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Abstract— Nowadays, the Global Positioning System (GPS)
can be considered as being the de-facto standard for local-
ization in road networks, delivering a reasonable precision
at most places and being available through a huge variety
of devices. Nevertheless, if signal reception is disturbed, no
position estimates can be computed anymore. In this paper, we
present an approach for localization in road networks which is
based on a particle filter computing estimates using only basic
environmental information: the road network’s structure and
its height profile. The approach is demonstrated in experiments
of an electrical wheelchair driving through a small town.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) such as the
United States GPS, the Russian GLONASS, or the European
Union’s Galileo, give their users the ability to determine their
location on earth in terms of latitude, longitude, and height.
By using electronic receivers, the position is computed from
traveling time of radio signals emitted from medium earth
orbit satellites. Considering these systems as being the de-
facto standard in outdoor localization, their drawbacks still
pose scientific questions. How to deal with poor position es-
timates resulting from signals that are intentionally disturbed,
or distorted by multiple reflections within street canyons
and natural landscape features? Can a priori available spatial
databases along with corresponding real-world feature mea-
surements support, possibly even substitute, the process of
estimating ones position?

In this work we argue for a straightforward application
of available spatial knowledge, in order to set up a complete
localization approach that gets along without any information
coming from GNSS. More specifically, we describe a par-
ticle filter-based position estimation scheme that integrates
barometric elevation measurements, and odometric velocity
readings under the restrictive assumption to be located on a
road segment. While first measurements are matched inside
the sensor model against samples from a Digital Elevation
Model (DEM), latter measurements are evaluated within the
motion model, in order to describe the progress of position
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hypotheses along street segments, modeled within a digital
Road Network.

The remainder of this paper is structured as follows: sec-
tion II presents related work in this area. Section III describes
the data sets that represent the environment in which the
particle filter that is described in Sect. IV operates. Finally,
the experiments that have been carried out are presented
in Sect. V. We conclude in Sect. VI with a qualitative
assessment of the results presented and some ideas for future
improvements.

II. RELATED WORK

Assuming the inaccuracy or the complete absence of
position information coming from GNSS, evaluating Geo-
graphical Information Systems (GIS) in outdoor vehicle state
estimation is appealing, because they provide large-scale and
precise data that can be matched against a variety of sensorial
information.

Scott and Drane [13], as well as Li et al. [8], show in their
papers the improvement of raw GPS position measurements
by restricting the pose estimate to a given road network. The
latter work additionally matches height information coming
from a digital elevation model against the three-dimensional
GPS position, thereby demonstrating an even better position
estimation. The mentioned approaches that are generally
known as map-matching techniques in the GIS-community,
are closely related to road reduction filters [16], or the
Mapping Dilution of Precision approach to map-matched
GPS [1].

With the different scenario of providing full pose estima-
tion without any information coming from GNSS, Naval [9]
describes a system that generates camera pose hypotheses
by matching mountain peak image features against model
features coming from a digital elevation model. The ap-
proach solely requires the camera height above ground to
be known. For airborne vehicles equipped with a gyroscope
and a downward facing camera, Sim et al. [15] present a
localization scheme that first recovers an image DEM from
aerial image pairs. Distinct features within this elevation map
are subsequently matched against features coming from an
a priori available model DEM. The final pose estimate is
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combined from the estimated translation between the two
DEMs and the attitude coming from the gyroscope.

The contribution of this paper is an outdoor self-
localization approach that, in contrast to the techniques
mentioned above, neither requires any GNSS pose estimates,
nor other sophisticated sensorial equipment. With its ability
to localize along large-scale road networks by evaluating data
coming from odometry, compass, and barometer, it compares
best to the work proposed by Lankenau et al. [5]. The
authors present an algorithm that is capable of estimating the
system’s pose along a given graph-structured representation
of the environment. By evaluating translational and rota-
tional offsets coming from odometry, the proposed system
recognizes driven turns that are subsequently matched against
junctions within the world model.

We will show in this paper that the developing error
along straight ahead passages can be significantly reduced
by considering elevation information. In addition to the
qualitative improvement of localization approaches that are
primarily based on odometry, our work demonstrates the
successful application of a popular textbook-method such as
Monte Carlo filtering for realizing a global self-localization
that forgoes GNSS.

III. THE WORLD MODEL

A. Road Network

Ever since the availability of web applications such as
Ask Maps, Google Maps, Mapquest, Microsoft Bing Maps,
and Yahoo Maps, people can make use of comprehensive
road network data in digital form. Restricted to prede-
fined interfaces, these services do not allow for extracting
the underlying datasets, thus rendering the development of
stand-alone applications that work on this data impossible.
With the launch of the collaborative project OpenStreetMap
(OSM) [10], [12] in 2004, a continuously growing dataset
has become freely [2] available. Based on user-recorded
GPS track logs, and donated commercial datasets, e.g. the
complete road dataset for the Netherlands, OSM provides
maps of arbitrarily selectable regions in XML-format. This
data not only contains a vector-based representation of the
road network, but also a detailed classification of the types
of listed road segments. Fig. 1(a) shows the complete OSM
dataset for the region around Worpswede that was selected
for our experimental evaluation (cf. Sect. V). Fig. 1(b)
visualizes the chosen subset of road segments that is used
for the selected wheelchair navigation scenario. The classes
and the estimated width of the subset’s members is given in
Table I.

An important operation on the road network dataset inside
the sensor model of the proposed particle filter (cf. Sect.
IV-B) is the computation of the closest road segment for a
given position hypothesis. Assuming the M = 1069 road
segments of the exemplary scenario in Fig. 1(b), and N =
1000 position hypotheses, a naive implementation of the road
network data structure implies O(M∗N) > 106 line segment
to point distance queries within a single cycle of computation
of the particle filter.

TABLE I
CLASSIFICATION AND ESTIMATED WIDTH OF ROADS FILTERED FROM

OSM DATASET FOR EXPERIMENTAL EVALUATION

# Class Description Estimated
Width[m]

1 Federal Highway generally connecting 12
larger towns

2 Federal Highway Link linking #1 to others 12
3 District Road connecting smaller towns 9

and villages
4 District Road Link linking #3 to others 9
5 Country Road fully developed road 7.5

connecting municipals
6 Auxiliary Road barely developed road 5

connecting municipals
7 Residential Road road accessing residential 5

area
8 Living Street traffic-calmed street with 5

priority for pedestrians
9 Path public footpath 2.5

10 Cycleway designated cycleway 2.5
11 Track roads for agricultural use 2.5
12 Footway designated footpath 2.5

In order to reduce this computational payload, we sort
each line segment representing a road segment from the
OSM dataset into a space partitioning data structure, the
so-called PMR quadtree [4]. Like a regular quadtree, this
spatial data structure inserts its elements, in our case line
segments, into buckets. Initially, the PMR quadtree consists
of its root bucket, representing the whole Euclidean plane.
By using a splitting rule that defines the maximal number �
of line segments to be contained within a single bucket, the
line segments are inserted one-by-one into the data structure.
After reaching the threshold � for a given bucket B, four
child-buckets are appended to B, representing four equal-
sized quadrants of the plane represented by B. At this
point, all line segments that have been contained by B are
propagated down to the new child-buckets. Note that this
approach leads to redundant storage of elements, since a line
segment is stored in every bucket that it intersects.

Hoel et al. show in [4] an algorithm to find the closest
line segment from a given PMR quadtree w.r.t. a given point,
that has the computational complexity of O(�), provided the
line segments to be uniformly distributed over the given map
region. This yields an upper bound of O(� ∗N) closest road
segment to position hypothesis queries for our particle filter,
making the PMR quadtree the first choice for the spatial data
structure of the road network.

B. Digital Elevation Model

In order to model the three-dimensional characteristics
of the earth, DEMs rasterize the earth’s surface by a grid
of squares and assign a height value to each square. The
measurement of the elevation is commonly done by remote
sensing techniques such as airborne or spaceborne optical
stereo sensors [14], or traditional surveying approaches.
Since former approaches suffer from image quality disturbed
by cloud cover or lack of sunlight, and latter approaches
are too complex to densely map the earth’s surface, inter-
ferometric synthetic aperture radar (InSAR) measurements
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(a) Rendering of the complete OpenStreetMap dataset [10] for Worp-
swede. The depicted information is from August 2009, and available
under the Creative Commons Attribution-ShareAlike 2.0 license [2].
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(b) Digital Elevation Model dataset from [17] with superimposed subset of
OpenStreetMap data, characterizing roads and paths allowed for wheelchair
or bicycle navigation. The elevation of the underlying landscape ranges from
−2m (dark gray) to 51m (light gray).

Fig. 1. Illustration of a-priori available information used by the particle filter presented in this work. Both maps represent the same area around Worpswede,
a typical municipal in Northern Germany with about 9500 residents. The width and the height of the maps are about 4.2km and 3.2km respectively.

have become the state of the art in producing DEMs. In the
year 2000, the Shuttle Radar Topography Mission [11], or
SRTM for short, recorded high-quality elevation data of the
earth’s surface between latitudes 60∘N and 57∘S. Available
to the public [17] this data comes along as DEMs with a
square resolution of 1arcsec (∼ 30m) for the continental
United States, and with a resolution of 3arcsec (∼ 90m)
for the rest of the world. The maximal relative vertical error
of 90% of the provided data is given by ±6m within a
horizontal distance of 200km around a given measurement
point. Furthermore, the maximal absolute vertical error is
given by ±16m w.r.t. all measurement points. SRTM DEMs
with a square resolution of 3arcsec are shipped as tiles
covering 1∘lon ∗ 1∘lat (WGS84 data), containing 1201 ∗
1201 = 1442401 elevation squares. An illustration of a part
of the SRTM DEM that was used in an experimental test run
(cf. Sect. V) is given in Fig. 1(b).

IV. STATE ESTIMATION

State estimation is realized using a Monte-Carlo approach
[3] since it is able to deal with non-linear motion models
(cf. Sect. IV-A) as well as with the occurrence of multiple
hypotheses (cf. Sect. IV-D).

The state Xt to be estimated and thus the content of every
particle x[m]

t within a set of M particles is a simple pose in
2-D:

x
[m]
t := ⟨px[m]

t , py
[m]
t , �

[m]
t ⟩ (1)

Due to the motion model which is constrained to the road
network (as described in the subsequent section), only a
small subset of the theoretically possible state space is used.

Additionally, every particle carries information as the
identifier r[m]

t of the current road segment, a cluster identifier
c
[m]
t (cf. Sect. IV-D), and its age a[m]

t (i. e. the number of
survived resampling steps, cf. Sect. IV-C).

A. Motion Model

The state transition of a single particle through motion is

u
[m]
t := dt (2)

with dt being the distance traveled since the last motion
update step. Due to the constraint to move along roads only,
we always assign

�
[m]
t = �

[m]
t (3)

with �[m]
t being the direction of the road currently closest to

a particle, gained from a lookup in the quadtree, as described
in Sect. III-A. To keep our approach as general as possible,
dt is a simple distance and not a two-dimensional offset or a
pose, although our test platform (cf. Sect. V-A) would be able
to provide the latter. The most common case to expect, e. g.
in cars or bicycles, is a one-dimensional odometer. A two-
dimensional offset v[m] = (v

[m]
x , v

[m]
y )T , thereby an updated

sample position, is computed as follows:

v[m] = M
[m]
� (dt + a1n

[m]
x (dt), a2n

[m]
y (dt))

T (4)

px
[m]
t = px

[m]
t−1 + v[m]

x (5)

py
[m]
t = py

[m]
t−1 + v[m]

y (6)

with M
[m]
� being a rotation matrix describing �[m], n[m]

x,y a
noise function sampled from a triangular distribution, and a1
and a2 being two scalars for the generated noise in different
directions. Equation 4 does not only move a sample along a
road but also in a small amount perpendicular to the road’s
center. This noise distributes the samples randomly over the
whole width of street segments and causes samples of a
cluster to proceed at different roads at a branch (Eqn. 3).
Nevertheless, free motion far from any road is limited by
the sensor model, as described in the following section.
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Fig. 2. The Bremen Autonomous Wheelchair Rolland driving along different roads during the experimental test runs. The particle filter explicitly models
street widths for different classes of roads (cf. Table I). The roads above are classified as residential road, living street, path, and footway (left to right).

B. Sensor Model

To carry out the particle filter’s resampling step (which is
assumed to be known, and therefore it is not described in this
paper), each sample’s weighting w[m]

t needs to be computed
according to the sensor model

zt := ⟨elvt, dist0t , dirt⟩ (7)

with elvt being the altitude measured by a barometer and
dirt the global orientation measured by a compass. The
distance dist0t is a virtual measurement to keep all samples
along the roads. As this is an assumption about the driver’s
behavior and not a real sensor measurement, dist0t is always
zero. By this construct, a sample’s distance dist[m]

t (which
is based on state variables) to the next road segment (also
considering its width) can easily be incorporated in the sensor
model for computing w[m]

t :

�
[m]
elv = ∣elvt − elevationModel(px

[m]
t , py

[m]
t )∣ (8)

�
[m]
dir = ∣dirt − �[m]

t ∣ (9)

w
[m]
t = N (�

[m]
elv , �

2
elv)N (dist

[m]
t , �2

dist)N (�
[m]
dir , �

2
dir) (10)

Since the digital elevation map consists of discrete tiles, the
function elevationModel computes the expected height at
a sample’s position by bilinear interpolation. As shown in
Sect. V, in some cases, it is already possible to successfully
track a position using only the measured orientation dirt and
the road distance. The latter cannot be measured directly but
can be regarded as a constraint to keep the samples roughly
on the road network; some deviation remains allowed to
overcome imprecisions in the road network model.

The elevation elvt is needed for those scenarios in
which the direction alone cannot resolve any ambiguities at
branches. In addition, it increases the precision of the overall
estimate (cf. Sect. V).

C. Sensor Resetting

Regarding self-localization, the so-called robot kidnapping
is a common problem caused by transformations not covered
by the robot’s motion model, e. g. by carrying the robot to
a different place during normal operation. Such classical
kidnapping operations do not occur in our scenario but
something causing a similar effect might happen: the robot
might lose its way, e. g. by letting many samples take a wrong

branch, or the distribution might fall behind the real position
or be ahead of it respectively.

By adding new samples computed from recent measure-
ments to the probability distributions, the so-called sensor
resetting [7], the Monte-Carlo approach is able to recover
quickly from kidnapping actions. Due to the lack of unique
features in our scenario, these samples are randomly added
on streets within a certain frame, having the rotation of the
last orientation measurement. The frame is an axis-aligned
bounding box around all samples which have a minimum age
a
[m]
t . This reduces the insertion of samples on misleading

road segments. To allow an extension beyond this scope, the
bounding box can be scaled by a user-defined factor.

In our implementation, a fixed number of samples is added
after each resampling step.

D. Clustering

After each execution cycle of the particle filter, a resulting
pose needs to be determined as output. As our approach
tracks a pose from a known starting position, an overall
average of all samples appears to be a reasonable choice.
However, adding new samples or splitting the distribution
at road branches leads to a multimodal distribution. In
such cases, averaging might produce wrong results and thus
tracking different clusters is mandatory. For this purpose,
we chose the Particle History Clustering approach [6] that
integrates into the particle filter process and produces reason-
able results in linear time. It originally only provides cluster
merging operations, so we extended it by a splitting operation
based upon changes of samples’ road assignments r[m]

t .

V. EXPERIMENTAL EVALUATION

A. Platform & Sensor Equipment

The Bremen Autonomous Wheelchair Rolland has been
used as the experimental platform for this work. Rolland
is based on the power wheelchair Xeno by the German
manufacturer Otto Bock Healthcare (cf. Fig. 2 for photos
taken during the test runs). The drive wheels of Rolland are
equipped with wheel encoders with a resolution of approx-
imately 2mm driving distance per tick. A micro controller
board is counting the encoder ticks and sends them to the lap-
top which integrates the kinematic equations. Because of the
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Fig. 3. Reference trajectories (blue) and estimated trajectories (green)
of two experimental test runs conducted in Worpswede. The underlying
elevation information is a bilinear interpolation of the raw SRTM data
source, and illustrated by shaded 30m × 30m squares. Heights are given
in m. Both experiments have been carried out by evaluating measurements
coming from a barometer (elvt in Eqn. 7), odometers (dt in Eqn. 2), and
a compass (dirt in Eqn. 7). Test runs started at the position marked by an
x. White circles are placed every 100m along the reference trajectory.

drifting odometry rotation, we use the XSens MTx orientation
tracker for measuring the orientation of the wheelchair. Its
integrated compass measures the earth’s magnetic field and
outputs the orientation between the sensor-fixed coordinate
system and an earth-fixed reference coordinate system. Note
that we evaluate basic magnetometer measurements, and no
gyroscope-stabilized yaw estimations. We further ignore the
magnetic declination throughout this work, i.e. the deviation
between magnetic north and true north, since it is negligible
with < 1∘ for most parts of Germany.

For measuring the reference GNSS position, and the
elevation of our experimental platform, we use a Garmin
GPSMap 60CSx. Its WAAS/EGNOS1 enabled GPS receiver
outputs one position estimate per second, and has a specified
positional accuracy of 3− 5m in 95% of all measurements.
The handheld device integrates a barometer-based altimeter
with a documented accuracy of ±3.048m, and a resolution of
30.48cm. We configured the altimeter not to be recalibrated
by GPS elevation during operation, but calibrated the device
manually by the height taken from the DEM at the starting
position of our experimental test runs.

B. Conducted Test Runs

The particle filter-based position estimation approach de-
scribed in Sect. IV has been experimentally evaluated by two
real world test runs, conducted on the streets of Worpswede,
a small town in Northern Germany2 (cf. Fig. 1 for an
illustration of the available world model). Measured by GPS
ground truth, test run 1 and 2 had a length of 906m and

1The Wide Area Augmentation System (WAAS), and the European
Geostationary Navigation Overlay Service (EGNOS) are satellite-based
augmentation systems that improve the accuracy of the basic GPS signal.
Both systems use ground-based reference stations that detect inaccuracies
of the basic GPS signal, and send correction messages to geostationary
satellites that forward these messages to the GPS receivers. WAAS and
EGNOS typically improve the accuracy of GPS from 10−20m to 1−3m.

253∘13.304′N, 8∘55.684′E

1364m respectively. During the experiments, the wheelchair
drove on a variety of road types (cf. Table I and Fig. 2), while
the system recorded GPS reference positions, odometric
velocity readings, barometric elevation measurements, and
compass orientation. In an offline analysis that processed
approx. 36 seconds of real world data in one second when
using 1000 samples, we tested the proposed localization
approach with two different sensor models. The first one
solely comprised orientation information, and the second
one comprised orientation information and elevation data, as
described in Eqn. (7). In both evaluations of the two test runs,
we initialized each sample with the GPS reference position.

C. Discussion

For the case of using orientation information and elevation
data within the sensor model, average localization errors
against GPS ground truth are given by 7.58m for test run
1, and 7.73m for test run 2 respectively (cf. Fig. 3 for the
resulting trajectories). Without using elevation information,
we find average localization errors of 8.14m in test run 1,
and 15.18m in test run 2. Figure 4(a) shows the complete
error plots of both test runs, as well as the development of
the measured elevation and the bilinear interpolated model-
elevation at the GPS reference position. Although the particle
filter was able to track the wheelchair’s position using the
complete and the reduced sensor model, large differences
among the resulting error plots can be seen for test run 2
between 600m and 1100m of traveled distance. The different
behavior of both localization runs can be explained by the
low number of junctions within this interval. Localization
without considering the elevation profile along this straight
ahead section results in a stretching cloud of particles, each
of which not being able to compensate for the developing
error due to missing crossings.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This work has presented a particle filter-based position
estimation approach that is capable of tracking a vehicle’s
position by evaluating data coming from odometry, compass,
and barometer. Under the restrictive assumption of being
located on mapped parts of the street network, the proposed
localizer clearly benefits from a sufficiently variable elevation
profile along the driven course. However, ambiguous situa-
tions are still challenging, e.g. a road splitting into two roads
under sharp angles, accompanied by a flat elevation profile
in this area. Such cases have been tackled by a carefully pa-
rameterized sensor model, and the particle history clustering
approach. The later strategy has shown to be well suited to
assess emerging clusters of multimodal distributions.

B. Future Work

A strong support for the results presented should be
available with the evaluation of more exhaustive test data.
We plan to equip a bicycle with the necessary sensorial
equipment, in order to evaluate localization test runs of
greater distances, covering a broader spectrum of road types
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(b) Test run 1 (left), test run 2 (right): compass orientation (blue), and orientation of OSM street segment closest to GPS reference position (pink) vs.
traveled distance. Peaks in the street segment’s orientation result from a temporarily association of the GPS reference position to a wrong road.

Fig. 4. Evaluation of two experimental test runs conducted in Worpswede. The length of test run 1 is 908m, and the length of test run 2 is 1364m.

and elevation profiles. An algorithmic improvement is aiming
for a successful demonstration of localization from scratch,
requiring no positional initialization of the involved samples.
Eventually, this will require using more detailed world mod-
els, e.g. employing the recently available ASTER-SRTM.
Still in its developing phase, this DEM promises 1arcsec2-
sized elevation squares for most of the world’s land surfaces.
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[5] A. Lankenau, T. Röfer, and B. Krieg-Brückner. Self-localization in
large-scale environments for the bremen autonomous wheelchair. In
C. Freksa, W. Brauer, C. Habel, and K. F. Wender, editors, Spatial
Cognition III, number 2685 in Lecture Notes in Artificial Intelligence,
pages 34–61. Springer; http://www.springer.de/, 2003.
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