious line segments. Because we use a
sliding window features are constantly being added and removed from the
state. Missing values indicate that no incorrect constraints were applied.

significantly improve SLAM, even when the 1σ error in the
prior map is 1 m (compared with the 0.01 m range accuracy
of the sensor).

Figure 5 shows the number of constraints applied correctly
(there is common structure and thus the constraint holds)
and incorrectly. For most of the trajectory no constraints
were applied incorrectly (as indicated by the missing values),
however for the few that were, the number applied correctly
was between one and two orders of magnitude higher on
average, showing that the method is effectively able to
determine when there is common structure.

VII. SUMMARY AND CONCLUSIONS

In this paper we have presented a framework for exploiting
prior information in SLAM. The key challenge arises when
the prior information is of a different form. To overcome
these difficulties, we introduced the notion of latent structures

and the fact that multiple heterogeneous types of information
can be regarded as different feature maps.

We applied the framework to show that a robot performing
point-based metric SLAM can use a prior map of line
segments to significantly improve its estimate, by inferring
the features for which an underlying structure holds, then
using this to exploit the information from the prior map.

We are currently developing an implementation of the
framework and applying it to a 3D data set. In the future,
we plan to greatly extend the types of features which are
supported to include semantic labels, and to expand the range
of constraints to include topological constraints as well.
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