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Abstract— Global localization of a planetary-exploration
rover in the absence of a satellite-based global positioning
system (GPS) is still an open problem. Although a satellite
network is not available for localization around any near-term
exploration targets, topographic maps derived from satellite im-
agery are available. This has spurred the development of several
algorithms that perform global localization by matching data
collected from onboard sensors to a global digital elevation map
(DEM). This paper reviews two of these algorithms—Multiple-
frame Odometry-compensated Global Alignment (MOGA) and
VIsual Position Estimation for Rovers (VIPER)—and compares
their performance on a common dataset, collected in a planetary
analog environment. The comparison demonstrates the common
factors limiting the performance of these algorithms, but also
highlights the benefits and drawbacks of each method. Overall,
the MOGA algorithm performed significantly better; however,
running both algorithms is seen to be the best option as the
computational cost of VIPER is low and it may succeed in some
situations wherein MOGA will fail.

I. INTRODUCTION

An important goal for future generations of planetary

exploration rovers will be to explore sites hundreds of kilo-

meters away from their landers [1]. Rovers will consequently

require an autonomous long-range localization system to aid

them in their journey. Currently, a rover employs a variety

of techniques to determine its pose at any given time. The

MERs were first localized with radio tracking [2], descent

trajectory modeling, and by comparing orbital to ground-

camera imagery [3]. After leaving their landers, localiza-

tion has been accomplished primarily with dead-reckoning

techniques such as wheel odometry, visual odometry (VO)

and local bundle adjustment (BA). Wheel odometry is not

computationally intensive, but it can be inaccurate in high-

slip terrain [4]. While computer vision techniques, such as

VO and BA, can reduce the growth rate of error, they provide

no bound on the absolute error as no measurements are linked

to a global coordinate frame [5].

Global localization techniques can be used to correct dead-

reckoning pose estimates once these become unreliable. On

Earth, the Global Positioning System (GPS) is commonly

used for this purpose. However, the satellite infrastructure

required for such a system is not feasible for non-Earth

applications.

A number of autonomous global localization algorithms

have been proposed to address this problem. Radio local-

ization was used produce the initial position estimate for the
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Fig. 1. Matching low-resolution orbital data (top) to high-resolution data
collected on the surface is difficult because of differing viewpoints during
data collection.

Fig. 2. Data for this study was collected with the Optech ILRIS3D-ER
lidar. Long range lidar scans and panoramic images were collected in a
planetary analogue setting on Devon Island, in the Canadian High Arctic.

MERs [6]. In-situ orbiter tracking can reduce the uncertainty

in the position estimate to below a kilometer after two

passes and in the range of tens of meters after several days.

However, this requires the rover to sit still and wait for

the satellite to pass overhead. Attitude estimation based on

celestial measurements has been successfully deployed on

the MERs [7] and there have been several attempts to use the

same measurements to perform position estimation [8], [9],

[10]. While the results are promising, the technique has never

been vetted on a significant dataset. The most successful

work has involved matching imagery collected on the ground

with satellite imagery [11], [12], [13]. The concept is similar

to techniques used for precise spacecraft landing [2], but

comparing maps built by orbiting sensors to data collected
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from the ground presents significant challenges as the data is

collected from nearly-perpendicular viewpoints (Figure 1).

The contribution of this paper is to compare two algo-

rithms that have been subjected to significant field test-

ing: Visual Position Estimation for Rovers (VIPER) [12]

and Multi-frame Odometry-compensated Global Alignment

(MOGA) [13]. The comparison is made based on a dataset

containing measurements from 40 unique locations on Devon

Island, a Mars/Moon analogue site in Nunavut, Canada.

The most important of these measurements are long-range

lidar scans used in MOGA, and image panoramas used in

VIPER, collected simultaneously using the Optech ILRIS3D-

ER lidar shown in Figure 2. Localization is accomplished

by comparing these to a 100km2 digital elevation map

(DEM) acquired from satellites. Groundtruth positioning was

obtained from GPS.

The basic premises of MOGA and VIPER are reviewed

in Section II. Section III describes the test site and the data

used in this study. Section IV presents the results and lessons

learned, and finally Section V provides the conclusion.

II. GLOBAL POSITION ESTIMATION

This section briefly develops the MOGA and VIPER

algorithms to be compared.

A. Multi-Frame Odometry compensated Global Alignment

The MOGA algorithm is designed to autonomously, glob-

ally localize a rover by matching features detected from a 3D

orbital DEM and rover-based 3D lidar scans. The accuracy

and efficiency of the algorithm can be enhanced with visual

odometry, and inclinometer/sun-sensor orientation measure-

ments. To provide a direct comparison to VIPER (which

does not incorporate these extra measurements), a simplified,

single-scan version of the algorithm will be presented here.

For a more detailed derivation see [13].

Ddetect

Fig. 3. Pixelated circle
with n = 5.

1) Feature Detection: Features

must first be detected from the DEM

(the global features) and from the

rover’s lidar map (the local features).

Generally, the most prominent fea-

tures common to both maps are to-

pographic peaks. These peaks are

detected using a local maxima de-

tector based on morphological dila-

tion1 [14], [15]. Morphological dila-

tion replaces lower grid values with

neighboring higher grid values, effectively blurring out low

elevations. Once dilation is completed for all points on the

grid, the blurred map is compared to the original map. Cells

with no change in value are interpreted as local maxima.

The dilation window is chosen to be a pixelated circle

(Figure 3) to make the window’s coverage more uniform in

all directions. The radius of this circle limits the size of the

detected features, as well as the distance between features.

The minimum distance between features, Ddetect, depends on

1This was inspired by code found on the Matlab Central repository as
‘localMaximum.m’ by Yonathan Nativ.

the global map resolution, Lxy, such that Ddetect := n× Lxy

where n is the circle’s cell radius. On a 100km2 orbital map

with resolution of 20m, several hundred global features could

be detected.

A good uncertainty model is necessary to correctly assess

the quality of individual features and global-local matches.

Global feature positional uncertainty is assumed equal to the

position uncertainty of a measured 3D point in the global

map. The positional uncertainty of a measured 3D point

from the lidar is comparatively very small (<1m) even for

measurements far from the lidar’s origin. However, the effect

of occlusions will dominate the uncertainty in local feature

measurements. Local feature uncertainty is therefore better

estimated by the size of a local feature, Ddetect.

2) Feature Matching: The feature matching methodology

is based on the DARCES algorithm [16]. Hypothesized

correspondences must first be generated between global and

local features. A hypothesis is defined as a group of possible

correspondences between three unique local features, called

control points, and three unique global features. A hypothesis

is not guaranteed to be correct due to noise in feature position

measurements. Therefore, many control point groups are

tested to increase the chances of finding a valid hypothesis. A

hypothesis is generated if the distances between three global

features are similar to the distances between three local

features. This test can be quantified knowing each feature’s

position uncertainty.

The validity of a hypothesis is evaluated based on the

transformation it produces between the global and local

frame. This transformation can be obtained using a least-

squares point-alignment algorithm to align the three global

and three local features that comprise a hypothesis [17].

To improve the efficiency and robustness of DARCES,

hypotheses are first screened with a number of simple tests.

For example, a hypothesis is discarded if the hypothesized

rover orientation does not agree well with the measured

orientation (i.e., from sun sensor, inclinometer [18]). A

measure of fitness is then calculated for each hypothesis by

examining how well the hypothesized transformation aligns

lidar scan points to the global map. To more efficiently and

robustly calculate this metric, the full lidar scan is decimated

to half the global map resolution, Lxy/2. These more evenly-

spread points are called the reference points.

For a hypothesis i, the fitness metric, fi, is the average

absolute z-error between the reference points transformed

to the global frame, and the corresponding points from the

global map:

fi :=− 1

Nref

Nref

∑
j=1

∣

∣zR
i, j − zG

i, j

∣

∣ , (1)

where Nref is the number of reference points, zR
i, j is the z-

position of the transformed reference point j in the global

frame, and zG
i, j is the interpolated global map elevation at the

xy-position of the transformed reference point j. The negative

is applied so that a low error corresponds to a high fitness.

Once a fitness is associated with each hypothesis, a search

is made for a group of high-fitness hypotheses that have
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value of sφ is calculated for azimuth angles φ = 0◦ . . .359◦

and these are stacked into a column, s:

s(p) =







s0

...

s359






(8)

To speed up the algorithm, the skylines are prerendered at

every grid cell in the DEM. The rendering can take a long

time —days for each DEM—but it only has to be performed

once, and it speeds up the position estimation algorithm by

several orders of magnitude.

3) Position Estimation: The position estimation algorithm

uses a Bayesian approach to determine the most likely po-

sition in the map given the skyline. The estimator computes

the posterior probability of the rover being at every place in

the map, p(p|m). This value is expanded using Bayes’ rule:

p(p|m) =
p(m|p)p(p)

p(m)
(9)

The measurement model is

m = s(p)+δm , (10)

where p is the true location of the rover and the measurement

noise, δm, is assumed to be drawn from a zero-mean

Gaussian distribution:

δm ∼N (0,R) (11)

This model is simplified by assuming that the form of R is

R = σ21 , (12)

where σ is the measurement’s standard deviation.

Given a particular measurement, m, the error, e, at a

particular place in the map, p, is

e(m,p) := m− s(p) . (13)

Hence, the likelihood of m given p is4

p(m|p) = 1
√

det(2πR)
exp

(

−1

2
e(m,p)T

R−1e(m,p)

)

.

(14)

The prior likelihood, p(p), encapsulates prior knowledge of

the rover’s position. In this paper’s implementation, which

evaluates a single image panorama against a DEM ([12]

refers to this as the dropoff problem), every position in the

map is assumed to be equally likely.

Finally, the likelihood of the skyline measurement, p(m),
is expanded as

p(m) = ∑
ρ∈K

p(m|ρ)p(ρ) , (15)

where ρ is a position in the DEM and K is the set of all

such positions.

4This observation likelihood equation is different than the one published

in [12], which uses
√

2πσ2 as the denominator in the fraction on the left.
Using this denominator, p(m|p) is no longer a valid probability density
function. Equation (14) has been used in this implementation as it is true
to the noise model.

4) The VIPER Algorithm: Using the definitions in the

above sections, the VIPER algorithm may be described step-

by-step for a single panorama:

1) Build the image panorama.

2) Segment the skyline in the image, sampling the curve

at one degree increments to produce a vector of eleva-

tion measurements, m.

3) Find p⋆ = maxp (p(p|m)).

III. FIELD TESTING

To compare the two algorithms, a realistic dataset was

collected from Devon Island, Nunavut just North of the

Haughton Crater at 75◦22’N and 89◦41’W. The area’s ge-

ological features and lack of vegetation make it a unique

Mars/Moon analogue site [21]. In these comparison tests,

MOGA and VIPER were provided the same orbital maps

and heading measurements. The similarity of the input data

ensures a fair comparison of the two approaches.

In total, 40 separate lidar scans/image panoramas were

collected over two weeks using the Optech ILRIS3D-ER

lidar mounted on a pan-tilt unit as seen in Figure 2. Designed

as a accurate, long-range mapping sensor, this lidar has a

maximum range of about 1.5km in Extended Range mode,

a beam divergence of 0.00974◦ and a range accuracy of

7mm at a distance of 50m. The vertical and horizontal scan

resolutions were respectively set to 0.03◦ and 0.06◦. The

vertical resolution was smaller to compensate for the oblique

scanning angle. With these settings, a scan with a field

of view of 360◦ in the horizontal and 20◦ in the vertical

finished in about 30 minutes. The lidar also captured images

at 10 equally-spaced azimuth angles (used to build the image

panoramas) from an on-board, 6-megapixel digital camera.

A. Maps

The DEM was obtained from GeoBase, an online repos-

itory of digital terrain data covering all of Canada. These

3D maps are produced from stereo image pairs collected

from orbiting satellites. The map’s x and y resolutions were

respectively 13m and 24m. In order to be more compatible

with these algorithms, the global map was interpolated at the

smaller resolution to form a uniform grid.

B. Orientation Measurements

Orientation measurements were a required input for the

VIPER algorithm and they improve the efficiency of MOGA.

Heading measurements for A01-A25 were obtained from a

sun sensor/inclinometer pair [18], while those from A26-A37

were computed knowing the GPS and local positions of a

distant target [13]. Roll and pitch were effectively measured

by leveling the lidar with its built-in, two-axis bubble level.

C. Ground-Truth

Ground-truth xy-position measurements were obtained

from a Garmin GPSMAP 76CSx by averaging measurements

for several minutes.
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Fig. 5. VIPER and MOGA position errors. The vertical axis is on a log scale.
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Fig. 6. VIPER’s segmented skyline and MOGA’s features plotted on image panorama. MOGA is able to use topographic information below the skyline
whereas VIPER is restricted to using information on the skyline.

IV. RESULTS

Figure 5 shows the main quantitative output of this study:

a comparison of the radial position error of the estimates

of MOGA and VIPER on the common dataset. The error

in the MOGA estimate was less than 100 meters for all 33

scans where it was able to produce a solution. On the other

seven scans (no error reported for MOGA on Figure 5),

the DARCES component of the algorithm failed and no

answer was returned. Viper produced an estimate with an

error of less than 100 meters on 13 out of 40 scans. The

results show that, while VIPER was computationally less

demanding, MOGA’s localization performance was generally

superior. The difference can primarily be attributed to the

use of 3D information in MOGA, since VIPER is unable to

distinguish between areas that produce similar 2D skylines.

Figure 6 plots the local features available to MOGA and the

segmented skyline used by VIPER on the same panorama.

In this scan, MOGA is able to use the topographic relief

below the skyline whereas VIPER is limited to the horizonal

boundary.

VIPER outperformed MOGA in a small number of cases,

notably for scan A13. MOGA found no solution for this scan

since the lidar was located in a relatively flat region where

good features were out of lidar range. Meanwhile, the lack of

occlusions nearby allowed the built-in camera to observe the

horizon many kilometers in the distance. This result suggests

that there are situations where VIPER should be used instead

of MOGA, particularly where the nearby terrain is flat but

distant features are visible in the panoramic image. Figure 7

compares the horizon of data used by VIPER and MOGA

on scan A13. The rendered skyline used by VIPER includes

data up to 7 kilometers away whereas MOGA is limited to

the 1.5 kilometer range of the lidar.

However, there are still scenarios where neither algorithm

performed very well such as the canyon locations of A02

and A20-A23. In these canyons, only short-range features

are visible to either lidar or camera due to occlusions, which

makes localization much more difficult for both algorithms.

Furthermore, the canyon walls were thinner than the resolu-

tion of the DEM, and therefore not accurately represented in

the global map.

In the end, there are a number of common factors limiting

the performance of both algorithms:

• DEM quality—Higher quality and higher resolution

DEMs will increase the ability of these algorithms to

discern position.

• The amount of topographic relief in the area—

Areas with little topographic relief do not provide useful

information for either algorithm. This may explain the

high failure rate observed for this implementation of

VIPER compared to the results reported by [12]; the

panoramas gathered in the Atacama desert as part of the

that work5 show large-scale relief along the horizon—

much greater relief than exhibited on Devon Island.

5http://www.cs.cmu.edu/˜VIPER/AtacamaMission/
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Fig. 7. Horizon of the lidar scan compared to the data used to render
the horizon in VIPER with the DEM plotted in the background. VIPER
can use topographic information that is much further away from the sensor.
This allows VIPER to succeed in situations where the major topographic
relief in the area is far away from the sensor.

• The amount of topographic relief within the range of

the sensor—VIPER is limited to using the topographic

relief visible on the horizonal boundary whereas MOGA

is limited by the range of the lidar.

• Availability and quality of the platform orientation

estimate—Relatively small errors in the orientation of

the platform can cause large differences in the perceived

features. While this may be mitigated through careful

attention during data collection, future work in this

area should address the problem of some uncertainty

in orientation.

V. CONCLUSION

This paper has presented an experimental comparison

of two algorithms for performing surface-based global lo-

calization in the absence of GPS. The comparison was

performed on a common dataset collected at a planetary

analog site in the Canadian High Arctic. The work shows

that the algorithms share a common set of factors limiting

performance. Both algorithms are limited by the quality of

the DEM and require good topographic relief within the

range of the sensor. On this dataset, MOGA performed much

better than VIPER, producing estimates with radial position

error under 100 meters on 33 out of 40 scans. VIPER was not

as successful (13/40 scans) but was able to obtain a solution

is some situations where MOGA failed.
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