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Abstract— Simulations are typically used to model a problem
and find a solution before real world testing. They speed up
the validation process and allow researchers to modify their
code accordingly. However, a problem occurs when simulation
results are not consistent with real world results. Researchers
have found inconsistencies due to odometry error and team size.
However, no research has studied the effects specific to robot
teams that affect the realism of multi-robot experiments.

This paper shows how simulation results vary from ex-
perimental results when conducting multi-robot experiments.
Simulation and real experiments are performed using different
environments and cooperation paradigms. Results show that
specific environmental features and cooperation paradigms
significantly affect the usefulness of simulated results when
predicting performance of real robot teams.

I. INTRODUCTION

Validation of robot control algorithms is achieved by
performing simulations, real experiments, or both. Robot
simulators include 2-dimensional [1], [2], 3-dimensional and
physics-based [3], [4], [5] modeling, which are typically used
for two specific reasons: 1) testing and debugging, and 2)
prediction.

Prediction attempts to model the real world by observing
patterns in simulations and relating them to real experiments.
Simulations provide predictions on how a robot will interact
with its environment. Real robot behavior and performance
can then be determined based upon observations of the
simulations. However, these predictions do not always hold
true in real experiments. Therefore, it is not ”wise to rely on
simulation alone” [6].

Researchers acknowledge that error models are approxi-
mate, but there are some circumstances where simulations
can predict relative performance [7]. Prediction of multi-
robot performance in simulation is important because of the
cost and time involved in acquiring, maintaining, and running
multiple robots. To this end, it is important to understand
when simulations accurately predict performance and when
they do not.

There are a number of reasons why simulations differ from
real experiments (i.e. sensor noise, odometry error, etc.). In
[8], it is asserted that the way in which a robot interacts with
its environment accounts for a huge difference between simu-
lated and real robots. Robots in simulation generally perform
perfectly because their sensors and actuators return perfect
results. Whereas, robots in reality are subject to imperfect
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sensor and actuator readings and odometry error. Therefore,
experiments that perform successfully in simulation may
not always perform successfully in reality. In these cases,
simulation results will not accurately portray how a robot
may perform in a real environment. In order to mitigate these
differences, a certain amount of sensor noise can be added
to the simulation.

In addition, having multiple robots in an experiment
provides another significant reason as to why simulations dif-
fer from real experiments. Multi-robot experiments include
additional factors such as interference and latency that affect
performance. However, researchers often neglect this fact.

In this paper, we explore the discrepancies between multi-
robot simulations and experiments that do not exist in single
robot experiments. We also propose a preliminary model
of several factors that affect multi-robot performance that
should be considered in simulation.

This paper is organized as follows. Section II presents
related work. Our approach and experiments are discussed
in Section III and IV, respectively. Results and analysis are
discussed in Section V. Finally, the conclusion is presented
in Section VI.

II. RELATED WORK

Prior work indicates that researchers are concerned with
the correlation between simulation and physical experiments.
Jakobi et al. [9] conducted a study comparing levels of noise
in simulation to noise in a real environment. They found
that different levels of noise used in simulation resulted in
different behaviors in the real environment. They concluded
that the noise level must be correct in order to get a realistic
simulation. However, they determined that a thorough set
of empirical data must be gathered to produce accurate
parameters to be used in simulation. But it is not always
possible to correlate robot-environment interactions under
complex circumstances.

In some instances, sensors are dependent upon each other.
In [10], Meeden found a correlation between certain sensors.
A hybrid model was developed that combined independent
and dependent sensor noise to account for different amounts
of correlation. Their results imply that the hybrid noise model
transfers better from simulation to the real world than an
independent noise model. However, they note that it will
get more difficult to construct accurate simulations as robots
become more complex.

Melhuish et al. [11] performed a patch sorting study
in both simulation and a real multi-robot system using
minimalist robots. Experiments in simulation showed better
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performance than those run on the real robot. They say that
changing light levels caused difficulties with using infrared
sensors which may have resulted in the poorer performance.
However, they claim that their study shows that a successful
transfer of their simulated results to the real world is possible.
Nevertheless, their experiments were run on robots with
minimal sensing abilities, not complex multi-robot systems.

A method for transferring a control system for a bipedal
robot from simulation to the physical world is presented
in [12]. Although their method showed a similar mapping
between simulation and the physical robot, there were some
inconsistencies where the physical robot performed worse.
They reported that motor wear and battery power were the
causes of the differences. However, these are issues that are
not considered in a simulation but are very relevant to real
robot performance.

In [13], [14], [15], it is shown that as the number of
robots increase, performance decreases when coordinating
multiple robots in a search task. This is because of the
limited communication bandwidth and the computational
requirements when dealing with multiple robots. It was
determined that interference and message exchange affect
multi-robot experiments.

Although researchers believe that simulators have sig-
nificant benefits [16], [17], simulations still raise several
concerns. It is stated that a simulation’s accuracy relies on the
robot’s hardware, the algorithm, and operating environment.
It was suggested that making certain assumptions about these
elements reduce the authenticity of simulations.

III. APPROACH

The traditional approach structures robot control systems
into functional modules such as perception, planning, and
modeling. However, many researchers use a behavior-based
decomposition that layers task achieving behaviors such as
obstacle avoidance and wander [18]. A behavior-based robot
is designed to operate in dynamic environments because its
reactions are determined by what is sensed without neces-
sarily modeling the environment structure that provides the
sensor readings. As it senses the environment, it computes
what it senses, and then acts on what is computed (see Figure
1). This structure often includes higher-level behaviors that
are not purely reactive that model and hold state such as
mapping and path planning.

Simulations are an important component of software val-
idation. Robot controllers are tested within a simulated
environment to verify properly coded semantics. In addition,
simulation is often used to predict controller performance
under a set of constraints. Specifically, the environment
is varied along with the robot configuration to quantify
performance under a more generalized set of parameters.

Error modeling is a significant component of obtaining
reasonable performance prediction within single robot sim-
ulations. Sources of error such as sensor noise and wheel
slippage have an impact on performance when conduct-
ing experiments. Although, researchers acknowledge these
sources, they are not always modeled in simulation. When

Fig. 1. A behavior-based model consists of a sense, compute, and act state.
A behavior-based robot chooses its actions depending on what is sensed in
the environment. (a) Single robot and (b) Multiple robots.

these factors are modeled, a simplified model of error relative
to sensor magnitude distributed uniformly or normally is
often thought as sufficient [19].

A. Single Robot: Predicting Performance

When predicting performance in simulation, we focus on
modeling factors that significantly affect the performance of
controllers. There is inherent uncertainty at points where the
robot interacts with the environment: sensing and actuation.
This uncertainty causes variance in real performance. In
addition, performance is biased through interaction with non-
modeled factors changing real controller performance. This
phenomenon is discernible when simulated results are better
or different than real robot results.

Figure 1a illustrates where uncertainty is introduced in the
behavior-based model for a single robot. A robot receives (or
senses) information about its environment such as laser and
distance data. Therefore, sensor error affects how the robot
senses the environment. The robot then calculates its intent
based on the calculated current state of the system. Based
upon these calculations, the robot executes the desired be-
havior (coverage or obstacle avoidance). Latency is injected
because of the delay between sensing, computation time,
and execution time. Along with environmental configuration
[20], these factors (see Figure 2) influence real performance
enough to be fairly consistently modeled in simulation.

Fig. 2. A model of the issues that affect the performance of a single robot
system.
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B. Multiple Robots: Predicting Performance

Is predicting performance in multi-robot systems as simple
as correctly modeling individual factors? Certainly sensor
error, latency and environment all affect team performance
since team performance is an aggregation of individual
performance in some ways. However, we conjecture that
there are important factors specific to multi-robot systems
that affect performance. Because as [21] states, predicting
how a multi-robot system behaves is more complex than
predicting a single robot system.

For instance, researchers have studied team size as a factor
in performance. Algorithm evaluation often includes varying
team sizes to allow for generalization of results [13]. Rybski
et al. [14] shows that limited bandwidth limits the effective
team size. Propagation of localization error between robots
allows robots to share incorrect state information resulting in
reduced coverage percentages. This factor is usually modeled
through individual sensor error models.

C. Expanding the Model

It is instructive to consider how the single robot behavior
model changes when dealing with multi-robot teams. Figure
1b shows possibilities for how multiple robots share data and
cooperate. Robots can share sensor data, calculated/modeled
state and/or intent such as intended search targets. Not only
are actions dependent on what a single robot senses, but
also shared data between robots. These additional links to
and between the behaviors can create additional processing
in a resource constrained environment. Increasing the pro-
cessing load in a computationally constrained environment
may increase latency. However, it is not understood whether
this increase in latency affects end performance more than
existing single robot latency.

Other performance affecting factors may be identified
by understanding the components in the ACT state. In
behavior-based systems, computation results in control of the
motors being given to one of the behaviors. In a coverage
algorithm, usually the behaviors that want motor control
can be classified as either obstacle handling or coverage-
based. For simplicity, algorithms that use a combination are
not initially considered. Due to the subsumptive nature of
such approaches, the performance time can be described as
tA +(1− tA) where tA is the time avoiding and 1− tA is the
remaining time for coverage activities. If we assume that
coverage primarily occurs during the execution of coverage
behaviors and that coverage performance is linear to time
spent covering, it follows that any time spent avoiding
reduces coverage performance over time.

Some factors that influence time spent avoiding do not
change by the addition of robots such as obstacle avoidance
(environment-based). However, interference resulting in time
spent avoiding occurs when multiple robots try to occupy
the same space. We propose that both cooperation paradigm
and environmental configuration influence robot interference
enough to impact tA and the resulting coverage performance.

Cooperation paradigms allow robots to share information
and divide work in such a way to choose different paths

or search targets, thus impacting interference. Environmental
configuration determines the number, placement and size of
obstacles resulting in possibly increased robot obstacle avoid-
ance. However, obstacles may also affect robot interference
by causing robots to spread out more, lessening the effect of
interference and degradation of search performance.

Fig. 3. This preliminary model shows specific issues that affect multi-robot
performance.

These observations allow us to propose an updated model
(see Figure 3) for predicting performance in multi-robot
coverage tasks. To investigate this model, experiments in
simulation and with real robots were conducted focusing on
specific parts of the model.

In this paper, we will examine the following hypotheses:

* Cooperation paradigms and environmental configura-
tion influence interference.

* Interference affects how well simulation approximates
performance of a multi-robot experiment.

* Latency from message loads affects multi-robot per-
formance.

For the search task, a frontier-based algorithm [22] is used
where robots recursively explore an unknown area while
building a cellular representation [23]. Frontiers are the areas
between unknown and open space. As robots detect frontiers,
they store them in a list of areas to explore. Frontiers
are visited to gain more knowledge about the environment,
thereby recursively exploring.

For experiments with no communication, there is no direct
communication between robots. Each robot relies on their
own perception of the environment. With direct commu-
nication, robots explicitly broadcast messages to all other
robots through point-to-point communication. Robots send
messages to share whether an area is open or closed. A robot
updates its map and frontier search list with the information
in the messages.

To examine the influence of cooperation and environment
on interference, experiments with robot teams with no com-
munication and direct communication were conducted in
several different environments. Performance for this research
is measured by the time it takes a team to cover an area. The
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number of incidents that the robots avoided each other were
calculated, then examined against performance.

To compare the effects of message loads, experiments
were performed using two direct communication scenarios.
In the first scenario, robots were allowed to transmit mes-
sages about a new area only once. In the second scenario,
robots were allowed to broadcast more by transmitting infor-
mation about an area every time step it was observed. The
data collected includes the percentage of area covered, aver-
age times at 50% and 90% coverage, and average message
delay for messages received.

IV. EXPERIMENTAL SETUP

Our experiments used both simulated and physical robots
for comparison. The control program, written in the C,
was essentially the same for both the simulated and real
experiments. The simulation environment used was Webots
[4], a 3-D physics-based mobile robot simulator. While other
3-D simulators [5] could have been utilized, Webots was
chosen as the tool for comparison because it provides a fast,
easy to use, high fidelity simulation. It also includes typical
features that are found in popular simulators.

The robots in simulation used global positioning sensor
(GPS) for localization as well as a laser range finder. The
simulations were performed on a Dual Core 2.33GHz Linux
machine with 2GB of RAM. A wheel encoder noise (based
on a Gaussian distribution) was added to the trials run in
simulation to compensate for error in the real world.

K-team Koala robots were used for physical experiments.
The real robots were equipped with a Hokuyo URG laser
range finder and a Hagisonic StarGazer Localization Sys-
tem (used to mitigate sensor error). The robots were also
equipped with a Dual Core 1.6GHz machine running Ubuntu
with 2GB of RAM. The range of the laser used for both
experiments was 2m.

We conducted three sets of multi-robot experiments: two
to test the effects of interference (NO COMMUNICATION and
DIRECT COMMUNICATION) and the third to test the effect
of latency (MESSAGE LOADS). A team of three robots was
dispersed into an unknown environment to search via frontier
exploration. For each experiment, five trials were run in the
physical environments and 20 trials were run in simulation
for each environment.

The six 6m x 6m environments used for the NO COMMU-
NICATION and DIRECT COMMUNICATION experiments are
shown in Figure 4. Environments 2 - 4 all have the same
amount of free space with one 1.5m x 1.5m obstacle strate-
gically placed in the environment. Environments 5 and 6
both contain four 0.9m x 0.9m obstacles. The environmental
configuration for the MESSAGE LOADS experiment was 6m x
6m with a T-shaped obstacle that represent walls of a building
(see Figure 5). The robots were placed along the same wall
one meter apart from each other.

V. RESULTS AND ANALYSIS

Results and analysis are presented in this section.

Fig. 4. The six environments used to test the effect of interference.

Fig. 5. Environmental configuration for the experiments testing the effect
of message loads on latency.

A. Interference

1) Cooperation: To examine the hypothesis that different
cooperation paradigms influence interference, experiments
were performed using two cooperation paradigms: NO COM-
MUNICATION and DIRECT COMMUNICATION.

NO COMMUNICATION (see Table I) resulted in more total
interference than DIRECT COMMUNICATION (see Table II)
in most environments for both the real and simulated robots.
However, the discrepancies between the two are not compa-
rable. The interference for NO COMMUNICATION does not
correlate to the search time or area and is much larger than
its simulation or experimental DIRECT COMMUNICATION
counterparts in both frequency and duration.

Although robots individually optimize their paths to in-
crease coverage, the lack of coordination of actions in NO
COMMUNICATION results in robots choosing to search the
same areas. Even in environments where the lack of ob-
stacles would eliminate bottlenecks, we see the interference
component is still large.

NO COMMUNICATION and DIRECT COMMUNICATION
could be considered extreme cases of cooperation and there-
fore the differences in interference alone do not highlight
the contribution of cooperation or non-cooperation to the
reduction of interference or increases in performance. How-
ever, this phenomenon has been seen in [13] where two
cooperative paradigms included a messaging component that
varied in whether robots shared a global or local search list.
Teammates that shared a global list tended to choose the
same search targets which increased interference which in
turn degraded overall time-to-cover. In contrast, the method
based on non-shared search lists (locally discovered targets)
had better time-to-cover, partially due to reduced avoidance
time.

These findings validate the hypothesis that different forms
of cooperation affect interference. When robot cooperation
results in less interference, robots cover the area faster.
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TABLE I
THE AVERAGE NUMBER OF TIMES THE ROBOTS INTERFERED WITH ONE ANOTHER AND THE AVERAGE LENGTH OF EACH OCCURRENCE FOR NO

COMMUNICATION.

Number of occurrences Time per occurrence (s) Interference
Real Sim Real Sim time (s)

Env µ σ µ σ µ σ µ σ Real Sim
1 5.2 1.79 2.1 1.21 16.87 8.61 6.63 3.97 78.4 15.4
2 3.6 1.82 1.7 1.26 13.33 9.11 6.53 6.15 46.2 12.8
3 2.0 1.00 1.8 1.28 11.57 2.59 7.25 8.54 24.0 14.0
4 3.8 3.77 1.5 1.79 12.38 8.93 3.54 3.93 63.0 9.9
5 5.4 3.44 1.4 1.35 8.06 6.03 8.74 15.88 28.8 13.2
6 1.6 1.95 1.3 1.16 6.48 7.34 15.25 17.95 10.0 22.6

TABLE II
THE AVERAGE NUMBER OF TIMES THE ROBOTS INTERFERED WITH ONE ANOTHER AND THE AVERAGE AMOUNT OF TIME EACH OCCURRENCE

HAPPENED FOR DIRECT COMMUNICATION.

Number of occurrences Time per occurrence (s) Interference
Real Sim Real Sim time (s)

Env µ σ µ σ µ σ µ σ Real Sim
1 0.6 0.55 0.15 0.37 6.6 11.52 0.9 2.99 6.6 0.9
2 0.2 0.45 0.20 0.41 0.6 1.34 0.7 2.30 0.6 0.7
3 0.6 0.89 0.90 0.97 0.5 0.71 3.9 4.45 0.8 6.3
4 0.4 0.55 0.05 0.22 7.8 11.63 0.3 1.34 7.8 0.3
5 0.4 0.55 0.45 0.51 1.4 2.19 1.8 2.44 1.4 1.8
6 0.4 0.55 0.35 0.59 18.8 28.72 0.9 3.21 18.8 0.9

2) Environmental Configuration: We also hypothesized
that different environments influence performance through
interference. Table I suggests that some environments re-
sulted in more interference than others. For instance, environ-
ment 1 and 5 resulted in more occurrences of interference for
the real robots. These are the environments with more free
space in the center of the environment. Likewise, environ-
ments 3 and 6 (with obstacles obstructing the environment)
had the least occurrences for the real robots.

The environment played a slightly different role in simu-
lation for NO COMMUNICATION. While environment 1 had
more occurrences than the other environments, there was not
a huge distinction between the occurrences for the different
environments in simulation. This is one indication of the
differences between simulation and real experiments.

These results suggest that environmental configuration
influences how robots interfere with each other. More im-
portantly, they suggest that although obstacles create bot-
tlenecks, they provide a mechanism for spreading robots in
such a way that reduces interference. This result can be seen
in simulation but is more pronounced in real experiments.

3) Effect on Performance: Using NO COMMUNICATION,
the amount of time it took the robots to explore 90% of the
environments was examined (see Figure 6). The real robots
always took more time to explore than the simulated robots.
For DIRECT COMMUNICATION, Figure 7 shows the average
time the robots explored 90% of the environments. Like NO
COMMUNICATION, the real robots took longer to explore
than the simulated robots. Unlike NO COMMUNICATION, the
real and simulated experiments track relative performance
for more environments.

For instance, it took the real robots the most time to

explore environment 4 because the robots would interfere
with each other resulting in less productivity. Figure 8 shows
the paths of the robots in this environment. In this particular
run, the robots spent a lot of time in the corner near the
obstacle trying to maneuver around each other. As a result,
two of the robots did not finish exploring the environment
leaving the third robot to cover the rest of the area.

Figure 9 shows the coverage over time as robots covered
environment 1 using NO COMMUNICATION. The same trend
was seen in all six environments. The real robots started off
covering the area at the same rate but eventually the simu-
lated robots gained more coverage as time progressed. We
believe that interference impacted the performance causing
the real robots to lose coverage rate.

To formally investigate the hypothesis that unmodeled
interference affects how well simulation approximates per-
formance of a multi-robot experiment, we look at search
time and coverage. If interference had an effect on real
performance, we would expect to see a correlation between
the differences between the real and simulated time-to-cover
and the time spent interfering. In comparing the values
for the environments for NO COMMUNICATION, we find a
correlation of .77 which is significant at p=.005.

However, the same comparison for DIRECT COMMUNI-
CATION does not show any correlation (r=.0645). Overall,
interference in the DIRECT COMMUNICATION is quite low
and is not a significant factor in coverage performance.

B. Latency

1) Message Loads: We hypothesized that latency from
message loads affects multi-robot team performance. To
compare the effects of message loads, experiments were per-
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Fig. 6. Average time for the robots to explore 90% of each environment
using no communication.

Fig. 7. Average amount of time for the robots to explore 90% of each
environment using direct communication.

Fig. 8. Path of the real robot in environment 4 and the area that was
covered (shown in white). Interference between the robots caused two of
the robots to have poor performance.

Fig. 9. Comparison of the average amount of area covered over time for
environment 1 in the no communication experiments.

formed using two different direct communication scenarios:
LESS MESS and MORE MESS.

The message delay averages are comparable between sim-
ulations and real experiments (see Table III). The message
delay averages for real robot experiments are slightly higher
than in simulation. There is a 0.344s and 0.372s difference
between message delay for the LESS MESS and MORE MESS
experiments, respectively. However, the standard deviations
for the real robot experiments are significantly higher than
those in simulation.

TABLE III
COMPARISON OF MESSAGE DELAY (IN S) FOR MESSAGES RECEIVED.

LESS MESS σ MORE MESS σ

SIM 1.446 0.153 3.247 0.067
REAL 1.791 2.022 3.620 2.715

2) Effect on Performance: To examine the impact of
message loads on performance, percentage of area covered
and average times at 50% and 90% coverage are compared.
The coverage times for simulations indicate that there is not a
significant difference between when robots pass less or more
messages (see Figure 10). For example, at 50% coverage,
robots that sent more messages were out performing those
that sent less messages (see Table IV). However, in the real
robot experiments, time decreased as the number of messages
increased (see Figure 11).

Fig. 10. Sim: Coverage Time for Less vs. More Messages Sent.

TABLE IV
SIM: AVERAGE COVERAGE TIME (IN S).

Messages 50% cover time σ 90% cover time σ

LESS 12.323 2.539 24.523 7.754
MORE 11.971 2.261 26.072 8.565

Tables IV and V show the average times robots reached
50% and 90% coverage. For the LESS MESS experiments,
90% coverage was reached in simulation 143.531s (2.39
min) faster than in real robot experiments. With the MORE
MESS experiment, 90% coverage was reached in simulation
175.985s (2.93 min) faster than in real robot experiments.
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Fig. 11. Real: Coverage Time for Less vs. More Messages Sent.

TABLE V
REAL: AVERAGE COVERAGE TIME (IN S).

Messages 50% cover time σ 90% cover time σ

LESS 48.580 22.766 168.054 77.611
MORE 89.639 17.284 202.057 31.256

Results suggest that message delay has a greater impact
on team performance in physical robot experiments than
in simulation. The higher standard deviations for message
delay in the real robot experiments indicate that it is more
unpredictable and variable when using real robots. Therefore,
when conducting simulations the effects of message loads
should be modeled for more realistic performance prediction.

VI. CONCLUSION

In this paper, we present results that validate interference
and message processing load as factors that affect real multi-
robot performance but are not accurately modeled in simula-
tion. The conclusion is that algorithms that show promise in
simulation may not perform well on real robots. In contrast,
algorithms that do not show significant performance gains
in simulation may in fact provide performance increases in
experiments by affecting one of the underlying unmodeled
factors such as interference or reduction in message commu-
nication.

These results motivate research that looks at cooperation
paradigms that reduce interference (through coordination
or dispersion) without relying upon increased messaging
paradigms. Approaches that use observation [24] like primate
groups may be particularly suited to performance gains in
real robots. In addition, the impact of environment configu-
ration requires a much more careful study that we currently
give it. Without the ability to quantify which environment
features make coverage difficult, researchers cannot appropri-
ately choose environments to validate algorithm performance
in the general case.
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