
Learning Nullspace Policies

Chris Towell, Matthew Howard and Sethu Vijayakumar

Abstract— Many everyday tasks performed by people, such
as reaching, pointing or drawing, resolve redundant degrees
of freedom in the arm in a similar way. In this paper we
present a novel method for learning the strategy used to
resolve redundancy by exploiting the variability in multiple
observations of different tasks. We demonstrate the effectiveness
of this method on three simulated plants: a toy example, a three
link planar arm, and the KUKA lightweight arm.

I. INTRODUCTION

Humans arms are often redundant with respect to a particular

task since the freedom in joint space is usually greater

than that required for the task. For example, keeping the

hand at a fixed location on a desk still allows the elbow to

move through a range of motions. Humans often employ

a single strategy to resolve joint redundancy for a range

of tasks, for example, the position of the elbow is usually

low down, close to the body in a variety of tasks such as

pointing, pouring and wiping, as shown in Fig. 1. In robotics,

control of redundant manipulators is often decomposed into

two orthogonal components using the well known pseudo-

inverse solution [10], [9], [15], [11]. A task space component

determines the control of joint angles required to achieve

a task and a nullspace component determines how any

redundancy with respect to the task is resolved. The latter

is used to accomplish a secondary, lower priority task to

complement the first, for example, for avoidance of joint

limits [2], singularities [17] or obstacles [9]. In principle,

humans must also solve these problems in task-oriented

behaviour, motivating research into methods that can do this

decomposition from data. An important benefit to finding

this decomposition is as follows.

If a robot has a similar morphology to a demonstrator,

it is desirable to learn the nullspace component for transfer

to the robot. For example, a humanoid robot has roughly

the same degrees of freedom as a human. To facilitate

interaction between it and humans, it should move in ways

similar to humans with corresponding patterns of joints. This

allows humans to predict the robot’s movements more easily,

making them more comfortable with the robot. In this case

we wish to learn the redundancy resolution in such a way

as to be able to transfer to the robot, and to generalise to a

range of novel tasks.

Udwadia [16] describes the pseudo-inverse solution in

terms of constraints. The task space component of a mo-

tion in the pseudo-inverse solution can be thought of as

a constraint on the nullspace component. Much work has

been done to exploit statistical regularities in constrained

demonstrations in order to extract features relevant to the task

(for example [4], [5], [1], [6]). Typically such work learns

C. Towell, M. Howard and S. Vijayakumar are with the Institute of
Perception Action and Behaviour, University of Edinburgh, Scotland, UK.
c.c.towell@sms.ed.ac.uk

from demonstrations with fixed constraints. Howard [8] has

pursued the alternative of learning unconstrained policies that

are maximally consistent with observations under different

constraints.

In this paper, we make use of the idea that the pseudo-

inverse solution to the inverse kinematics problem is a

problem of constraints. We extend the approach in [8] to

seek inconsistencies in the demonstrations of different tasks

in order to learn the nullspace resolution. We demonstrate

that this method clearly outperforms the standard form of

direct policy learning and that it can then be successfully

applied to novel tasks.

Fig. 1. Three different tasks: moving the finger to an x, y, z, position,
pouring liquid and wiping a surface. In each case, redundancy is resolved
in the same way. The red arms show alternative, less natural ways to resolve
redundancy. By observing several examples of each task, we learn the single
underlying policy that resolves redundancy.

II. PROBLEM DEFINITION

In this section, we characterise the approach of direct policy

learning (DPL) [14], [12] as applied to the problem of learn-

ing from observations under task constraints. The general

form of DPL is as follows. If x ∈ R
n and u ∈ R

d represent

states and actions respectively, we seek to learn the mapping

u(t) = π(x(t)) , π : R
n 7→ R

d

given paired observations of u(t) and x(t) in the form of

trajectories. For example, in kinematic control the states and

actions may be the joint positions and velocities, respectively.

Alternatively, in dynamics control, the state may include joint

positions and velocities, with torques as actions. Importantly,

it is typically assumed that in demonstrations, the actions u

of the policy π are directly observed [14], [12].

In this paper, we wish to learn policies that describe how

redundancy is resolved with respect to higher priority task

constraints. Specifically, we assume that our observations

contain different components of motion due to both the

nullspace policy, and the task constraints. In such cases,

standard approaches to DPL encounter several difficulties.

For example, consider the problem of learning the policy

used to resolve redundancy in a pointing task, as shown

in Fig. 2. There, the task is to move the finger tip to a

specific position (red target). The nullspace policy resolves

the redundancy by attempting to move the joints to the most

comfortable posture (here, a posture with joint angles near

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 241

(a)

(b)

q
1

q
2

(c)

Fig. 2. (a) Movement due to the nullspace policy, with no task constraint.
The finger approaches a nearly straight, ‘comfortable’ posture. (b) Move-
ment under a ‘pointing’ task. The task constraints drive the finger tip to
the Cartesian position indicated by the target. The nullspace policy acts to
resolve the redundancy in the remaining one degree of freedom. (c) Vector
field representation of the movement. The two axes correspond to the first
two joint angles. Arrows indicate joint velocities observed (red), velocities
due to task constraints (green), velocities due to the nullspace component
(blue) and velocities due to the nullspace policy (black)

zero where the finger is slightly bent). Fig. 2(a) shows the

movement in the absence of the task, and the corresponding

vector field representation of this is shown in black in

Fig. 2(c). As can be observed, in the absence of the task

constraints, each of the vectors point to the zero (central)

position. On the other hand, Fig. 2(b) shows the the finger’s

movement to the target under the task constraints. The red

arrows in Fig. 2(c) show the corresponding observed joint

velocities, with the nullspace component shown in blue and

the task space component shown in green. Clearly, directly

applying DPL on the observed movements (red arrows) will

give a poor approximation of the underlying policy (black)

or the nullspace component (blue). Instead, we must consider

the structure of the data in terms of the task constraints in

order to inform learning in this setting.

A. Constraint Model

One way of thinking about the combination of task and

nullspace policy in the above example is to think of the task

as a constraint on the nullspace policy. This, unlike standard

DPL, allows us to account for the fact that part of the policy

is obscured by the constraint, and the remaining part will

have some task component added to it. The dimension in

which the policy is obscured is the same as that in which the

task space component is added. Consider the set of consistent

k-dimensional constraints

A(x)u(x, t) = b(x, t) (1)

with x ∈ R
n and u ∈ R

d. The general solution to this set

of equations is

u(x, t) = A(x)†b(x, t) + N(x)π(x) (2)

where A† denotes the unique Moore-Penrose pseudo-inverse

of the matrix A and N(x) = (I − A(x)†A(x)) ∈ R
d×d,

π(x) ∈ R
d is an arbitrary vector. For clarity, we will now

drop the dependence on x and t.
In the case of kinematic control of the end-effector of a

manipulator we can identify (1)–(2) with the well known

pseudo-inverse solution to inverse kinematics control. The

states are the joint angles x = q and the actions are the joint

velocities u = q̇. b is a policy which outputs end-effector

velocities and A is the Jacobian J relating joint velocities

to end-effector velocities. For redundant manipulators, the

nullspace of J is not empty and π can be used to control

motion in the joint space without affecting the task-space

motion. Policies π indexed by joint angles can be used to

drive the joint configuration towards a comfortable position

and are compatible with the human cost functions proposed

in [3].

If our observations of u and x are generated by (2) with

the same policy π, then the general problem of constrained

DPL is to recover this policy. In [8], constraints of the form

given by (1) are considered where b = 0. Here we consider

the more complex case of non-zero b.

We will term the two parts of (2) the task space component
tsu and the nullspace component nsu

u = A†b + Nπ = tsu + nsu. (3)

As noted earlier, it would be useful to obtain this decomposi-

tion into the two components and even to obtain the nullspace

policy π. This would allow us to model the redundancy

resolution observed in a variety of tasks (such as in Fig. 1)

or to apply the same strategy to a new task, defined in a

different space.

For learning π, we assume that multiple training examples

are available across a variety of tasks. The difficulty here

is that, for any given observation, we do not know the

exact form of the task, i.e., we may not know A, b or

N. This is especially apparent in learning from human

demonstrations where, for example, the exact end-effector

Jacobian is unknown, and, even if it were, it is often not clear

exactly which end-effector degrees of freedom are controlled

as part of the task. For example, if you point at a far away

target, the orientation of the hand is controlled such that

it points towards the target. It is less clear whether the

x, y, z position of the hand is part of the task or whether

a comfortable position is chosen as part of the redundancy

resolution.

In addition to this, the problem of learning π is also

non-convex in two ways. The observed action u can appear

differently under different tasks due to variations in b for

the same π. Also, two nullspace components can appear

differently under two different task spaces due to variation

in the constraint matrix A for the same π. For DPL, this

means that we cannot expect the mean of observations to

give us the nullspace policy.

The problem is also degenerate in two ways. There may

be multiple policies π that are projected by N to the same

nullspace component and there may be multiple ways to

decompose u into two orthogonal components depending on

what the true task space consists of.

Despite these difficulties, we consider a class of problems

where we are able to group observations as having been

generated in a specific task space (having the same constraint

matrix A). Such tasks may be those which require the

x, y, z Cartesian position of the end-effector (for example

drawing) or those which require control over orientation (for

example pouring liquid from a cup) and, in a real world

scenario, would be straightforward to label. If we make this

assumption, although we may not know the nature of the

constraint, and given sufficient variation in tasks, then we

242

will show that a model of the nullspace policy π can still be

learnt.

III. METHOD

Our method works on data that is given as tuples (xn,un)
of observed states and constrained actions. We assume that

all commands u are generated using the same underlying

policy π(x) to resolve redundancy, which for a particular

observation might have been constrained by task constraints,

that is un = A†
nbn + Nnπ(xn) for task space movement

bn and constraint An. We assume that the latter (An and

bn) are not explicitly known for any given observation, but

that observations may be grouped into K subsets of N
data points1, each recorded under a different constraint (i.e.,

the kth data set contains observations under the kth task

constraint Ak(x)). Our goal is to reconstruct the nullspace

policy π(x).
Given only xn and un, one may be tempted to simply

minimise the standard risk

Edirect[π̃] =

K×N
∑

n=1

‖un − π̃(xn)‖2 (4)

which would correspond to the standard DPL approach.

However, this would ignore the constraints and task space

movements, and correspond to a naive averaging of com-

mands from different circumstances.

Since we know that our data contains constraints, a second

tempting possibility is to directly use constraint consistent

learning (CCL) [7]. This estimates a policy π̃(x) by min-

imising the inconsistency error [7]

Ei[π̃] =

K×N
∑

n=1

‖un − Pnπ̃(xn)‖2; Pn =
unuT

n

‖un‖2
. (5)

However, as discussed in Sec. II, constraint consistent learn-

ing relies on the assumption that b(x, t) = 0, i.e. that the task

constraints are stationary. In our setting, the non-zero task

space movement tsu(x, t), interferes with learning, resulting

in poor performance.

Instead, our proposal is to use a new two-step approach

to learning. In the first step, we use the K data subsets to

learn a set of intermediate policies ns
π̃k(x), k = 1, . . . ,K.

The latter should capture the nullspace component of motion
nsu(x, t) under each of the K task constraints Ak(x), while

eliminating as far as possible the task space component
tsu(x, t). Having learnt these intermediate models, we can

then combine our observations into a single model that

captures the policy used for redundancy resolution across

tasks. For learning the latter, we propose to bootstrap CCL

on the predictions from the intermediate policies, in order

to estimate the true underlying policy π(x). A schematic of

the approach is illustrated in Fig. 3.

Step 1: Learning the Nullspace Component

In this step, we process each of the K data subsets to

learn a set of intermediate policies ns
π̃k(x), k = 1, . . . ,K,

that capture the nullspace component of motion nsu(x). In

1For clarity, here we will assume that the subsets are of equal size, but
in general the sizes may differ.

other words, for the kth data subset, we seek a policy that

minimises

Ens[π̃] =

N
∑

n=1

‖nsuk,n − ns
π̃k(xn)‖2 (6)

where nsuk,n is the true nullspace component of the nth data

point in the kth data subset. Note that, by assumption, we

do not have access to samples nsuk,n, so we cannot directly

optimise (6).

Instead, we seek to eliminate the components of motion

that are due to the task constraints, and learn a model that is

consistent with the observations. The key to our approach,

is to use a projection to do that elimination, that is, we seek

a projection P for which

Pu = P (tsu + nsu) = nsu. (7)

One such projection is the matrix N(x) since, by definition,

its image space (or any subspace of this) is orthogonal to the

task (ref. Fig. 3(a)). However, this is also not possible since

N(x) is also unavailable by assumption.

A second possibility would be to replace P, with a pro-

jection onto the true nullspace component nsu, i.e., defining

P ≡ nsu nsuT /‖nsu‖2 = nsP. Since nsu is, by definition,

orthogonal to tsu, this would effectively eliminate any task

space components in the observed data (as can be seen, for

example, in the projections of u1, u2 onto nsu1 in Fig. 3(b)).

However, since samples of nsu are also not directly available,

such an approach is also not possible with the data assumed

given.

However, motivated by this observation, we can instead

make an approximation of the required projection. Our pro-

posal is to replace P, with a projection based on an estimate

of the nullspace component, and proceed to iteratively refine

that estimate in order to optimise consistency with the

observations. For this, we propose to minimise the error

function

E1[
ns

π̃k] =

N
∑

n=1

‖P̃k,nuk,n − ns
π̃k(xn)‖2 (8)

with P̃k,n = ns
π̃k,n

ns
π̃

T
k,n/‖ns

π̃k,n‖
2. Here, uk,n is the

nth data point in the kth data subset, and we defined
ns

π̃k,n = ns
π̃k(xn). Minimising (8) corresponds to min-

imising the difference between the current model of the

nullspace movement, ns
π̃k(x), and the observations pro-

jected onto that model. An illustration is shown in Fig. 3(b)-

(c).

Effectively, in (8) we approximate N(x) with a projection

onto a 1-D space in which, if our current estimate of ns
π̃k(x)

is accurate, the true nullspace component nsun lies. At this

point we note that the quality of this approximation will,

in general, depend on our on how well the current estimate
ns

π̃k(x) captures the true underlying policy. Since we pursue

an iterative approach, this means that the initialisation of

model parameters has a significant effect on the accuracy of

our final estimate. In practice, in the absence of any prior

information about the policy, we can draw several random

sets of parameters for initialisation, run the optimisation, and

select the model that best minimises (8).

243

uns

uts

u

(a) Raw observation u consists of
two orthogonal components tsu and
nsu (not explicitly observable).

u1 u2

A 1

1u
ts

2u
ts

uns
1

(b) Two observations u1, u2 of dif-
ferent tasks performed in the task
space defined by A1.

u4

u3

A 2

4u
ts

3u
ts

u
_uns

2

(c) Two observations u3, u4 of
tasks performed in a second task
space defined by A2. Naive regres-
sion results in prediction ū.

uns

2

uns
1

(d) Reconstruction of the underlying
policy π by CCL on the model pre-
dictions ns

π̃1, ns
π̃2.

Fig. 3. Illustration of our approach. Raw observations u1, u2 in space
A1 project onto the nullspace component nsu1. Similarly, u3 and u4 in
space A2 project onto nullspace component nsu2. Naive regression on the
data causes model averaging and a poor prediction (e.g., ū). We therefore
first seek the nullspace components nsu1, nsu2 then apply CCL to find
the underlying policy π.

A second point to note is that by framing our learning

problem as a risk minimisation task, we can apply standard

regularisation techniques such as adding suitable penalty

terms to prevent over-fitting due to noise.

The proposed risk functional can be used in conjunction

with many regression techniques. However, for the experi-

ments in this paper, we restrict ourselves to two classes of

function approximator for learning the nullspace component

of the observations. These are (i) simple parametric models

with fixed basis functions (Sec. III-A), and (ii) locally linear

models (Sec. III-B). In the following we briefly outline how

these models can be trained using the proposed approach.

A. Parametric Policy Models

A convenient model for capturing the nullspace component

of the kth data subset is given by ns
π̃k(x) = Wkbk(x),

where Wk∈R
d×M is a matrix of weights, and bk(x)∈R

M

is a vector of fixed basis functions. This notably includes the

case of (globally) linear models where we set bk(x)= x̄=
(xT , 1)T , or the case of normalised radial basis functions

(RBFs) bk,i(x) = K(x−ci)
P

M
j=1

K(x−cj)
calculated from Gaussian

kernels K(·) around M pre-determined centres ci, i =
1 . . . M .

For the kth data subset, with this model, the error (8)

becomes

E1(Wk) =

N
∑

n=1

∥

∥

∥

∥

Wkbk,n(Wkbk,n)T uk,n

‖Wkbk,n‖2
− Wkbk,n

∥

∥

∥

∥

2

(9)

where we defined bk,n = bk(xn). Due to the 4th-order

dependence on Wk, this is a non-linear least squares problem

which cannot easily be solved for Wk in closed form.

However, in order to find the optimal weights

W
opt

k = arg min E1(Wk) (10)

we can apply fast numerical optimization techniques suited

to solving such problems. In our experiments, we use the

efficient Levenberg-Marquardt (LM) algorithm to optimise

the parameters based on (9).

B. Locally Linear Policy Models

The parametric models of the previous section quickly

encounter difficulties as the dimensionality of the input

space increases. As an alternative, we can use local learning

techniques. For this, we fit multiple locally weighted linear

models ns
π̃k,m(x) = Bk,mx̄ = Bk,m(xT , 1)T to the kth

data subset, learning each local model independently [13].

For a linear model centred at cm with an isotropic Gaus-

sian receptive field with variance σ2, we would minimise

E1(Bk,m) =

N
∑

n=1

wn,m ‖Pk,n,muk,n − Bk,mx̄n‖
2

(11)

where Pk,n,m = Bk,mx̄n(Bk,mx̄n)T /‖Bk,mx̄n‖
2. The fac-

tors wnm = exp(− 1
2σ2 ‖xn − cm‖2) weight the importance

of each observation (xn,un), giving more weight to nearby

samples. The optimal slopes

B
opt

k,m = arg min E1(Bk,m) (12)

are retrieved with a non-linear least squares optimiser. Sim-

ilar to the parametric approach, in our experiments we use

the LM algorithm for this.

Finally, for the global prediction of the nullspace policy,

we combine the local linear models using the convex com-

bination

ns
π̃k(x) =

∑M

m=1 wmBk,mx̄
∑M

m=1 wm

where wm = exp
(

− 1
2σ2 ‖x − cm‖2

)

.

Step 2: Learning the Underlying Policy

Applying the approach described in the previous sections to

each of the K data subsets, we are then left with a set of

intermediate models ns
π̃k(x) that approximate the nullspace

component of motion for tasks performed in the K different

task spaces. Our task now is to combine these intermediate

models ns
π̃k(x) to find a single consistent approximation of

the underlying policy π(x).
This is relatively straightforward using CCL [7]. Specif-

ically, we make predictions from the intermediate models

to form a concatenated data set {xn, ns
π̃k,n}

N

n=1 for k =
1, . . . ,K, where ns

π̃k,n ≡ ns
π̃k(xn). We then directly apply

CCL on this data by seeking a policy estimate that minimises

the objective function

E2[π̃] =

N×K
∑

n=1

‖ns
π̃n − P̃nπ̃(xn)‖2; P̃n =

ns
π̃n

ns
π̃

T
n

‖ns
π̃n‖2

.

(13)

As described in [7], a closed-form solution to this optimisa-

tion exists for both parametric and local linear policy models,

making this final step highly efficient. The outcome is a

policy model that is consistent with each of the intermediate

244

Algorithm 1

1: Split demonstrations into K data subsets, one for each

type of task constraint.

2: for k = 1 to K do

3: Learn intermediate policy ns
π̃k(x) by minimising E1

(8) using numerical optimization.

4: Output predictions for nsuk,n using learnt policy.

5: end for

6: Combine predictions into a single dataset.

7: Use CCL [7] to learn the underlying nullspace policy π.

models (ref. Fig. 3(d)), and can be used to make predictions

about redundancy resolution, even under task constraints that

are previously unseen in the data. The whole process is

summarised in Algorithm 1.

IV. EXPERIMENTS

To demonstrate the performance of the algorithm, we applied

it to scenarios on three simulated plants. Firstly an artificial

toy two-dimensional system, then a planar three link arm and

finally a higher dimensional 7-DOF Kuka lightweight arm.

Data was generated by numerically integrating (2).

A. Toy Example

The goal of the first set of experiments was to demonstrate

the principles involved in our approach, and characterise

its performance for learning polices of varying complexity,

under different noise conditions and with varying amounts

of data.

For this, we set up a simple toy system consisting of a

linear attractor policy

π(x) = β(x0 − x) (14)

with states x ∈ R
2 and actions u ∈ R

2 representing position

and velocities, respectively. The policy has a single attractor

point which we set to x0 = 0, and the scaling factor was

set to β = 0.1. Policies such as (14) are commonly used

for joint limit avoidance in many inverse kinematics control

schemes [2].

The policy (14) was subject to 1-D task constraints of the

form

A = α̂
T ; α = (α1, α2)

T (15)

so that for any given choice of A, the task space is defined

as the direction parallel to the normalised vector α̂ (for

example, if α̂=(1, 0)T , then the task space consists of the

first dimension of the state-space).

To simulate the effect of observing multiple tasks in

different spaces, we collected data in which, for each demon-

stration, a randomly generated task space policy acted in

a random subspace of the system. Specifically, for each

trajectory, the elements of α were chosen from the uniform

distribution αi ∼ U [0, 1]. Using this as the task space,

movements were then generated with a linear attractor policy

b(x) = βts(r
∗ − r). (16)

Here, r denotes the current position in task space, r∗ denotes

the task space target and we chose βts = 0.1. For each

trajectory the task space target was drawn uniform randomly,

i.e., r∗ ∼ U [−2, 2]. The task, therefore, is to move with fixed

velocity to the target point r∗ along the direction given by

α̂.
Under this set up, we collected data under K = 2 different

task constraints, where, for each constraint, we collected 40
trajectories from random start states, each of length 40 steps

(in total N = 1600 data points per task constraint), reserving

10% of the total data set as unseen test data.
For the learning, we used a parametric policy represen-

tation (see Sec. III-A) consisting of 6×6 grid of Gaussian

radial basis functions arranged around the maximum extents

of the data. The widths σ2 were fixed to give suitable

overlap between basis functions. For comparison, we also

tried learning with the direct regression approach, whereby

we directly trained on the raw observations u by minimising

(4), using the same parametric policy model. We repeated

this experiment for 50 data sets and evaluated (i) the nor-

malised mean-squared error (nMSE) in the estimation of the

nullspace component of the data Ens, (ii) the normalised

error according to the proposed objective function E1, (iii)

the normalised constrained policy error (nCPE), and (iv) the

normalised unconstrained policy error (nUPE) [7] on the

test data. The latter two measure the difference between the

estimated policy π̃ and that of the true underlying policy

π either when subject to the same constraints as in the

data, or when fully unconstrained [7], and as such, give an

estimate as to how well the policy will generalise to new,

unseen constraints. We also repeated the experiment for two

additional nullspace policies with differing functional forms,

namely,

1) a sinusoidal policy: π(x) = ∇xφ(x) where φ(x) =
−β sin(x1) cos(x2) and β = 0.1;

2) a limit cycle policy: ṙ = r(ρ2 − r2), θ̇ = ω with

radius ρ2 =2, angular velocity ω=−2 rad s−1, where

x1 =βr cos θ, x2 =βr sin θ and β = 0.01.

Tables I & II show the results averaged over 50 trials for

each experiment.
The scores of Ens in Table I tell us that the estimation of

the nullspace component nsu using the proposed approach

is orders of magnitude better than using the naive method, a

fact confirmed the corresponding low scores for E1. Looking

at Table II we see that this also translates to low error in

estimating the underlying underlying policy π, as evinced by

the very low values for the nUPE and nCPE. (again, orders

of magnitude lower in error compared to the direct regression

approach).
Comparing the figures for the three different policy types,

we also see that increasing complexity of the policy results in

a harder learning problem: compare the error figures for the

linear policy to those of the of the limit cycle and sinusoidal

policies.
Finally, we note that in all cases the nCPE was at least

one order of magnitude better for the policies learnt with

the proposed method as compared to those learnt with direct

regression. This supports the view that, even if we cannot

exactly reconstruct the original nullspace policy, we can at

least obtain a single policy which matches the nullspace

component under the observed constraints.
To further characterise the performance, we also looked at

the effect of varying levels of noise and amounts of training

245

Policy Method Ens E1

Linear Direct 0.40617± 0.28809 0.43799± 0.26530
Novel 0.00042± 0.00188 0.00031± 0.00233

Sinusoidal Direct 0.60510± 0.82434 0.72154± 0.40734
Novel 0.00822± 0.02430 0.00343± 0.01839

Limit cycle Direct 1.31894± 1.02806 3.85736± 1.76578
Novel 0.01590± 0.04186 0.01290± 0.05013

TABLE I

NORMALISED ERROR IN PREDICTING THE NULLSPACE COMPONENT OF

MOTION (STEP 1). RESULTS ARE (MEAN±S.D.) OVER 100 TRIALS (50

TRIALS × 2 CONSTRAINTS).

Policy Method nUPE nCPE

Linear Direct 0.82792± 0.05979 0.02212± 0.01746
Novel 0.00384± 0.01499 0.00003± 0.00006

Sinusoidal Direct 0.84798± 0.16709 0.04465± 0.04334
Novel 0.13302± 0.15719 0.00287± 0.00266

Limit cycle Direct 0.78840± 0.25528 0.04080± 0.04512
Novel 0.14135± 0.23641 0.00386± 0.00606

TABLE II

NORMALISED ERROR IN PREDICTING THE UNDERLYING POLICY (STEPS

1 AND 2). RESULTS ARE (MEAN±S.D.) OVER 50 TRIALS.

Noise (%)

N
o
rm

a
lis

e
d
 E

rr
o
r nUPE

nCPE

E
ns

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

Trajectories

N
o
rm

a
lis

e
d
 E

rr
o
r

nUPE

nCPE

E
ns

5 10 15 20 25 30 35 40

10
−2

10
0

10
2

Fig. 4. Top: Normalised UPE, CPE and Ens for increasing noise levels
in the observed xn and un for the limit cycle nullspace policy. Bottom:
Normalised UPE, CPE and Ens versus data set size as the number of
training trajectories increases.

data for the limit cycle policy. Fig. 4(top) shows how the

nUPE, nCPE and normalised nullspace error Ens error vary

with increasing levels of noise in the observed state xn

and commands un, up to 20% of the scale of the data.

Fig. 4(bottom) shows how these errors vary with different

numbers of input trajectories. As can be seen, our method

shows a gradual decrease is error as the amount of data

increases and an increase in the error as noise increases.

B. Three Link Arm

The goal of our next set of experiments was to evaluate

the efficacy of the method on a more realistic problem, and

test our ability to generalise across different tasks defined in

different spaces. For this, we chose to investigate a scenario

in which we wish to learn the redundancy resolution for a

kinematically controlled planar three link arm.
The set up was as follows: The state and action spaces

of the arm were described by the joint angles x = q ∈
R

3 and velocities u = q̇ ∈ R
3, respectively. For ease of

comparison with the toy example, we used the same linear

policy (14) for redundancy resolution, this time with β = 1
and with attractor point x0 = (10◦,−10◦, 10◦)T . This point

was chosen as a safe, default posture, away from singularities

and joint limits.
Under this redundancy resolution regime, we collected

data from the arm as it performed different tasks in several

task spaces. Specifically, tasks were defined in (i) the 2-D

space describing the Cartesian position of the end-effector

(i.e., r = (x, y)T); (ii) the space defined by the x-coordinate

and orientation of the end-effector (i.e., r = (x, θ)T), and;

(iii) the space defined by the y-coordinate and end-effector

orientation (i.e., r = (y, θ)T).
Within each of these spaces the arm was controlled to

randomly perform different tasks. Specifically, in each space

the arm followed a linear policy (16) (this time with β = 1)

to track to randomly selected targets. The latter were drawn

uniformly for each trajectory from x∗ ∼ U [−1, 1], y∗ ∼
U [0, 2] and θ∗ ∼ U [0◦, 180◦]. These values were chosen to

limit the arm to approximately the top half of the workspace

with y > 0. Only targets with a valid inverse kinematics

solution were considered.
For each task space, 40 trajectories each of length 40 steps

were generated at a sampling rate of 50Hz. The start states

for each trajectory were drawn from the uniform distribution

q1 ∼ U [0◦, 10◦], q2 ∼ U [90◦, 100◦], q3 ∼ U [0◦, 10◦]. Of the

total data, 10% was reserved as unseen test data.
For the learning, we used parametric models (see Sec. III-

A) consisting of 100 Gaussian RBFs with centres chosen ac-

cording to k-means and with widths taken as the mean of the

distances between centres. We trained the same parametric

model (i) with the proposed approach, and, for comparison;

(ii) with direct regression on the raw observations u. We

repeated this experiment for 50 trials, and evaluated the

normalised error in terms of the four metrics: (6), (8), the

UPE, and the CPE.
Table III shows the results for step 1 and Table IV shows

the results for the whole process. Table III shows that we can

learn a very good approximation of the nullspace component
nsu and that minimizing E1 again tends to minimize Ens.

Table IV shows we can learn the nullspace policy far better

than the direct method and obtain a reasonable estimate of

π. The very low nCPE again demonstrates that if the same

constraints as those observed are applied to our single learnt

policy, then the output closely matches the constrained true

nullspace policy.
Fig. 5(a) and 5(b) show an example of using the learnt

nullspace policy with known A and b in (2) to generate a

new trajectory. The task space matches one of the observed

task spaces and was to control the x, y position of the

end effector and move to the point (1.5, 1)T . A novel start

position of (90◦, 45◦,−20◦) was used. The experiment was

run for 200 time steps to demonstrate convergence to the

246

Cstr. Method Ens E1

x, y
Direct 33.93435± 4.70679 2.0504 ± 0.5077

Novel 0.00037± 0.00136 7.3647×10−12 ± 1.2412×10−11

x, θ
Direct 17.84229± 3.36997 0.4301 ± 0.1635

Novel 0.00010± 0.00020 2.1258×10−10 ± 5.7595×10−10

y, θ
Direct 28.69063± 3.44916 0.7642 ± 0.2130

Novel 0.00118± 0.00133 3.0107×10−9 ± 3.1828×10−9

TABLE III

NORMALISED ERROR IN PREDICTING THE NULLSPACE COMPONENT OF

MOTION (STEP 1). RESULTS ARE (MEAN±S.D.) OVER 50 TRIALS FOR

EACH OF THE 3 CONSTRAINTS.

Method nUPE nCPE

Direct 20.85327± 4.81346 0.31210± 0.06641
Novel 0.36199± 0.84707 0.00017± 0.00025

TABLE IV

NORMALISED ERROR IN PREDICTING THE UNDERLYING POLICY (STEPS

1 AND 2). RESULTS ARE (MEAN±S.D.) OVER 50 TRIALS.

Constr. Direct Novel

x 12.62812± 3.55790 0.13917± 0.39708
y 6.87882± 4.22021 0.15620± 0.32314
θ 10.19341± 3.46767 0.12200± 0.33360

TABLE V

NORMALISED ERROR IN PREDICTING THE POLICY IN THE NULLSPACE

OF UNSEEN TASK CONSTRAINTS. RESULTS ARE (MEAN±S.D.) OVER 50

TRIALS.

target. The true nullspace policy and the policy learnt using

the naive direct method are shown as a comparison. It can be

seen that the novel method follows the true joint trajectories

extremely well. The direct method, although forced to finish

at the correct task space target, ends up with quite different

joint angles.

In Fig. 5(c) and 5(d), the task space is one that has not

been seen in the training data. It is to control the orientation

of the end effector only in order to move to an angle of 45◦.

The learnt nullspace policy generalises well, matching the

true joint trajectories closely - resolving the redundancy in

the correct way. The direct method again arrives at a quite

different set of joint angles. Table V shows the nCPE when

the learnt policies are constrained by unseen task spaces i.e.

how well we can predict nsu under the indicated constraints.

The low score shows that as in Fig. 5(c) and 5(d), the learnt

nullspace policy can be expected to generalise well to new

task spaces.

C. Kuka Lightweight Arm

The goal of our final set of experiments was to characterise

how well the algorithm scales to higher dimensional prob-

lems, with more complex, realistic constraints. For this, we

used a kinematic simulation of the 7-DOF Kuka lightweight

robot (LWR-III) Fig. 6.

The experimental procedure was as follows. We generated

a random initial posture by drawing 7 joint angles uniformly

around a default start posture q0 in the range of ±0.4 rad,

that is qi ∼ q0,i + U [−0.4; 0.4] rad. We then selected 4

different spaces in which different tasks were performed,

denoted here as (x, y, z), (x, y, θx), (x, z, θx), and (y, z, θx).
Here, the letters denote which end-effector coordinates were

controlled as the task space, that is, (x, y, z) means the

task was defined in end-effector position coordinates, but

−1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

Novel

True

Direct

Start

End

(a) Arm visualisation for example
task in space r = (x, y)

20 40 60 80 100 120 140 160 180 200

0
20
40
60
80

J
o

in
t

1
(d

e
g

re
e

s
)

t

20 40 60 80 100 120 140 160 180 200
−100

−50

0

50

J
o

in
t

2
(d

e
g

re
e

s
)

t

20 40 60 80 100 120 140 160 180 200

0

50

100

J
o

in
t

3
(d

e
g

re
e

s
)

t

Novel True Direct

(b) Joint angle trajectory for ex-
ample movement in task space
r = (x, y)

−1 −0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5

2

Novel

True

Direct

Start

End

End

(c) Arm visualisation for example
task in space r = θ

20 40 60 80 100 120 140 160 180 200

0

20

40

J
o

in
t

1
(d

e
g

re
e

s
)

t

20 40 60 80 100 120 140 160 180 200

20

40

60

80

J
o

in
t

2
(d

e
g

re
e

s
)

t

20 40 60 80 100 120 140 160 180 200

−50

0

50

J
o

in
t

3
(d

e
g

re
e

s
)

t

Novel True Direct

(d) Joint angle trajectory for ex-
ample task in space r = θ

Fig. 5. Using the learnt policies to resolve redundancy on the three link
arm. Top: Redundancy resolution under a task constraint seen in the data
(r = (x, y)). The task is to move the end-effector with linear velocity
to the point r∗ = (1.5, 1). Bottom: Redundancy resolution under a task
constraint previously unseen in the data (r = θ). The task is to move to
the target orientation r∗ = 45◦. Movement according to the ground truth
policy (black) and the policies learnt with the proposed approach (red) and
direct regression (blue) are shown. The opaque arms show midpoints along
the trajectories (marked as squares on the joint angle profiles).

ignored the orientation. Similarly, (x, y, θx) means the task

was defined in the x- and y-coordinates and the orientation

around the x-axis, while leaving the z-position and orienta-

tion around the y- and z-axes unconstrained.

Within these different spaces, we then set up a closed

loop inverse kinematics policy for tracking to a variety

of targets at different speeds. Specifically, we used the

linear attractor policy (16), this time with targets chosen

according to x ∼ U [.25, .75], y ∼ U [−.5, 0], z ∼ U [0, .5]
and θz ∼ θz,0 + U [0, π

3] (where θz,0 is the z-angle of the

end-effector at joint position q0). To increase the variation

in the task-directed movements we also varied the speed of

task space movement by drawing the scaling parameter from

βts∼U [0, .04]. Depending on which of the 4 spaces is used,

this policy corresponds to qualitatively different task-oriented

behaviours. For example, in the (x, y, z) task space (i.e., end-

effector positions) the behaviour is similar to reaching to a

target. In the (x, y, θx) space, the behaviour is more like a

pouring behaviour (tracking to a desired orientation at a point

in the horizontal plane).

For resolving redundancy, we used a non-linear joint

limit avoidance type policy as π(x) = −α∇Φ(x), with

the potential given by Φ(x) =
∑7

i=1 |xi|
p for p = 1.5 and

p = 1.8. We then generated 250 trajectories with 40 points

each, following the combined task and nullspace policies for

the 4 different task constraints.

For learning in the 7-D state space, we selected locally

linear models as described in Sec. III-B, where we used

receptive fields of fixed width (σ2 = .25) and placed the

centres {cm} of the local models such that every training

sample (xn,un) was weighted within at least one receptive

247

Policy Constr. Novel Direct

p=2.0

x - y - z 0.175± 0.021 0.400± 0.083
x - y - θx 0.313± 0.022 0.457± 0.048
x - z - θx 0.318± 0.037 0.467± 0.059
y - z - θx 0.133± 0.023 0.263± 0.048

p=1.8

x - y - z 0.200± 0.020 0.361± 0.069
x - y - θx 0.317± 0.021 0.426± 0.040
x - z - θx 0.322± 0.030 0.422± 0.049
y - z - θx 0.161± 0.020 0.250± 0.040

p=1.5

x - y - z 0.294± 0.013 0.381± 0.048
x - y - θx 0.393± 0.022 0.452± 0.033
x - z - θx 0.422± 0.030 0.448± 0.035
y - z - θx 0.318± 0.021 0.352± 0.031

TABLE VI

NORMALISED ERROR IN PREDICTING THE NULLSPACE PART OF MOTION

Ens , UNDER TASK CONSTRAINTS IN DIFFERENT SPACES FOR JOINT

LIMIT AVOIDANCE POLICIES ON THE KUKA LWR-III. RESULTS ARE

MEAN±S.D. OVER 20 TRIALS.

Policy Method nUPE nCPE

p=2.0
Novel 0.732± 0.049 0.097± 0.024
Direct 1.008± 0.027 0.090± 0.007

p=1.8
Novel 0.755± 0.038 0.091± 0.018
Direct 1.001± 0.024 0.087± 0.005

p=1.5
Novel 0.870± 0.043 0.097± 0.009
Direct 1.006± 0.019 0.093± 0.003

TABLE VII

NORMALISED ERROR IN PREDICTING THE UNDERLYING POLICY (STEPS

1 AND 2) FOR JOINT LIMIT AVOIDANCE POLICIES ON THE KUKA

LWR-III. RESULTS ARE MEAN±S.D. OVER 20 TRIALS.

Fig. 6. The redundant Kuka Lightweight Arm. A simulated version was
used for the experiments in section IV-C.

field with wm(xn) ≥ 0.7. On average, this yielded between

30-60 local models. For all constraint types (task spaces), we

estimated the policy from a training subset, and evaluated

it on test data from the same constraint. The results are

enumerated in Tables VI & VII.

Looking at Table VI we see that in all cases the proposed

approach performed better than direct regression for learning

the nullspace component of motion nsu. Comparing errors

for the different policies, we see that the learning problem

became increasingly harder for the more non-linear policies

(p = 1.8 and p = 1.5). We also note that the performance

was also affected by the different constraint types (with the

(x, y, θx) and (x, z, θx) task spaces presenting the harder

learning problems). These trends are reflected in terms of

the performance of Step 2 (ref. Table VII), however, we note

that in all cases the proposed approach achieved lower nUPE

that the direct approach, indicating that policies learnt with

this approach have better generalisation across different task

constraints.

V. CONCLUSION

In this work, we introduced a novel technique for learning

redundancy resolution (nullspace) policies from demonstra-

tions. We assume that demonstrations are generated with a

consistent redundancy resolution strategy and that this acts

within the nullspace of the task. Importantly, no knowledge

of the task space or task policy is required. In experiments

with three simulated plants, we demonstrated that our method

learns better nullspace policy estimates compared to standard

DPL on the raw observations. A key benefit is that the single

learnt nullspace policy can be used to resolve redundancy

with any tasks in the observed task spaces, and will often

generalise to new task spaces.

In future work we aim to demonstrate the method on

human data where no ground truth nullspace policy is known.

Currently we learn velocity based nullspace policies. Exactly

the same framework can be used for acceleration and force

based policies. We aim to examine performance in this

case. We also aim to investigate an alternative benefit of

learning the nullspace decomposition whereby the nullspace

component is removed from observations in order to learn

policies for the task space component.

REFERENCES

[1] S. Calinon, F. Guenter, and A. Billard. On learning, representing, and
generalizing a task in a humanoid robot. IEEE Trans. Systems Man
and Cybernetics Part B, 37(2):286, 2007.

[2] F. Chaumette and A. Marchand. A redundancy-based iterative ap-
proach for avoiding joint limits: Application to visual servoing. IEEE
Trans. Robotics and Automation, 17:719–730, 2001.

[3] H. Cruse, E. Wischmeyer, M. Bruwer, P. Brockfeld, and A. Dress.
On the cost functions for the control of the human arm movement.
Biological Cybernetics, 62(6):519–528, 1990.

[4] N. Delson and H. West. Robot programming by human demonstration:
adaptation and inconsistency in constrained motion. In Proc. IEEE Int.
Conf. Robotics and Automation, 1996.

[5] S. Ekvall and D. Kragic. Learning task models from multiple human
demonstrations. In Proc. 15th IEEE Int. Symp. Robot and Human
Interactive Communication ROMAN 2006, pages 358–363, Sept. 2006.

[6] M. Hersch, F. Guenter, S. Calinon, and A. G. Billard. Dynamical
system modulation for robot learning via kinesthetic demonstrations.
IEEE Trans. Robotics, 24(6):1463–1467, 2008.

[7] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijayakumar.
A novel method for learning policies from variable constraint data.
Autonomous Robots, 27(2):105–121, 2009.

[8] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijayakumar.
A novel method for learning policies from constrained motion. In
IEEE Int. Conf. Robotics and Automation, 2009.

[9] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Robotics Research, 5(1):90, 1986.

[10] A. Liégeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms. IEEE Trans. Systems Man and
Cybernetics, 7:868–871, 1977.

[11] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal. A uni-
fying framework for robot control with redundant dofs. Autonomous
Robots, 24(1):1–12, January 2008.

[12] J. Peters and S. Schaal. Learning to control in operational space. Int.
J. Robotics Research, 27:197–212, 2008.

[13] S. Schaal and C. Atkeson. Constructive incremental learning from
only local information. Neural Computation, 10:2047–2084, 1998.

[14] S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to
motor learning by imitation. Philos Trans R Soc Lond B Biol Sci,
358(1431):537–547, Mar 2003.

[15] L. Sentis and O. Khatib. Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives. Int. J. Humanoid
Robotics, 2(4):505–518, 2005.

[16] F. Udwadia and R. Kalaba. Analytical Dynamics: A New Approach.
Cambridge University Press, 2008.

[17] T. Yoshikawa. Manipulability of robotic mechanisms. Int. J. Robotics
Research, 4:3–9, 1985.

248

