
  

  

Abstract—Real-time lane detection and localization is one of 
the key issues for many intelligent transportation systems. In 
this paper, we present a lane detection and tracking approach 
designed to work in challenging environments where lane 
boundaries may be low-contrast and changeful with noise due 
to a number of factors such as wear, type, lighting and weather 
conditions, etc. In the method, a sophisticated cascade lane 
feature detector is applied to cope with challenging 
environments at the very beginning of the detection and a 
weighted graph is subsequently constructed by integrating 
intensity as well as geometry cues, reflecting the confidence of 
each pixel as a lane feature. In order to deal with complex road 
geometry, we employ Catmull-Rom splines to represent lane 
boundaries and the left and right lane boundaries are estimated 
separately in a tracking process using particle filter based on 
the weighted graph. In the proposed framework, unlike most of 
previous methods we lay a strong emphasis on accurate and 
effective lane feature detection since the challenges happen in 
the very first step of lane detection, and accurately detected 
lane features can be expected to reduce the complexity and 
difficulty, as well as improve the accuracy of lane detection in 
the following steps. 

I. INTRODUCTION 

OADWAYS are typically marked with painted and physical 
boundaries to assist the safe and efficient transportations. 

Real-time lane detection and localization from a moving 
vehicle using on-board sensor data is one of the key issues 
for many intelligent transportation systems. Within the last 
few years, research on this topic has expanded into a wide 
variety of applications from navigating a fully autonomous 
driving system to providing road information to a driver 
assistance system. The problem of finding lanes can be 
divided into three sub-problems: lane feature detection, lane 
boundary estimation, and lane tracking [1]. Lane feature 
detection refers to the use of on-board sensors to extract the 
road markings, including painted markings and other 
environmental markings such as color or texture 
discontinuities that define the safe and legal regions of 
driving. Lane boundary estimation is that of using the 
detected lane features to estimate the shape and positions of 
the lane boundaries based on a certain representation of the 
road. Lane tracking is to infer the shape and positions of the 
lanes using the observations. Among them, lane feature 
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detection is a key component to lane detection. On the one 
hand, the appearance of lane boundaries can be affected by a 
number of factors that are not easily measured and change 
over time, such as wear, type, lighting and weather 
conditions, etc. Therefore, accurate lane feature detection 
can be difficult, particularly in challenging environments. 
Example lane images in Fig. 1 exemplify this kind of 
challenge, in which, lane boundaries are low-contrast and 
changeful in the midst of noise. On the other hand, lane 
boundary estimation and tracking is closely correlated with 
lane feature detection result. Accurate and effective feature 
detection can reduce the complexity and difficulty of 
boundary estimation as well as improve the accuracy and 
robustness of lane detection while poor lane feature 
detection result will do everything opposite. Most of 
previous methods use relatively simple and loose lane 
feature detection for fast detection and make significant 
efforts to deal with the noisy observed evidences in lane 
boundary estimation. In challenging environments, such 
detectors will either detect too many false positives that are 
difficult to be discriminated from true positives or produce 
false negatives that is crucial for lane detection especially in 
challenging conditions such that the lane boundary can not 
be found no matter how good their lane boundary estimation 
system is. In this paper, unlike such methods we lay a strong 
emphasis on accurate and effective lane feature detection 
and present a lane detection and tracking approach designed 
to work in challenging environments.  

 
Figure 1.  Examle lane images in challenging environments 

 
Figure 2.  Our experimental intelligent vehicle and the stereo camera 
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The proposed approach is developed in the scope of the 
stereovision-based navigation system integrated in our 
experimental intelligent vehicle shown in Fig. 2, which is a 
hybrid vehicle equipped with six computers, one stereo 
camera, two four-beam laser scanners, GPS and other 
sensors. Fig. 3 shows the flow diagram of the proposed 
approach. 

 
Figure 3.  Flow diagram of the proposed approach 

First, the Inverse Perspective Mapping (IPM) [2] is 
performed to transform the input image pair under the 
flat-road assumption. This procedure removes the 
perspective effect from the images by remapping the road 
points in the left and right images into points in the same 
world coordinates, in which the lane features are 
homogeneously distributed. Fig. 4 shows an example of IPM. 
(a)-(b) and (c)-(d) are the image pair and their inverse 
perspective mapped images (IPM images), respectively. (e) 
is the superimposed image with the edge images of (c)-(d) 
obtained by Canny edge detector [3], which shows the 
geometry cues underlying in the IPM images. Second, a 
sophisticated cascade lane feature detector is applied to the 
IPM images to cope with challenging environments. It starts 
with a multiscale road marking detector based on [4], which 
is able to find noisy, low-contrast road marking pixels. It 
employs multiscale elongated filters to measure the 
responses of difference of oriented means of multiple lengths 
and orientations in a hierarchical manner, along with a 
scale-adaptive threshold to eliminate responses due to noise. 
Pixels whose responses exceed the threshold will be 
preserved as potential road markings and their responses are 
used as the intensity cue. Subsequently, for each preserved 
pixel in the left IPM image, the Normalized Cross 
Correlation (NCC) is computed with the pixel at the same 
location in the right IMP image to measure their similarity. 
Pixels whose NCC values exceed a threshold will be further 
preserved as the road markings and their NCC values are 
used as the geometry cue. An Artificial Neural Network 
(ANN) classifier trained with painted road markings is then 
applied to check the types of preserved markings. 
Subsequently, a weighted graph is constructed by integrating 

the intensity and geometry cues, reflecting the confidence of 
each pixel as a lane feature. Note that physical road markings 
near the painted ones will be constrained to have a low 
confidence since they are not supposed to be used for lane 
boundary estimation due to traffic rules and regulations. In 
order to deal with complex road geometry, we employ one of 
the weakest models, Catmull-Rom splines, to represent the 
lane boundaries and the left and right lane boundaries are 
estimated separately in a tracking process using particle filter 
based on the weighted graph. The objective of the proposed 
framework is to deal with lane finding problems in 
challenging environments and overcome noise in the first 
step of the detection, since the challenges happen at the very 
beginning, and accurately detected lane features is expected 
to reduce the complexity and difficulty as well as improve 
the accuracy of lane detection in the following steps. 

 
Figure 4.  An example of IPM 

II. PREVIOUS RELATED WORK 

Previous related work for lane detection can be 
categorized into two main types of methods: LIDAR-based 
methods [5]-[6] and vision-based methods [7]-[8], [10]-[11]. 
LIDAR sensors are useful in rural areas for helping to detect 
physical road boundaries, such as roadside fences and curbs. 
Some systems in DARPA Urban Challenge [9] also use 
LIDAR to detect painted lane boundaries since LIDAR is 
insensitive to changing environments so that the reliable 
detection of the lane boundaries can be expected in practice. 
However, only changes in the intensity of the returned laser 
data are indicative of painted road markings while the 
number of LIDAR beams is very limited. Therefore, such 
systems usually rely on GPS with other a priori information 
such as RNDF (Route Network Definition File) or GIS 
(Geographic Information System). Moreover, the GPS has 
limitations on the spatial and temporal resolution and the 
map data may be outdated and inaccurate. While such 
systems can perform extremely well in certain situations, 
vision can be utilized to perform well in a wide variety of 
situations since it can deliver a great amount of information. 
Vision-based lane detection problems have been extensively 
studied. McCall and Trivedi provide an excellent survey [10]. 
Recently, there has been much wok on modeling uncertainty 
problem in lane detection and tracking. Sehestedt et al. 
described the use of a particle filter for boundary tracking 
[11]. ZuWhan Kim presented a system that uses an ANN 
classifier, RANdom SAmple Consensus (RANSAC) spline 
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fitting, particle filtering and a combination of dynamic 
Bayesian network and maximum-likelihood estimation [8]. 
A. S. Huang et al proposed a probabilistic model of lane 
curvature called lateral uncertainty model [1]. These systems 
are concerned with the sub-problem of lane boundary 
estimation given a set of noisy observed lane features. 

The proposed approach differs from previous related work 
in three key aspects. First, our approach focuses on lane 
detection in challenging environments, particularly when the 
low-contrast road markings appear in the midst of noise. 
Most of previous approaches overcome noise by applying a 
preprocessing step of isotropic smoothing such as Gaussian 
smoothing. Such smoothing, however, often reduces the 
contrast of weak lane boundaries, may blend adjacent 
boundaries, and may result in missing or poor localization of 
lane boundaries. We reduce the effect of noise without 
relying on a prior smoothing by a theoretical estimation of 
the effect of noise on the response of elongated filters, and 
derive a scale adaptive threshold which can distinguish 
between significant real responses and responses due to 
noise. These enable us to reveal and accurately localize very 
noisy, low-contrast road markings and consequently reduce 
the false negatives considerably in the lane feature detection. 
Second, unlike previous lane feature detectors which are 
designed for a certain type of systems or environments, our 
cascade lane feature detection can grasp the information 
about what it detects and the elongated filters are adjustable 
in length as well as orientations, which means our approach 
is potentially to be adaptive to different types of systems and 
environments. Finally, and most importantly, most of 
previous algorithms detect the lane features in the “hard” 
way by classifying the points in the image into two groups of 
“road markings” and “non-road markings” on the basis of 
whether they have some property of the lane boundary, such 
as color, shape, gradient, etc. In this case, the false positives 
will be used and treated equally for lane boundary estimation 
just like the true positives, which will increase the 
complexity and difficulty of boundary estimation and 
decrease the accuracy. In the same manner, the abandoned 
false negatives may result in misdetection of the lane 
boundary. It is a serious problem especially in challenging 
conditions since road markings are usually low-contrast and 
changeful with noise which tend to be false negatives in such 
situations. On the other hand, we utilize geometry cues of the 
road scene, which are hardly affected by the challenging 
conditions, together with intensity cues to detect and 
represent the lane features in a “soft” way by constructing a 
weighted graph with the integrated cues, reflecting the 
confidence of each pixel as a lane feature. 

III. LANE FEATURE DETECTION 

Road markings can vary greatly not only between regions 
but also over nearby stretches of road, making the generation 
of a single feature extraction technique difficult. Many of the 
previous algorithms only detect painted or solid and 
segmented lines by applying machine learning [8] or 
intensity-bump checking [12]. However, they will fail in 
situations where lanes are defined by physical boundaries, 
such as those in Fig. 1 (a), the left painted lane boundary 

disappears and the following lane boundary is defined by 
different materials with different colors/intensities, and in (b), 
the left lane boundary is defined by physical curbs. Besides, 
as shown in (c) and (d), the appearance of lane boundaries 
could be affected by a number of factors such as wear, 
lighting and weather conditions, etc. Therefore, we need to 
find the common as well as invariant features of both painted 
and physical lane boundaries as the road markings to be 
detected. In this paper, we define the road markings as 
“consistent elongated edge points on the road plane”. 
Despite the noise as shown in Fig. 1 (c) and (d), such low 
contrast lane boundaries are evident due to their consistent 
appearance over lengthy curves, while the non-lane edges 
are not consistent elongated or reside outside the road plane. 
Occlusions by the nearby leading vehicles may result in a 
short lane boundary in some frames; however, it can be 
overcome by tracking. 

A.  Inverse Perspective Mapping (IPM) 
In the proposed approach, we firstly perform the IPM to 

the input image pair and then apply a sophisticated cascade 
lane feature detection in the IPM images due to the following 
three reasons: 

a) IPM normalizes the size of the road markings and 
reduces the range of lane boundary orientations, allowing 
simplifications and computational load benefit for the 
multiscale road marking detection. Besides, the 
normalized painted road markings are more suitable for 
the use of ANN classifier. 
b) IPM remaps the road points in the left and right 
images into points in the same world coordinates, 
revealing the geometry relationships of the lane 
boundaries between the stereo pair. As shown in Fig. 4, 
the points on the road plane coincide very well (higher 
intensity) while other points that elevate out from the 
road appear distorted and not coincided (lower intensity). 
c) The IPM image is accordant with the world 
coordinate so that the detection results of lane boundaries 
in the IPM image is easy to be used to update the grid 
map for navigation. 

IPM is a linear transformation on homogeneous 3-vectors 
represented by a 3×3 matrix H , which can correspond each 
point x  on the image plane to a point 'x  on the ground 
plane by the following equation, 

Hxx ='                                  (1) 
 H  can be derived from the knowledge of the camera as 
described in [7], or a simple external camera calibration with 
four reference points [13]. As shown in Fig. 4, the IPM 
image has a decreased resolution to further reduce the 
computational load, and only contain the information in the 
lower half of the original image since the entire lane 
boundaries lie in such regions under the current camera 
configuration. 

B.  Multiscale Road Marking Detection 
Once the IPM images are obtained, we apply the 

multiscale road marking detector all over the left and right 
IPM images in parallel to detect road markings. Our goal is 
to extract consistent elongated road markings, particularly 
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for noisy, low-contrast ones in challenging conditions. Fig. 5 
gives an example of such situation. Row (a) show an 
example image of a noisy, low-contrast and scattered road 
markings due to wear, collected in a dark rainy day. (b) 
shows the histogram of the image intensities in the rectangle. 
The red bar and the number indicate the mean of histogram. 
As we can see that, the means of orthogonal square or 
rectangular patches hardly change while the mean of 
oriented elongated rectangular patches varies remarkably 
across the road markings.  

 
Figure 5.  Example noisy, low contrast road markings. 
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with 2/ws ≥  to avoid overlap. The response D  describes 
the average difference of neighboring oriented means of the 
same orientation. In this paper, we utilize such responses to 
find the noisy, low-contrast road markings. In our 
implementation, w  is set to a small constant, yielding 
elongated oriented means. Considering the real situations, 
such setting is reasonable and effective to detect the road 
markings and reduce false alarms as well. 
   Given the responses over the image, we apply a scale 
adaptive threshold, determined by measuring the magnitude 
of the noise in the image as well as considering the length 
and width of the measured response, to identify difference of 
oriented means that elicit significant responses [4]. We 
assume that the noise does not vary significantly across the 
image and the pixel noise is normally distributed as a 
Gaussian: ),0( 2σN . The difference of oriented means 

),,,,( θswLD x  is actually the average difference of two 

averages of 2/wL  normal distributions. Consequently, D  
is distributed as a Gaussian: ),0( 2

LN σ , where 

)/(22 wLL σσ = . In order to find the threshold that can 
differentiate between responses due to road markings and 
those due to noise, we estimate the possibility that given a 
real number Lt σ>> , a value d  drawn from the distribution 
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Suppose we produce )(NO  responses of length L , where 
N  is the number of pixels in the image. To differentiate 
between true road markings responses and noise responses, 
we determine an adaptive threshold ),,( NLwt  such that the 
probability of correct detection in the N  responses, i.e. 

Ntdp )]|(|[ < , will be high. It means )1()1( ON =− ε , 
according to (4), which implies )1(1 ON =− ε . We require 

2/11 ≥− Nε  to assure high-probability, and the following 
approximate relation can be obtained, 
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where the approximation is due to the relation 
)2/()/ln( 22

LL tt σσ << , under the assumption Lt σ>> . This 
approximation yields the scale adaptive threshold that takes 
into account the properties of the noise as well as the length 
and width of the oriented means, 

wL
NNLwt ln2),,( σ=                      (6) 

To fast estimate σ , for each pixel we calculate the 
minimal standard deviation obtained from the patches of 3×3 
windows containing the pixel. We then construct a histogram 
summarizing the empirical distribution of this minimal 
standard deviation obtained for all the pixels. σ  is 
determined as the 90th percentile value of this histogram, as 
shown in Fig. 6. 

 
Figure 6.  Estimating pixel noise. 

A response ),,,,( θswLD x  of length L  (and fixed w ) 
will be considered significant, potentially indicating the 
existence of road markings, if it exceeds the length adaptive 
threshold ),,( NLwt . However, long responses may still 
exceed the threshold due to scattered, short edges of high 
contrast. If the gaps between the scattered sub-portions are 
long relative to the length L , the responses may not be 
contributed by scattered worn road markings or dash 
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markings but by noise. In order to distinguish between 
responses due to long edges from responses due to scattered 
sub-edges, we define two parameters, α  and 
β ( ]1,0[, ∈βα ). We set LTα  to be a low threshold and LTβ  
to be a threshold on the total gap size for length- L  responses. 
A length- L  response cannot be considered significant if the 
total length of sub-portions that are smaller than LTα  is 
longer than LTβ . 

As mentioned previously, we measure the responses of 
multiple length and orientations, which is implemented in a 
hierarchical manner [4], as shown in Fig. 7.  

 
Figure 7.  Hierachical responses computation 

Finally, the pixels whose responses are classified as 
significant will be preserved. Non-maximum suppression is 
then applied at each length L  to ensure well-localized 
positions, expressed by a single response. Fig. 8 gives an 
example of challenging road marking detection, in which we 
use the original road image in order to show the real 
challenging environment clearly. (a) shows the worn lane 
boundaries in an image collected in a dark rainy day 
explicitly (also in Fig.1 (c)), in which the left lane boundary 
is low-contrast as well as scattered due to wear, and there are 
many rain drops on the front window. (b) is the detected road 
marking pixels by the multiscale detection. As demonstrated 
in the figure, such multiscale detection along with the 
scale-adaptive threshold performs very well in  road marking 
detection, which assures not only coherent long road 
markings but also consistent dash or worn road markings can 
yield significant responses while randomly distributed noise 
can not. The tiny false positives are due to some consistent 
rain drops, which is easy to be overcome in the following 
step of the cascade lane feature detection by using geometry 
cues. For comparison, (c)-(f) show the results obtained by 
Canny edge detector with the thresholds of (10,25), (20,50), 
(30, 75) and (40, 100). (g)-(h) show the result obtained by an 
ANN classifier. As we can see that it is difficult for Canny 
edge detector and ANN classifier to differentiate between 

such low-contrast road markings and noise. Besides, it’s 
difficult to employ ANN classifiers to deal with physical 
lane boundaries since they are too many to be trained in the 
real world.  

 
Figure 8.  Example road marking detection results. 

C.  NCC Scoring Between IPM Images 
In the second step of the cascade lane feature detection, we 

compute the NCC value between the left and right processed 
IPM images to measure the similarity of corresponding pixel 
locations. The aim of this step is to reveal and utilize the 
underlying geometry cue. For each detected road marking 
pixel in the left IPM image, the NCC in (7) is computed with 
the pixel at the same location in the right IMP image.  
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where, W  is the computational window, ),(1 jif  and 
),(2 jif  are the image blocks in the left and right IPM 

images, respectively. 21, ff  are the average values of the 
blocks. Pixels whose NCC values exceed a threshold will be 
further preserved as the road markings and their NCC values 
are used as confidence of the pixel as a lane feature based on 
the geometry cue. The threshold is set to a relative small 
constant to only eliminate obvious non-road markings such 
as roadside fence.  

In real applications, the geometry relationships between 
cameras and the road plane are actually not fixed since the 
road may be rough and the cameras may tilt and vibrate. 
However, the changes are usually small. In this case, even if 
the road marking pixels are not at the same position in the 
two IPM images, their scores are still higher than the others 
so that the road markings can still have more credits from the 
use of geometry cues. In this way, the proposed NCC scoring 
for geometry cue is tolerant of camera vibration and vehicle 
tilting considerably. Fig. 9 shows an example results after the 
first two steps of the cascade lane feature detection. (a) and 
(d) are input left images. (b) and (e) are their IPM images, 
respectively. (c) and (f) are the preserved lane features 
locations. 

Furthermore, we also developed a dynamic stereo 
calibration algorithm that can estimate the homography 
matrices of IPM dynamically for each and every frame, since 
the precise geometry cues are crucial to achieve high 
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accuracy as well as robustness of lane detection in 
challenging traffic scenes. Details can be found in [14]. 

 
Figure 9.  Weighted graph with integrated cues. 

D.  ANN Painted Marking Checking 
Since road markings can vary greatly, as shown in Fig. 1, 

we employ multiscale road marking detection which can 
detect both painted as well as physical road markings. 
However, vehicles must drive not only safely but also legally, 
especially in urban streets. We should use the painted road 
markings, if exist, to estimate the lane boundary no matter 
how significant the responses of nearby physical boundaries 
are, due to the traffic rules and regulations. Therefore, the 
identification of the types of detected road marking is 
necessary to avoid the painted road markings get lost in 
competing with physical road markings. More specifically, 
we need to check the detected road markings if they are 
painted ones. To deal with such a problem, we apply 
machine learning. A comparative study of both classification 
performance and computation time on various painted 
markings classification methods is presented in [8]. Based on 
that, we choose to use an ANN classifier with two layers and 
seven hidden nodes since it is fastest, whereas the 
performances are still good. For training, we have gathered 
image patches of 100 painted road markings and 100 
non-painted markings. For detection, the ANN classifier is 
applied on a small image patch of 9×3 windows around each 
and every preserved road marking pixels.  

E.  Cues Integration 
Sensing the real world is an inherently uncertain process. 

Many previous approaches model uncertainty for lane 
estimation based on noisy observations of binary classified 
lane features, in which false positives are treated equally as 
the true positives. In the proposed approach, we intuitively 
model the uncertainty in the lane feature detection since the 
uncertainty, just like the challenges of lane detection in 
challenging environments, happens at the very beginning. 
Besides, the modeling of uncertainty in lane feature 
detection will decrease the uncertainty of boundary 
estimation. In particular, we construct a weighted graph by 
integrating the intensity and geometry cues, reflecting the 
confidence of each pixel as a lane feature, which assures that 
each pixel has a weight so as to play different role when 
estimating lane boundaries using particle filter. In this way, 
the uncertainty of lane feature detection and the one of lane 
boundary estimation are integrated for the probabilistic 

reasoning and decision making. Therefore, more accurate as 
well as robust detection can be expected. 

 
Figure 10.  Weighted graph with integrated cues. 

The weighted graph ),,( BEVG =  is shown in Fig. 10, 

where each node Vv j ∈  represents a pixel, associated with 
the response ),,,,( θswLD j x  as the node weight. Each edge 

Ee j ∈  connects pixels at the same location between the left 
and right IPM images, associated with the NCC value 

jNCC . The integrated weight Bb j ∈θ of a node in the 
reference layer, which is constructed from the left IPM 
image, is computed as follows, 

max21 /),,,,())1(exp( DswLDLNCCkb jjj θλλθ x⋅+−=  (8) 
where k,, 21 λλ  are parameters for the tuning of cues 

integration. maxD  is the maximum value of ),,,,( θswLD j x . 
We give more weight to the long response since they are 
more likely to be part of a lane boundary. Note that the 
integrated weight reflects not only the confidence of the 
pixel as a road marking but also the orientation of the road 
marking segment containing the pixel. 

Finally, the integrated weight jbθ  will be constrained to be 
a small value if there are painted road marking segments 
with the same orientation in a certain short distance. 

IV. LANE BOUNDARY ESTIMATION USING PARTICLE FILTER 

The following task is to estimate lane boundaries by well 
utilizing the multiple evidences on the weighted graph. 
Challenges imposed in this step are maintly due to the 
complex road geometry, since we have already dealt with 
challenges due to varying appearances of lane boundaries. In 
order to deal with this challenge, we employ one of the 
weakest models, Catmull-Rom splines, to represent the road 
boundary and estimate the left and right boundaries 
separately, allowing more flexibility and less restrictions so 
as to give more weight to the observed evidences. This 
representation has been proved to be able to deal with 
challenging scenarios such as a lane curvature, lane changes, 
and emerging, ending, merging and splitting lanes [8]. As a 
result of this, we integrate the estimation of lane boundaries 
in a tracking process using particle filter in the proposed 
approach since particle filters allow to approximate arbitrary 
multimodal probability distribution recursively such that it is 
capable of handling poor process models.  

A. Lane Representation 
Splines are smooth piecewise polynomial functions, and 

they are widely used in representing curves. Various spline 
representations have been proposed, and we use the 
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Catmull-Rom spline among them because its control points 
are actually on the curve and it has local control, which 
means that modifying one control point only affects the part 
of the curve near that control point. These characteristics 
enable fast fitting of the curve. In the implementation, we 
employ two independent Catmull-Rom splines, and each 
boundary is determined by three control points. 

B. Boundary Estimation using Particle Filter 
    Particle filter is a high versatility and robust stochastic 
filter. To estimate the state of a system a set of samples X  at 
time t  is used. This set 〉=〈= MixX i

tt ,...,1|  and its 

associated weights i
tw  represent the confidence at time t . 

The weights are computed according to a sensor model, 
which contains the information of how likely it is that a 
sample x  represents the true state. The computation of the 
posterior is then done by the iteration of state prediction and 
observation update. In the case of the proposed approach, we 
sample the set of control points tL  and tR  for the left and 
right lane boundaries hypotheses, respectively. The weights 
are updated with the weighted graph based on three 
measurement scores: the likelihood score, curve penalty, and 
correlation penalty. 

1) Likelihood Score: The likelihood score is composed of 
the confidence and distance support of the weighted graph, 
which can be calculated as follows, 

)())cos(exp( poreDistanceScbS
p

p
LF ∑ −⋅= ϕθμ θ      (9) 

where p  is a pixel on the lane boundary hypothesis, ϕ  is 
the tangental angle of the hypothesis at p , and μ  is a 
parameter to adjust the relative weight of the two supports. 

The distance support is defined as   

⎩
⎨
⎧ <

=
otherwise0

K)Distance(p)/KDistance(p-1
oreDistanceSc  (10) 

where K  is a threshold, and )Distance(p  is defined as 
τϕθ <−−= |'||||| dMarkingNearestRoap)Distance(p (11) 

where, ||||  indicates the calculation of Euclidean distance, 
'θ  is the orientation of the nearest road marking, τ  is a 

threshold to ensure the distance is calculated between the 
pixels with similar orientations. On the weighted graph, if 

0=pbθ , the first item in (9) equals to 1 and the likelihood 

score is calculated by the distance score. If 0≠pbθ , the 
second item in (9) equals to 1 and the likelihood score is 
calculated by the confidence at p . 

2) Curve Penalty: A penalty is imposed when the 
direction of the curve is changed while the likelihood score is 
very small, and the penalty is calculated as  

∑ −−=
p

PC p
dy
dxp

dy
dxpypyS |))()())(()((| 1212      (12) 

for all points pair 1p  and 2p  where the likelihood score 
between is smaller than a threshold. 
3) Correlation Penalty: The above two scores are just for a 
single boundary. Here, we employ the correlation penalty to 

handle the lane width. We assume that the lane width can be 
linearly increasing or decreasing at small ratio. This 
assumption is reasonable since dramatic changes are 
dangerous and very few in the real world. Given a pair of left 
and right lane boundaries, the lane width is sampled at 
various distance and fit into a linear equation to obtain the 
average lane width and the change of the lane width. The 
lane boundaries penalty PWS  is then calculated as the 
maximum residual distance.  

Based on these measurement scores, the boundaries are 
estimated using particle filter. In the implementation, we 
generate 100 samples for the left and right, respectively. To 
choose the best pair of left and right hypotheses as the 
detected lane boundaries, we define the total likelihood 
function rlS ,  as follows,  

PW
r
PC

r
LF

l
PC

l
LFrl SSSSSS ))((, γγ −−=            (13) 

where rl,  indicate the scores of the left and right 
hypotheses, respectively, and γ  is a weight parameter. 

V. EXPERIMENTAL RESULTS 

In the experiments, the proposed approach has been 
implemented to test a wide variety of typical but challenging 
road environments without code optimization, which are 
from five video clips with a total of 6121 images of raining, 
shinning, cloudy, day and night roads. The experimental 
specifications are shown in Table I. We employ differences 
of oriented means ),,,,( θswLD x  at lengths 16,8,4,2,1=L  
with 4/34/,4,5 πθπ ≤≤== ws  for the multiscale road 
marking detection. The NCC is calculated in a 9×9 window. 
The average computational time is under 200 ms/frame, 
which can satisfy the autonomous driving at 180km/h given 
the local navigation map with the road information of 10m. 
Much of the CPU time is used in the multiscale road marking 
detection. The computational time will be further reduced by 
utilizing special image processing hardware, adjusting the 
image resolution as well as optimizing the codes of the 
proposed method.  

TABLE I.  EXPERIMENTAL SPECIFICATIONS 
CPU Xeon(R) X5550 @2.67 GHz 

Memory (RAM) 12.0GB 
Operating system Window Xp Professional Sp2 

Programming language C++ with OpenCV library 
Experimental data Grayscale images (maximum 

visible range of the road > 100m) 
Resolution 320×240 

Computational time <200 ms/frame 
Fig. 11 show a number of example detection results in 

several typical but challenging environments. In each image 
block (a)-(f), the first column shows original left images, the 
second column shows the detected lane boundaries 
superimposed on the original images, and the third column 
shows the results in the IPM images. (a)-(c) illustrates our 
method’s ability to overcome noise and localize low-contrast 
road marking inspire of rain drops, wipers, strong backlight, 
night scene. The proposed framework of the weighted graph 
and integrated cues enable the proposed method to keep the 
accurate  and  robust  detection  even   in   such  challenging 
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Figure 11.  Example detection results. 

lighting and weather conditions. The effects of noise are 
considerably eliminated in the cascade lane feature detection, 
thanks to the multiscale road marking detector and the use of 
geometry cue. (d) - (f) shows the challenges in the typical 
road conditions, such as low contrast lane boundaries, 
occlusions by shadows and nearby vehicles, and irregular 
boundaries due to temporary road constructions as well. The 
results illustrate our approach can also work well in such 
environments. 

VI. CONCLUSION 
In this paper we presented a vision-based approach for 

lane detection and tracking in challenging environments. 
Our first contribution is a sophisticated cascade lane feature 
detector, which can reveal and localize the noisy, 
low-contrast road markings, and grasp the information of the 
markings it detected, such as type, length, orientations, etc. 
Our second contribution is the weighted graph constructed 
with integrated intensity and geometry cues based on a “soft” 
detection of the lane features. It not only reflects the 
confidence of detected pixels as a lane feature, but also 
contains the information of preserved pixels. Such 
framework can be expected to deal with more complex 
problems since it has the ability to differentiate nodes 
thereby decompose the complexity of the problem. Both of 
the contributions improve the accuracy as well as robustness 
of lane detection. Experimental results prove the 
effectiveness of the proposed approach on a wide variety of 
challenging road environments. 
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