
A Passive Solution to the Sensor

Synchronization Problem

Edwin Olson

University of Michigan

Ann Arbor, MI 48105

ebolson@umich.edu

http://april.eecs.umich.edu

Abstract— Knowing the time at which sensors acquired data
is critical to the proper processing and interpretation of that
data, particularly for mobile robots attempting to project sensor
data into a consistent coordinate frame. Unfortunately, many
popular commercial sensors provide no support for synchro-
nization, rendering conventional synchronization algorithms
useless.

In this paper, we describe a passive synchronization algorithm
that can significantly reduce timing error versus naively time-
stamping sensor data when it arrives at the host. It is passive
in the sense that the algorithm requires no special cooperation
from the sensor. Our method estimates the timing jitter induced
by hosts, and thus does not require a real-time operating system.
We rigorously derive and characterize the method, proving that
it can only improve upon the synchronization accuracy of the
standard approach.

I. INTRODUCTION

Many standard commercial sensors provide no special

support for synchronizing the data with the robot’s computer

or with the data provided by other sensors. Poor synchro-

nization directly impacts the ability of the robot to perform

sensor fusion: projecting sensor data into a common frame of

reference requires precise knowledge of the robot’s position

at the time when the data was collected. If the robot is

moving, synchronization error results in projection error.

The magnitude of this error can be surprising, particularly

in the case of rotating robots. Consider, for example, a robot

rotating at a modest 90 deg/s that is observing an object

10 m away: a synchronization error of just 10 ms results

in a projection error of 15.7 cm. For vehicles moving at

high speeds, such as the vehicles of the DARPA Urban

Challenge [1], [2], [3], even modest synchronization errors

can become serious safety issues.

Unfortunately, most common sensors provide no explicit

means for sensor synchronization. Standard synchronization

algorithms, such as the familiar Network Time Protocol

(NTP) [4], require the cooperation of each node, and thus

are not applicable to the sensor synchronization problem.

The problem is compounded by the way in which many

robotic systems are constructed. Many devices (including

ubiquitous Hokuyo and SICK LIDAR scanners, Xsens IMUs,

and others) commonly interface to computers through a USB

to serial converter. The deep buffers and buffer-flushing

Fig. 1. Problem statement. We wish to estimate the time ti on a host that
some external event pi occured on a sensor. We observe the time pi that
corresponds to ti, but is subject to an unknown offset A, and we observe
qi which is subject to a delay of unknown duration. This paper describes a
passive sensor synchronization algorithm that provides principled estimates
of ti, without the additional active cooperation of the sensor.

logic1 of these devices adds variable-length delay (jitter)

beyond that of the devices themselves. In the case of

more primitive sensors like infrared range finders, ultrasound

sensors, and odometry sensors, a data acquisition board

is typically involved that introduces additional delays. The

heterogeneous nature of these sources complicates a single

common solution.

In addition, most robotic systems are built on top of non

real-time operating systems that place no upper bound on the

length of time that data will sit in a buffer before the applica-

tion is given a chance to process it. Building a robot system

on a non real-time operating system (including standard

flavors of Linux and Windows) is extremely convenient to

the developer, but comes at the price of considerable timing

jitter. This jitter can amount to hundreds of milliseconds on

a loaded system.

Despite the challenges, there is room for improving

synchronization. First, even very problematic systems will

occasionally exhibit low-latency for a single sensor message.

Second, most sensors have some notion of sensor time;

they might have their own clock, or produce messages at

a predictable rate that effectively serves as the “tick” of a

clock. If the low-latency messages can be identified, they can

be used to improve the synchronization of other messages.

One challenge is to identify which messages are the “low-

1The ubiquitous FTDI USB-to-serial converter is well-known for ex-
hibiting high latency. In its default configuration, it artificially waits 16ms
before transmitting data in an attempt to minimize large numbers of small
transactions. On Linux, at least, this “latency timer” can be reduced to 1
ms via the proc file system.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1059

latency” ones; a second is to correctly account for the

accuracy (or lack thereof) of the sensors’ clocks. The clocks

on many sensors are not nearly as accurate as those on

computers, which hampers synchronization.

In this paper, we provide an algorithm that passively

synchronizes sensor data. We exploit the property that some

observations will be low-latency, account for errors between

the sensor and host clocks, and exploit causality information

(i.e., that the the latency must be positive) in order to estimate

the offsets between the host and sensor clocks.

The central contributions of this paper are:

• We describe a passive synchronization algorithm for

recovering the local time at which a sensor observation

was obtained. We develop two variants: one which

operates causally (and is thus suitable for online use),

and another which operates anti-causally yielding even

better performance.

• We prove that our method produces timing estimates

that are at least as good as naive time-stamping (and

usually much better).

• We propose a simple clock drift model and use it

to derive a principled method for determining which

observations were made with low latency.

• We validate our algorithm using synthetic data, char-

acterizing the relationship between the sensor’s timing

accuracy relative to the host, the observed timing jitter,

and the resulting quality of the output produced by our

method.

Our algorithm was originally developed for use on MIT’s

DARPA Urban Challenge vehicle [3], where it was used

to synchronize virtually all of the sensors to a single time

base, including 12 SICK LIDARs, a Velodyne HDL-64E

sensor, 15 Delphi ACC Radars, an Applanix IMU/GPS, and

several small embedded microcontrollers tasked with low-

level control. With this number and variety of input sources,

careful synchronization was critical.

In the following section, we review other time synchro-

nization methods. In Section III, we describe a simplified

version of our algorithm that ignores drift between the two

clocks. We then describe our clock drift model and re-derive

our method in terms of it. We illustrate the performance

capabilities of our algorithm using synthetic experiments in

Section IV. Finally, we summarize our method and results in

Section V.

II. RELATED WORK

Despite the central importance of sensor synchronization,

there is little discussion of it in the literature that is applicable

to black-box sensors. In our literature search, almost all

of the methods we found all involved active collaboration

between the participating nodes. This is impossible in many

practical robotics scenarios, since the sensors cannot be

modified. Still, these other approaches offer relevant mathe-

matical tools and insights that are applicable to our case.

Data from odometry and camera sensors can be syn-

chronized by identifying events which are detectable in

both data streams [5]. For example, when the robot begins

moving from a stop, the first odometry measurement and

camera measurement exhibiting motion can be reasonably

associated. Since odometry and camera data are sampled

only sparsely in time, some timing uncertainty remains.

However, as additional events are recorded, this uncertainty

can be decreased by carefully constructing and intersecting

the confidence intervals. Unfortunately, if these “canary”

events cannot be identified, the method is not applicable.

Most clock synchronization schemes are variants on Cris-

tian’s Algorithm [6], which relies on round-trip measure-

ments. Node a sends a packet to node b, which replies back

to a with the time on node b. Node a knows that the time

reported by b corresponds to some point after it sent the

message and before it received the response. The smaller

the round-trip time, the tighter the bound.

The Berkeley algorithm [7] employs Cristian’s algorithm

as a building block, but proposes a scheme for a network

of computers to converge more rapidly to a single com-

mon time. The well-known Network Time Protocol uses

Marzullo’s algorithm [8], which involves intersecting the

time bounds obtained from multiple offset measurements.

The IEEE 1588 protocol specifies an algorithm for two de-

vices to synchronize their clocks. It is most typically layered

on top of 802.3 ethernet or 802.11 wireless ethernet [9] and

can provide sub-microsecond synchronization. The hardware

requirements of IEEE 1588 are modest enough that the

protocol is supported even on low-end microcontrollers like

the Stellaris LM3S6965. Of course, the protocol does not

help synchronization for devices that do not support the

standard.

Coordinating the trajectory of a welding robot along

a seam requires tight synchronization of the control and

sensing subsystems. In the case of [10], the authors describe

a synchronization scheme that exploits the sensor’s ability to

be triggered on demand. This allows a conventional round-

trip time method to be used. As in this case, machine vision

grade cameras (as opposed to consumer grade cameras) can

often be triggered remotely.

Mesh networks pose unique challenges to time synchro-

nization, due to the undesirability of centralizing computa-

tion and the presence of significant bandwidth and power

limitations. Many systems employ a flooding-like mecha-

nism. See [11], [12] for representative examples.

In summary, there is a wealth of literature on clock

synchronization between hosts that can actively collaborate,

but our proposed method for passive clock synchronization

appears to be the first of its type.

III. METHOD

Our proposed method is designed around a typical sensor

data acquisition scenario. The sensor (which we denote p)

generates messages that either explicitly or implicitly contain

a time-stamp. Some sensors provide an actual time, while

others produce data at a sufficiently regular rate that the

arrival of a message constitutes a “tick” of p’s clock. An

example of such an implicit clock is the SICK LMS 291

1060

which generates messages at an approximately constant 75

Hz rate2.

This data is then transmitted to the host (which we denote

as q), and the host’s clock is sampled. We know that some

time e will elapse between the p’s time stamp and q’s time-

stamp, but this time period is generally unobservable. We

also assume that the jitter e varies erratically from one

measurement to another.

A. Simplified drift-less version

We begin with a simplified version of the algorithm that

does not allow the host or device clock to drift: there is a

fixed offset between the two clocks. While this simplified

method is not of practical usefulness, it illustrates the basic

ideas of our approach without the complications introduced

by drifting clocks.

Let A denote the offset between clocks p and q. This

offset can not be directly observed, however, due to the fact

that some unknown latency e elapses before clock q can be

observed (see Fig. 1).

Specifically, suppose an event occurs at ti on the host’s

clock. Because the sensor is offset by A, it measures the time

as (A+ ti). After some unknown delay ei, the host receives

the sensor’s message; the time on the host’s clock is now

(ti + ei). To summarize:

pi = A+ ti (1)

qi = ti + ei

By subtracting the two equations, we can write an expres-

sion without ti:

pi − qi = A− ei (2)

Recall that we are unable to observe either A or ei
directly— we can only observe pi and qi. When the latency

ei is large, the value pi− qi will be correspondingly smaller.

In contrast, when ei is small (near zero), corresponding to the

case where the host was quickly able to process the sensor’s

data, pi−qi will be large and a good estimate of A. Because

ei ≥ 0, it follows that:

A ≥ pi − qi (3)

Let us now suppose that we have multiple measurements

of p and q’s clock. We can robustly estimate A as:

A ≈ max
i

(pi − qi) (4)

The error in the approximation above is equal to the

smallest ei. In other words, if we ever obtain a low-latency

pair of clock samples (pi,qi) for which ei is small, we will

be able to recover a good estimate of A.

Our goal is to recover ti, the time (according to the host’s

clock) at which the sensor observed the data. Once A is

estimated, we have:

ti ≈ pi −A (5)

2In fact, SICK sensors can be configured to emit a scan counter. This
scan counter is invaluable in maintaining proper synchronization since it
allows the system to recover from message loss resulting from overflowing
buffers or invalid checksums.

If we have an estimate of the minimum (best-case) latency

of the system, our estimate can acount for it by subtracting

that delay from ti.

B. Drift Model

We now consider the case where the sensor and device

clocks drift. Since the clocks drift, the offset between them

is now a function of time. Let us write the offset between

the two clocks as A(pi), where the offset is characterized in

terms of the time on the sensor.

We will characterize the drift of the clocks in terms of the

maximum amount by which the clock offset can change in

any given interval of time. Specifically, given two points of

time pi and pj as measured by the sensor, we wish to specify

some function f such that:

|A(pi)−A(pj)| ≤ f(pi − pj) (6)

While our synchronization method applies to monotonic

functions f(∆p) of any form, we will focus on the common

case where some there is maximum rate error between the

two clocks. I.e., consider a single interval of time measured

by the sensor and host to be of duration ∆p and ∆t

respectively. Since A(pi) − A(pj) = (pi − ti) − (pj − tj),
we can rewrite Eqn. 6 as:

|∆p−∆t| ≤ f(pi − pj) (7)

We can now model the drift of these clocks in terms of

rate error as:

(1− α1)∆t ≤ ∆p ≤ (1 + α2)∆t (8)

In this model, we assume that the sensor’s clock might be

either fast or slow in comparison to the host’s clock. This

model is parametrized by α1 (the extent to which p’s clock

could be fast) and α2 (the extent to which p’s clock could

be slow). Note that α1 and α2 are positive, and for a typical

sensor, we would expect the magnitude of α1 and α2 to be

quite small: a few percent.

It is useful to rewrite this in terms of the drift of ∆t in

comparison to ∆p, which we can do with some algebra:

∆p

1 + α2

≤ ∆t ≤
∆p

1− α1

(9)

Our goal is to bound the change in the offsets of the two

clocks during this interval, i.e., |∆p − ∆t|. There are two

extreme cases to consider: where ∆p − ∆t is maximized,

and where ∆t − ∆p is maximized. By substituting in the

appropriate bounds for ∆t in each case, we obtain the

following bound:

|∆p−∆t| ≤ max

(

∆p−
∆p

1 + α2

,
∆p

1− α1

−∆p

)

(10)

Which simplifies to:

|∆p−∆t| ≤ max

(

α2∆p

1 + α2

,
α1∆p

1− α1

)

(11)

This is the model that we will use in our experiments. It

makes intuitive sense, in that the change in the offset of the

1061

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

α
1

C
o

e
ff

ic
ie

n
t

o
f

e
rr

o
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

α
2

C
o

e
ff

ic
ie

n
t

o
f

e
rr

o
r

Fig. 2. Effect of α parameters on offset error. While the effect of α1 and
α2 on offset error are well-approximated as linear for small values, their
non-linear effects can become significant for systems with poor clocks.

Fig. 3. Clock offset for a single observation. The minimum offset between
the host and sensor clock is plotted. The tightness of the bound is the greatest
at the point the measurement was made, since the sensor clock has not had
time to drift away from the host clock. The bound gets looser on either
side according to the worst-case rate predicted by f(∆t). In this figure, we
assume a rate drift noise model.

clocks increases in proportion to the length of the interval

∆p. For the small positive values of α1 and α2 typical in

real systems, their contribution is also approximately linear.

Let us also consider the behavior of these functions in

extreme situations. If p runs extremely fast (α2 >> 1), the

error in the offset approaches the elapsed time as reported

by p. If p runs very slowly (consider α1 = 1), time actually

appears to “stop” according to p’s clock, with the result

that offset error is unbounded. These effects are evident at

smaller values as well, as shown in Fig. 2: at α1 = 0.2, the

error bound is 25% higher than a purely linear model would

predict. A value of α1 = 0.2 represents a large drift rate, but

large values can arise in real-world systems that, for example,

use inexpensive microcontrollers with RC oscillators.

C. Complete Method

The offset between clocks p and q, now that we consider

drift, is a function of time. We will index this offset relative

to the clock on p, writing A(p). For example, in analogy to

Eqn. 1, we write:

pi = A(pi) + ti (12)

qi = ti + ei

We can again subtract the two equations to eliminate ti:

pi − qi = A(pi)− ei (13)

Fig. 4. Clock offset for multiple observations. When multiple observations
are taken into account, the lower bound for A(p) (shown as a thick dashed
line) can be improved. In this example, the observations at i− 1 and i are
both locally useful. The observation at i+1 had higher latency and so does
not contribute towards the offset computation.

Algorithm 1 Passive Synchronization Algorithm

1: { Forward Pass }
2: for i = 1 to N do
3: if pi − qi − f(0) ≥ p− q − f(pi − p) then
4: p = pi
5: q = qi
6: Ai = pi − qi − f(0)
7: else
8: Ai = p− q − f(pi − p)
9: end if

10: ti = pi −Ai

11: end for
12: { Backward Pass }
13: for i = N to 1 do
14: if pi − qi − f(0) ≥ p− q − f(pi − p) then
15: p = pi
16: q = qi
17: Ai = max(Ai, pi − qi − f(0))
18: else
19: Ai = max(Ai, p− q − f(pi − p))
20: end if
21: ti = pi −Ai

22: end for

We can conclude that:

A(pi) ≥ pi − qi (14)

However, we wish to be able to infer information about

the offsets at other points in time (i.e., A(pj)) given a

measurement at time i. Because of our noise model, we know

that:

A(pi)−A(pj) ≤ f(pi − pj) (15)

We can substitute Eqn. 15 into Eqn. 14. With some

algebra, we obtain:

A(pj) ≥ pi − qi − f(pi − pj) (16)

This result makes intuitive sense: locally, observation i

predicts that A(pi) = pi − qi. However, due to the unknown

clock drift, the farther away some query point pj is, the

less information we will have about A(pj). This behavior is

shown graphically in Fig. 3 for the case of a rate-error noise

model.

Finally, in order to take advantage of all available data,

we arrive at a new “max” rule for estimating A(pj):

A(pj) ≈ max
i

(pi − qi − f(pi − pj)) (17)

1062

An example of this procedure is shown in Fig. 4, which

shows three observation pairs, the A(p) bound computed by

each pair, and the resulting posterior estimate based on the

max rule.

We can now finally recover the host’s time tj correspond-

ing to pj by combining Eqn.12 and Eqn.17:

tj ≈ pj −max
i

(pi − qi − f(pi − pj)) (18)

Our method has several useful properties.

Claim 1: Our method never over-estimates the clock

offset, or equivalently, it will never claim an observation

occurred before it actually did. In other words:

pj −max
i

(pi − qi − f(pi − pj)) ≥ tj (19)

Proof: From Eqn. 12, we know A(pj) = pj − tj . We

substitute into Eqn. 19:

A(pj) ≥ max
i

(pi − qi − f(pi − pj)) (20)

This is true because A(pj) is greater than every possible

value within the max expression, by Eqn. 16.

Claim 2: Our method will never produce a result worse

than the naive synchronization algorithm that sets A(pi) =
pi − qi.

Proof: This follows immediately from Eqn. 17, since

the max expression includes pi − qi − f(pi − pi). Provided

f(0) = 0, our estimate of A(pi) will be at least as large as

pi − qi.

D. Computational Complexity

A literal implementation of our method using Eqn. 18

would yield an O(N2) algorithm for N observation pairs:

there are N values of tj to estimate, and each one requires

a maximization over all N observation pairs.

However, it is immediately obvious that if f(∆t) increases

monotonically, the interval over which a single observation

pair dominates the maximization in Eqn. 18 is compact. In

other words, as time progresses in one direction or another,

once an observation stops dominating, it will never dominate

again.

This suggests a simple two-pass algorithm over the data

(see Alg. 1). During each pass, the best known pair of

observations is compared to the current observation pair; the

pair with the larger value of pi−qi−f(pi−pj) becomes the

new best pair. This process is applied once in the forward

direction and once in the reverse direction, and yields the

same results as the O(N2) algorithm in O(N) time.

The method can be trivially modified to work in online

(causal) applications by omitting the second pass. This

results in a slight decrease in synchronization accuracy due

to the loss of synchronization information from future obser-

vations. The computational complexity for each observation

is O(1).

100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

Time (s)

O
ff

s
e

t
e

rr
o

r
(s

)

No synchronization

Proposed method: Forward

Proposed method: Bidirectional

100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

Time (s)

O
ff

s
e

t
e

rr
o

r
(s

)

No synchronization

Proposed method: Forward

Proposed method: Bidirectional

Fig. 5. Simulation results. Figures show the offset error resulting from
three synchronization methods. Observations are obtained every 1 s and
contaminated with uniformly-distributed random latency of up to 0.5 s. We
show results for sensors with good clocks (top, α1 = α2 = 0.01) and poor
clocks (bottom, α1 = α2 = 0.05). The algorithm’s ability to exploit low
latency measurements is evident, though a more accurate clock increases the
usefulness of those observations. The bidirectional method out-performs the
causal method, since it can exploit future information.

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

α (α
1
 = α

2
)

A
v
e

ra
g

e
 o

ff
s
e

t
e

rr
o

r
(s

)

No synchronization

Proposed method: Forward

Proposed method: Bidirectional

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

α (α
1
 = α

2
)

A
v
e

ra
g

e
 o

ff
s
e

t
e

rr
o

r
(s

)

No synchronization

Proposed method: Forward

Proposed method: Bidirectional

Fig. 6. Synchronization performance versus α. In this synthetic experiment,
observations with uniformly distributed random latency of up to 0.5 s were
obtained at 1 s intervals. The same data has been plotted twice, with a
zoomed image on the bottom. Without our method, average synchronization
error was 0.25 s independent of α. Our methods substantially improve
on this average error, with performance better when the sensor’s clock is
accurate. The bi-directional method performs better, but requires non-causal
processing. As the sensor’s clock degrades (large values of α), performance
of our methods asymptotically approach the “no synchronization” case.

1063

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Time between observations (s)

A
v
e

ra
g

e
 o

ff
s
e

t
e

rr
o

r
(s

)

No synchronization

Proposed method: Forward

Proposed method: Bidirectional

Fig. 7. Synchronization performance versus observation rate. As the
time between observations is increased, the offset error increases. This
experiment uses uniformly distributed random latency of up to 0.5 s, with
α1 = α2 = 0.1.

IV. RESULTS

While the behavior of our algorithm is illustrated in a toy

example in Fig. 4, Fig. 5 shows a more complex example.

This figure shows the behavior of the algorithm for two

different clock accuracies: α = 0.01 and α = 0.05. (Note

that Fig. 4 plots the estimate of A(p), whereas Fig. 5 shows

the offset error, which varies according to −A(p). Thus, the

downward “decay” seen in Fig. 4 appears upside-down.)

We also characterize the performance of our algorithm

in terms of the synchronization error of its estimates. The

amount of this error depends on two parameters: the accuracy

of the clocks (as measured by α1 and α2), and the frequency

with which observations are made. More accurate clocks in-

crease the effect of low-latency measurements, while greater

observation frequencies increase the density of low-latency

measurements.

Fig. 6 shows the effect of the α parameters on synchro-

nization error. Note that as α grows large, performance

gracefully degrades to the same performance as the naive

data association algorithm. We also see that the bidirectional

variant of our algorithm has lower error than the causal

version, which is logical considering that it makes use of

future observations.

Increasing the time between observations has a similar

negative effect on synchronization error, as shown in Fig. 6.

Fewer observations decreases the frequency with which low

latency observations are made.

V. CONCLUSION

We have presented a novel algorithm for passive synchro-

nization of sensor data that significantly improves timing

accuracy for common robot sensors. While the problem of

time synchronization is well studied in the case of collab-

orating hosts, we believe this is the first solution to the

synchronization problem that does not require the explicit

coordination of one party. Our algorithm can significantly

reduce the synchronization error, even in the presence of

unknown latencies and for sensors with significant clock

errors. Our algorithm also provides provable performance

guarantees.

Our algorithm can be implemented in only a few lines

of code, and a reference implementation is available at

http://april.eecs.umich.edu.

ACKNOWLEDGEMENTS

This work was supported by U.S. DoD grant W56HZV-04-

2-0001. We also thank the members of MIT’s DARPA Urban

Challenge for discussions and for helping with early imple-

mentations, particularly David Moore and Albert Huang.

REFERENCES

[1] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Har-
baugh, M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev,
M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar,
P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. R.
Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish,
B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor,
M. Darms, and D. Ferguson, “Autonomous driving in urban environ-
ments: Boss and the urban challenge,” J. Field Robot., vol. 25, no. 8,
pp. 425–466, 2008.

[2] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil,
D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun, “Junior: The Stanford
entry in the urban challenge,” J. Field Robot., vol. 25, no. 9, pp. 569–
597, 2008.

[3] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata,
D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett,
A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,
R. Galejs, S. Krishnamurthy, and J. Williams., “A perception driven
autonomous urban vehicle,” Journal of Field Robotics, September
2008, to appear.

[4] D. L. Mills, “Internet time synchronization: The network time proto-
col,” United States, 1989.

[5] M. Zaman and J. Illingworth, “Interval-based time synchronization of
sensor data in a mobile robot,” in Proceedings of the 1st International

Conference on Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP-2004), Melbourne, Australia, 5-8 December 2004,
December 2004, pp. 463–468.

[6] F. Cristian, “Probabilistic clock synchronization,” Distributed

Computing, vol. 3, no. 3, pp. 146–158, 1989. [Online]. Available:
http://dx.doi.org/10.1007/BF01784024

[7] R. Gusella and S. Zatti, “The accuracy of the clock synchronization
achieved by tempo in berkeley unix 4.3bsd,” IEEE Trans. Softw. Eng.,
vol. 15, no. 7, pp. 847–853, 1989.

[8] K. A. Marzullo, “Maintaining the time in a distributed system: an
example of a loosely-coupled distributed service (synchronization,
fault-tolerance, debugging),” Ph.D. dissertation, Stanford, CA, USA,
1984.

[9] J. Kannisto, J. Kannisto, T. Vanhatupa, T. Vanhatupa, M. Hannikainen,
M. Hannikainen, and T. D. Hamalainen, “Software and hardware
prototypes of the ieee 1588 precision time protocol on wireless lan,”
in Local and Metropolitan Area Networks, 2005. LANMAN 2005. The

14th IEEE Workshop on, 2005, pp. 6 pp.+.
[10] M. G. de, R. Aarts, J. Meijer, and J. Jonker, “Robot-sensor

synchronization for real-time seamtracking in robotic laser welding,”
in Lasers in Manufacturing 2005, E. Beyer, F. Dausinger,
A. Ostendorf, and A. Otto, Eds. München, Germany: AT-
Fachverlag GmbH Stuttgart, 2005, pp. 419–424. [Online]. Available:
http://doc.utwente.nl/52662/

[11] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in SenSys ’04: Proceedings of the 2nd

international conference on Embedded networked sensor systems.
New York, NY, USA: ACM, 2004, pp. 39–49.

[12] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time syn-
chronization using reference broadcasts,” in OSDI ’02: Proceedings of

the 5th symposium on Operating systems design and implementation.
New York, NY, USA: ACM, 2002, pp. 147–163.

1064

