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Abstract— We present a method for simultaneously locking 
on to a ground target and estimating the position of an 
unmanned aerial vehicle (UAV) under countermeasure (CM) 
conditions, where sensors are prevented from successfully 
tracking a target. Owing to the limited payload and power of the 
UAVs, we employ a monocular camera and a global positioning 
system (GPS) to carry out vision-based simultaneous 
localization and mapping (SLAM) using both an unscented 
Kalman filter and a Kalman filter. Since this approach 
estimates the state of the UAV and the location of the target, we 
can estimate the position of the target in the image, even in the 
presence of CMs. 

Our experiments show that the proposed method successfully 
locks on to the target and estimates the state of the UAV. 

I. INTRODUCTION 

n recent years, unmanned aerial vehicles (UAVs) have 
been extensively used in various applications including 

airborne surveillance and modern warfare, as well as in 
academic research. These vehicles can perform various tasks 
in areas that are otherwise inaccessible, including extremely 
dangerous environments.  

In modern warfare, a UAV is used for conducting a variety 
of missions, including reconnaissance and invasion. One of 
the most important missions of a UAV is surface target 
bombing to destroy vital enemy sites. In order to accomplish 
such missions, the UAV should be able to track the target 
robustly, even in the presence of CMs. 

To date, extensive research has been conducted on tracking 
a ground target with a UAV; tracking with fighter jets and 
missiles has been extensively studied and has shown good 
results. In these approaches, lasers, radars, vision systems, 
fused sensors, etc. have been widely used [1][2][3]. However, 
the CM conditions have not been addressed. 

A variety of CMs such as laser and broadband jammers, 
smokes/aerosols, decoys, and directed infrared energy CMs 
can be deployed against UAVs. These CMs usually cause the 
sensors to miss the target or detect a number of undesired 
targets, and they may also jam or spoof the sensor signals. 

In this study, we considered two types of CMs,  smoke and 
jamming. Smoke may occlude the target from view; other 
CMs that cause visual interference can be treated as smoke. 
Jamming interferes with the operation of GPS sensors. 

Because a UAV cannot be equipped with numerous 
sensors to track a target under CM conditions owing to its 
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limited payload and power requirements, we choose a 
monocular camera and a global positioning system (GPS). 

Since general vision-based tracking approaches are likely 
to fail when the target is partially or totally occluded, we 
apply a vision-based simultaneous localization and mapping 
(SLAM) algorithm to address this issue. Owing to its adaptive 
characteristics, this approach is particularly suited to our 
needs. 

The vision-based SLAM [4][5][6] approach uses 
probabilistic filtering approaches to obtain geometric 
information about an entire image, which also includes 
regions other than the target. This approach allows us to 
simultaneously create a map and estimate the state of the 
UAV, even under severe CMs. 

Several previous works have used approaches similar to 
our approach. Amidi et al. [7] proposed a visual odometer for 
an autonomous helicopter flight. This device can visually 
lock on to ground objects and estimate the position of the 
helicopter. However, they did not consider cases where 
objects were occluded. Deneault et al. [8] proposed an 
approach for tracking ground targets with a single camera, a 
GPS, and an inertial measurement unit (IMU). Their 
approach is similar to our approach, where the SLAM is used 
with an unscented Kalman filter (UKF) and a Kalman filter 
(KF). However, they did not consider cases where GPS data 
or IMU data was lost. 

A. Approach 

Fig. 1 shows the overall procedure of our method. The pose 
of the UAV is predicted from the geometric information, 
which is derived from the features in the images and updated 
by the KF when the GPS data or projected points of the target 
are available. The pose is then corrected by the UKF. For 
computational efficiency and filter consistency, we select and 
match the features using an active matching method [4] and 
then perform a statistical test. 

Since the SLAM approach estimates the positions of the 
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Figure 1. Overall procedure of our method. Dashed boxes represent 
data that are not always available 
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UAV and the target, we can compute the relative distance and 
the angle between the UAV and the target and then estimate 
the position of the target in the image, even in the presence of 
CMs. The following sections explain each step in detail. 

B. Assumptions 

Before explaining the approach, we note the following 
assumptions made. 
 We already know the computer-aided design(CAD) 

model of the target, which means actual distances 
between the corner points of the target are known. 

 GPS data and the global pose of the CAD model with 
some errors are available for the first n views and 
periodically transmitted to  the UAV when there are no 
CMs. 

 We already know the intrinsic parameters of the camera. 
 We regard jammed GPS data to be equivalent to their 

absence. 
 The UAV does not change its heading direction very 

quickly. 

II. PROBABILISTIC FILTERING SCHEME 

A. State Vector 

The state vector ( )X k  at time k  is composed of the UAV 

state and positions of the features on both the target and the 
non-target regions; the latter denotes all regions except the 
target in the image. 

 

( ) [ ( ) ( ) ( )]TX k A k T k F k                    (1) 

 

where ( )A k denotes the state of the UAV, and ( )T k  and 

( )F k
 denote a set of n features’ 3D positions in the target and 

the non-target regions, respectively.  
 

( ) [ ( ) ( )]TA k r k k           (2) 

1( ) [ ( ) ( )]T
mT k t k t k         (3) 

1( ) [ ( ) ( )]T
nF k f k f k           (4) 

 

where ( )A k contains a position vector ( )r k  and a rotation 

vector ( )k .
 

( )it k  is the 3D position of the i th corner point 

of the CAD model, and ( )f ki  is the 3D position of the i th 

feature. In this paper, we denote ( )it k  and ( )f ki  as 

landmarks. 

B. Pose Prediction 

The vision literature extensively documents methods to 
determine the pose of a camera when the 3D positions of 
features and their projected positions in the image are known. 
In this study, we follow the approach of the three-point 
algorithm [9] to estimate the rotation and translation vectors 
of the camera when three correspondences are given between 

the image coordinates and their 3D locations in the state 
vector. 

In addition, we combine the random sample consensus 
(RANSAC) algorithm [10] with the three-point algorithm for 
robust estimation of the model parameters in a manner similar 
to that used for the computation of geometric relations [11]. 
Fig. 2 shows the procedure for the UAV pose prediction. 

After determining an initial estimate of the pose vector, we 
refine the estimate by minimizing the reprojection error using 
the Levenberg-Marquardt (LM) algorithm [12]. The refined 
pose vector is used as a predicted value of the UAV pose. 

If the GPS data and the projected corner points of the CAD 
model are available, we can update the predicted pose using 
the Kalman filter as follows: 

 

( ) ( ) ( )( ( ) ( ))g fX k X k K k A k A k         (5) 

( ) ( ( ) ( )) ( )P k I K k H k P k 
          (6) 

1( ) ( ) ( ) ( ( ) ( ) ( ) ( ))T TK k P k H k H k P k H k R k       (7) 

( ) [ ( ) ( )]Tg g cadA k r k k          (8) 

( ) [ ( ) ( )]Tf f fA k r k k         (9) 

( ) [ ( ) ( ) ( )]TfX k A k T k F k            (10) 

0
( )

0 0

I
H k

 
  
            

(11) 

 
where ( )gA k is a pose vector containing the position vector 

( )gr k  received from a GPS at time k and a rotation vector 

( )cad k determined from the projected points of the CAD 

model. ( )fA k contains the position vector ( )fr k and the 

rotation vector ( )f k  derived from the LM optimization. 

( )X k is a predicted state vector that contains the predicted 

pose vector ( )fA k  and the position vectors ( )T k  and ( )F k  

of the features in the target and the non-target regions, 
respectively. The predicted covariance matrix ( )P k at time k
is the same as the previous covariance matrix.  

Figure 2. Procedure for UAV pose prediction 
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( ) ( 1)P k P k            (12) 

 
However, if only the GPS data is available, we use equation 

(13) instead of equation (5) to update the state vector. 
Although the orientation cannot be updated, we can estimate 
the orientation by the pose correction step. 
 

( ) ( ) ( )( ( ) ( ))g fX k X k K k r k r k       (13) 

 

C. Measurement Model 

A monocular camera cannot give the 3D position of a 
feature using a single image. Hence, Davison et al. [4] 
proposed an initialization process involving the use of several 
images for determining the depth of the feature point by 
employing a particle-filter-type approach under the 
assumption that the feature is located close to the camera. 
However, most features are located far away from the camera 
in our case, and thus, this approach is infeasible. 

In this study, we use several images to determine the 3D 
position of a feature by n-view triangulation. Fig. 3 shows the 
process of n-view triangulation [11] and the measurement 
model of the feature. However, the position of the feature 
obtained from n-view triangulation is not correct because the 
camera model is a weak perspective model.  

Therefore, we use a monocular camera as a range sensor 
and measure the bearing and the range of the feature, because 
the ray direction of the feature offers better reliability than the 
position of the feature. After measuring the bearing and the 
range of the feature, we determine the position and the 
uncertainty of the feature by unscented transformation (UT) 
[13]. Equation (14) represents the measurement equation. 

( )iz k
 is a measurement of the feature ( )if k  at time k from 

the positions of the camera between time k – n + 1 

( ( 1)X k n  ) and time k ( ( )X k ). 
( )v k  is the measurement 

noise with zero mean uncorrelated Gaussian noise. 

( ) ( ) ( )
Ti i i

x y zh k h k h k 
  is the 3D position of the feature 

( )if k . ( )ir k
 is the distance between a UAV and a feature. 

( )i k
 and ( )i k

 are the azimuth and elevation angles from 

the position of the UAV to the feature, respectively. 
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(14) 

D. Pose Correction 

The UKF is used to update the poses of both the UAV and 
the landmarks. Instead of approximating the nonlinear 
measurement function h  by a Taylor series expansion in the 
extended Kalman filter (EKF), the UKF linearizes the 
nonlinear function through UT and predicts the mean and 
covariance to the second order. In contrast, the EKF can only 
approximate up to the first order [14].  

The updated equations are 
 

ˆ( ) ( ) ( )( ( ) ( ))X k X k K k z k Z k  
      (15) 

( ) ( ) ( ) ( ) ( )TP k P k K k S k K k 
    (16) 

where  
1( ) ( ) ( )xzK k P k S k          (17) 

2
[ ] [ ] [ ]

0

ˆ ˆ( ) ( ( ) ( ))( ( ) ( )) ( )
n

i i i T
c

i

S k Z k Z k Z k Z k Q k


     (18) 

2
[ ] [ ] [ ]

0

ˆ( ) ( ( ) ( ))( ( ) ( ))
n

xz i i i T
c

i

P k k X k Z k Z k 


   

    

(19) 

 
Figure 3. Initialization of features and measurement model 
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ˆ( )Z k is a weighted sample mean of the sigma points that are 

passed through the measurement function h . [ ]i
c is the 

weight of the i th sigma point, and [ ] ( )iZ k is the propagated 

sigma point. ( )Q k  is the zero mean uncorrelated Gaussian 

noise. For a complete explanation of the parameters of the 
UKF, refer to [13]. 

III. FEATURE MANAGEMENT 

A. Initialization and Matching 

We use SURF [17] as image features and track them in 
subsequent frames by image-to-image matching. Since we 
assume that the initial poses of the UAV are known, we can 
easily determine the initial 3D positions of the features. In the 
following frames, we can also determine the 3D positions of 
new features even if the GPS data is not available, because the 
pose of the UAV can be estimated by the filtering scheme. 

If new features are tracked during some consecutive frames 
(in this paper, we use three frames), we measure the range and 
the bearing of the features and augment them to the state 
vector by using UT. 

In the target case, since we assume that the CAD model and 
the initial global pose of the target with errors are known, we 
can predict the projected points of the CAD model in the 
image. As shown in Fig. 4(a), because of the errors in the 
UAV and the CAD model poses, the projected points of the 
CAD model in the image are not consistent with the 
measurements. In order to determine the correct projected 
points of the CAD model, we use the RANSAC algorithm and 
find the rotation and the translation vectors that maximize the 
energy, as shown in equation (20). Random values of the 
rotation and the translation vectors are limited to the 
uncertainties of each value.  

 

,
( , ) ( , )

max ( , )
cad cad

mag
r t

x y x y

E I x y


        (20) 

 

[ , ,1] ( , ) [ , , ,1]T T
cad cad cad cad cadwhere x y K RT r t X Y Z  

 ( , )magI x y  is the gradient magnitude value of the point 

( , )x y  in the image, and [ , ]cad cadx y  is one of the projected 

points of the CAD model. Some example images are shown in 
Figs. 4(c) and (d). K is the intrinsic parameter of the camera, 
and ( , )RT r t  is the extrinsic matrix determined by the 

rotation vector r  and the translation vector t . 
[ , , ]cad cad cadX Y Z  is one of the global positions of the CAD 

model. In order to reduce false matching, we only use some 
parts of the magnitude image, which are determined by the 
projected points of the CAD model with certain margins. 

The projected corner points of the CAD model are tested 
by following the data association method. Then, if data is 
available, we use the rotation result in the filtering scheme. 

 

B. Data Association 

Associating the observations with incorrect landmarks in 
the filter can make the system inconsistent. This usually 
happens when matches of features are incorrect or features 
are on a moving object. 

First, we use matching constraints of the active matching 
method [4] to find correct matches between landmarks in the 
state vector and observed features from the current image. In 
Fig. 5, the searching region is obtained by projecting the 
uncertainty of a landmark onto the image. In this manner, we 
can reduce the computational time required for finding a 
correct match. 

If a landmark is on a moving object, the probability of the 
candidate feature falling in the searching region may be low, 
and the feature may be filtered out. 

After active matching, we perform a statistical test using 
the filtered features. If we know the true solution for the state, 
we can perform a statistical test, i.e., a normalized estimation 
error squared (NEES) test, for filter consistency. Since the 
true solution for the state is not available, we perform another 
statistical test, i.e., a normalized innovation squared (NIS) 
test [14]. 

 
 

 
(a) Initial pose       (b) Resultant pose 

 
(c) Gradient magnitude    (d) Projected points of 

image             the CAD model 
 

Figure 4. Results of CAD model matching 
 

Figure 5. Active matching process and results of data association 
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1 2

,1( ) ( ) ( )T
rv k S k v k 


     
(21) 

 

where ˆ( ) ( ) ( )v k z k Z k   is the innovation, ( )S k
 is given by 

equation (18), 2
,1r    is a threshold obtained from a 2

distribution with dim( ( ))r v k , and  is the desired 

significance level (in our case, 0.05). 
Fig. 5 shows the process and the results of data association. 

The red rectangular region represents a match between a 
landmark and one of the features in the searching region that 
satisfies the NIS test. The green region shows that no features 
are detected that satisfy the NIS test. 

 

C. Deletion  

The state vector increases with an increase in the number of 
landmarks, and in turn, the computational time required for 
updating the map with n features increases drastically. Since 
the UAV moves forward at a high speed, most landmarks are 
rarely re-observed. Therefore, it is inefficient to keep all 
landmarks in the state vector. We followed the approach of 
Davison et al. [4], who removed the landmarks from both the 
state vector and the covariance matrix that were not observed 
in a predefined period. In our experiments, we use eight 
frames and do not remove the landmarks of the CAD model.  

IV. LOCK-ON THE TARGET 

Given the estimates of the 3D positions of the UAV and the 

target, the position ( ( ), ( ))i iu k v k  at which the CAD model is 

expected to be found in the image is determined as follows. 
 

( )
( ( ))( ( ) ( ))

( )
i

i
i

u k
CR k t k r k

v k

 
   

       

(22) 

 

where C is an intrinsic parameter of a camera, ( ( ))R k
 is a 

rotation matrix, and ( )k  is a rotation vector of the UAV. 

( )it k  is the 3D position of the i th corner point of the CAD 

model, and ( )r k  is the 3D position of the UAV. Using a set 

of projected features in the target, we can lock on to the target 
in the image. 

V. EXPERIMENTS 

A. Aerial Space 

1) Experimental Setup 
We performed experiments with a commercial GPS 

receiver and a monocular camera mounted on a helicopter. 
The helicopter moved toward the target from approximately 2 
km away to 1 km away. Images with a resolution of 320 × 240 
pixels were captured at a rate of 30 Hz, and the position data 
was received from the GPS at a rate of 1 Hz.  

 
2) Lock-on Results 

A fair evaluation of our approach is difficult given the 
absence of data captured under the real conditions of CMs. 
Therefore, we simulated the CM conditions by using a 
graphical tool and discarding some of the GPS data.  

First, lock-on results with different combinations of sensor 
data are shown in Fig. 6. We evaluate the lock-on 
performance with the pixel distance between the original 
image center and the estimated image center of the target. For 
the first several frames, all sensor data is used for 
initialization. The lock-on error occurs even if CAD matching 
is used because the UAV still shows a position error after 
pose correction.  

To evaluate the effect of the GPS data on the lock-on, we 
perform Monte Carlo experiments with the randomly 
eliminated GPS data. The mean and variance of the pixel 
distance between the original image center and the estimated 
image center of the target are shown in Fig. 7. Since the GPS 
data gives more accurate location information than visual 
sensors, we can obtain better lock-on performance. 

Figure 6.  Lock-on results obtained with different combinations of 
sensor data 
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Figure 7.  Monte Carlo experiments of the lock-on performance with 
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We compared our approach with the state-of-the-art 
tracking algorithms, the online multiple instance learning 
(MIL) algorithm [15] and the particle-filter-based tracking 
algorithm [16], both of which deal with the occlusion 
problem.  

For a fairer comparison, we only use visual data except for 
the initialization step. 

Fig. 8(a) shows the comparison results of the lock-on 
performance with aerial images. The first, second, and last 
rows show the results of MIL tracking, particle-filter-based 
tracking, and our approach, respectively, obtained using only 
visual data. 

The lock-on performance of our approach with only visual 
information decreases gradually when the target is very far 
away from the camera because localization with only the 
camera is not accurate. However, it is more robust than the 
other vision-based algorithms under long-term occlusion. 

 
3) Localization Results 

Since we cannot precisely evaluate the localization 
accuracy of our approach because of the GPS errors, we use 
the position distance between the GPS data and the estimated 
position as a localization error. Since it is natural that more 
GPS data gives smaller localization errors, we created a 
scenario where several GPS data points are valid in the first, 

 
(a) Aerial images 

 
(b) Indoor images 

Figure 8. Comparison results of the lock-on performance with aerial images and indoor images. 
First rows:  MIL tracking [15]; second rows: particle-filter-based tracking [16], last rows: proposed method 
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middle, and last frames. Fig. 9 shows this scenario and the 
localization results. Even if the GPS data is not valid, we can 
estimate the location of the UAV with some errors by using 
the visual data. 

B. Indoor Space 

We performed experiments with a hand-held monocular 
camera in a room. The camera moved toward the target from 
4 m away to 1 m away while capturing images at a resolution 
of 640 × 480 pixels and a rate of 10 Hz; the target was 
frequently occluded. We used only visual information 
because the GPS cannot be used in indoor environments. 
However, for initialization, we captured some images with 
known 3D positions. 

As in the case of the aerial experiments, we compared our 
approach with other algorithms. Fig. 8(b) shows the results of 
this comparison.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we present a robust vision-based SLAM 
approach for simultaneously locking on to a ground target and 
estimating the position of a UAV. By using visual 
information about both the non-target region and the target 
model, we can lock on to the target and localize a UAV under 
CM conditions. 

In addition, we combine the GPS data with the geometric 
information derived from the features in an image through the 
use of a KF and a UKF. This scheme helps us to lock on to the 
target and localize the UAV more robustly under CM 
conditions. 

However, when the target is very far away from the UAV, 
the visual information is not sufficient to estimate the location 
of the UAV and lock on to the target.  

Future work will deal with this situation and also include 
large map management for computational efficiency; further, 
experiments will be performed under various CM conditions. 
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(a)  Localization results and GPS on a Google map 

 

(b) 3D trajectories of localization results and GPS  

(c) Distance errors between GPS and localization results 
in Euclidian distance 

 
Figure 9. Localization results of a UAV 
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