
Dual position control strategies using the
cooperative dual task-space framework

Bruno Vilhena Adorno, Philippe Fraisse and Sébastien Druon

Abstract—We propose a set of control strategies for performing
two arm manipulation with the goal of simplifying the task
definition. In order to develop these strategies we propose a new
representation, derived from the cooperative task-space, in the
dual quaternion domain. The result is a compact and “singularity
free” representation for two arm systems, named cooperative dual
task-space. All the proposed control strategies share the same
general scheme and are derived by using an analytical approach.
Moreover, the mathematical treatment is given in a coherent and
systematic fashion, and thus other strategies may be derived using
the same argument. Experimental results show the effectiveness
and usefulness of the cooperative dual task-space framework and
the proposed control strategies.

I. INTRODUCTION

In the past thirty years a lot of research has been done in
multi-manipulator systems [4]. This kind of cooperative sys-
tem can be used to carry heavy payloads, to perform complex
assembly tasks and in poorly structured environments, like
outer space or undersea [4]. However, these advantages come
with the drawback of leaving the system more complex. For
instance, multiple manipulators cause internal stresses in the
manipulated object, and a force control scheme has to be used
in order to minimize these forces.

Thus, several approaches were proposed to tackle the prob-
lem of multi-arms manipulation. Khatib [10] presented a
control scheme using N robots with the same number of DOF
and rigidly connected to a common manipulated object. The
control was made in the operational space using the concept
of the augmented object, that is, the object submitted to the
operational forces created by the N end-effectors acting at
the operational point. In [15] it was proposed a physical
model for internal forces and moments that appear in multi-
arms manipulation. This model is based on a virtual linkage
between the grasping points and was successfully applied in a
system composed by two PUMA 560 manipulators using the
augmented object model. Khatib et al. [9] used the concept
of augmented object and virtual linkage model to implement
a decentralized control between multiple mobile manipulator
platforms. The system composed by the mobile platforms was
able to perform tasks such erasing a whiteboard and cooperate
in carrying a basket.

In [14] it was introduced the concept of symmetric control
scheme for a tightly grasped object based on the relationships
between forces and velocities in the object and the counterparts
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in the “virtual sticks”, i.e., vectors originating from the end-
effector frame and ending at the origin of the reference frame
of the object. Due to the principle of duality between force
and velocity, a static analysis was used for finding the forces
and then the velocities were found. Finally, the position of
the virtual sticks could be determined by integrating the
velocities, although extra care had to be taken in the orientation
integration, since it was represented by Euler angles. The
result was four meaningful variables: the absolute and relative
positions; and absolute and relative orientations between the
arms. Some authors have taken the inverse approach, defining
directly a space composed by these four variables, named
cooperative task-space [3], [5]. The main advantage of defining
such a space is that the hypothesis of a firmly grasped object is
relaxed, and then the control can be applied to flexible objects
or for simply perfoming a coordinated movement between
the arms. However, whenever a grasping occurs, external and
internal forces appears and force control still has to be done
for achieving good performance in the manipulation task.

Connolly and Pfeiffer [6] used normalized dual quaternion
interpolation for generating a path between two points respect-
ing the kinematics constraints of the resulted closed chain
mechanism. Moreover, they performed force control by means
of an external force control scheme [13] using an approxima-
tion for differential dual quaternions. Dooley and McCarthy
[8] introduced the concept of operational image space. The
operational space formulated for multiple manipulators by
Khatib [10] was then represented in a subspace of the dual
quaternion space, the image space. This representation was
used to perform geometric analysis of the trajectories for
cooperating robots.

In this paper, we propose a set of control strategies for
performing two arm manipulation with the goal of simplifying
the task definition. In order to develop these strategies we
propose a new representation, derived from the cooperative
task-space, in the dual quaternion domain. The result is a
compact and “singularity free” representation for two arm
systems, named cooperative dual task-space. The motivation
for developing such representation arise in the context of the
ASSIST project1, whose goal is to build an assistant robot
for interacting with quadriplegic people. As an example, the
robot should be able of opening a bottle of water, filling a
glass, and safely bringing it to the patient. Thus, a singularity
free representation is not only desirable but also fundamental
for achieving the high level of safety required by this kind

1http://www.lirmm.fr/assist
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of interaction, since singularities in the representation can
potentially lead to inconsistencies in the task execution. One
advantage of the proposed control strategies is that they
share the same general scheme, and thus they can be easily
changed in real time, accordingly to the requirements of the
manipulation task. Moreover, some strategies permit the task
execution without the need of specifying all the cooperative
dual task-space variables. Furthermore, since we are using
an analytical argument, and both forward kinematics model
and the Jacobian are expressed directly in the dual quaternion
space, it turns out that the mathematical treatment is given in
a coherent and systematic fashion, and thus other strategies
may be derived using the same procedure. For showing the
usefulness and effectiveness of the proposed method, we
performed experiments using the HOAP-3 robot for two usual
tasks: grabbing a balloon and pouring water, both executed
using the proposed strategies.

This paper is organized as follows: Section II briefly reviews
rigid motions represented by dual quaternions, while Section
III formalizes the cooperative dual task-space and in Section
IV a set of control strategies is presented. Then, Section
V shows the experimental results and discussions. Finally,
Section VI presents the conclusions and the next steps in our
research.

II. DUAL QUATERNIONS APPLIED TO RIGID MOTIONS

Dual quaternions have been proven to be a useful represen-
tation for describing rigid motions [2], [7], [17], [16], since
they describe simultaneously both positions and orientations
(hereafter regarded as dual positions) by using only eight
parameters and are “singularity-free”. Furthermore, a sequence
of rigid motions is represented by a sequence of dual quater-
nion multiplications. The dual quaternion

q = q+ ε
1

2
tq (1)

describing a rigid motion is a dual entity composed by a unit
norm quaternion q representing a rotation and an unbounded
norm quaternion q′ = 1

2tq, indirectly representing a transla-
tion.

The dual quaternion multiplication can be performed in two
ways. The first one is by means of quaternions multiplications
subjected to the Clifford algebra. In this algebra it is defined
the operator ε with the properties ε 6= 0 but ε2 = 0. Hence,
given the dual quaternions q

1
= q1+ εq

′
1 and q

2
= q2+ εq

′
2,

the multiplication q
3
= q

1
q
2

is

q
3
= q

1
q
2
= q1q2 + ε(q1q

′
2 + q′1q2). (2)

Alternatively, the Hamilton operators used for quaternion
multiplication in vector space can be extended to the dual
domain [1], leading to

~q
3
=

+

H(q
1
)~q

2
(3)

=
−
H(q

2
)~q

1
(4)

Figure 1: Cooperative dual task-space representation: q
a

and
q
r

fully describe the manipulation task in terms of absolute
and relative dual positions

We can note by (3) and (4) that the Hamilton operators pro-
vide a sort of “commutativity” for the mathematical operations
describing a rigid motion, even if a sequence of rigid motions
is not commutative. As we shall see in Section IV, we will
exploit extensively this property in order to derive the control
strategies for the cooperative manipulation.

III. COOPERATIVE DUAL TASK-SPACE

The equations used to describe the cooperative task-space in
a vector space were first derived by Uchiyama and Dauchez
[14] considering the hypothesis of a firmly grasped object.
Then, in [5] this assumption was relaxed and the variables
deduced by Uchiyama and Dauchez were used as a start point
for defining the cooperative task-space. This space defines
four physically meaningful variables in terms of absolute and
relative position/orientation. Originally, Chiacchio et al. [5]
used tridimensional vectors for representing the translations
and rotation matrices for representing the orientations in the
cooperative task-space. Then, Caccavale et al. [3] took one step
further and used quaternions for representing the orientations.
Here we go still further and use dual quaternions to represent
both translations and rotations using just one operator.

Definition 1. The relative and absolute dual positions can be
defined as

q
r
= q∗

2
q
1

(5)

q
a
= q

2
q r

2

, (6)

where q∗
2

is the conjugate of q
2
, q r

2

is the transformation
that corresponds to half of the angle φ about the axis ~u of
the quaternion qr and half of the translation between the two
arms.

More specifically, q r
2

is given by

q r
2

= q r
2
+ ε

1

4
trq r

2
(7)

where [3]

q r
2
= cos

φ

4
+ ~u sin

φ

4
. (8)

Although in this paper we are not addressing the issue of the
forces involved in the manipulation, it is important to remark
that forces and moments can be represented directly in the
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cooperative task-space [14]. Fig. 1 illustrates the cooperative
dual task space variables, where q

1
and q

2
are the dual

quaternions describing the rigid transformations of the frames
attached to the first and second arms, respectively, with respect
to a base frame represented by q

0
, while q

r
and q

a
are the

cooperative dual task space variables given by (5) and (6).
There are two main advantages of using the dual quaternions
to represent the two arms cooperation. Firstly, the task is
defined using two equations instead of four [3]. Finally the
“commutativity” achieved by using the Hamilton operators
provides an easy way for defining different control strategies,
as we will see in the next section.

IV. CONTROL STRATEGIES FOR DUAL POSITION CONTROL

Different tasks can be controlled differently. For instance,
when driving a car both hands have a fixed geometrical
relationship - thus we can imagine q

r
constant - but the

absolute orientation qa must change in order to turn the wheel.
Hence we can imagine a full dual position control, where we
try to maintain q

r
and the absolute translation ta constant,

and qa changes accordingly to the desired maneuver. On the
other hand, let us suppose that we just want to drop a box
handled by both arms. Raising the distance between them
would suffice for accomplishing this task (if we consider that
we are not grasping the box). Clearly, we can still drop the
box by performing the control of every single variable of the
cooperative dual task-space. Alternatively, we can act only on
the relative translation between the arms or the relative dual
position. However, controlling the relative distance requires
only one degree of freedom, while the other task definitions
can require up to twelve, as in the case of the full dual
position control (six for the absolute variables plus six for the
relative ones). Thus, in the case of relative distance control,
the remaining degrees of freedom could be used to perform
a secondary task, such as obstacle avoidance. However, a
second task cannot be performed in the case of a robot that
has less then twelve degrees of freedom and if the task is
defined in terms of both absolute and relative dual positions.
The conclusion is that, using the cooperative dual task-space
formalism, we can accomplish the same task in different ways,
but some of them are more convenient than others.

Motivated by this previous discussion we propose some
control strategies using the cooperative task-space formalism.
The idea is to provide some useful primitives that could be
used by a higher level system and, as we shall see in the
sequel, we exhaustively exploit the dual quaternion “commuta-
tivity” properties provided by the Hamilton operators in order
to derive the relationship between these primitives and the
joint variables. In this manner, we basically want to have a
relationship between the primitive ~ud to be controlled and the

joint variables of the two arms system ~θR =

[
~θ1
θ2

]
given by

~̇ud = Jtask~̇θR, (9)

where Jtask is the Jacobian associated to the task. Thus, our
goal will be to find Jtask for each desired primitive and then

use it in any Jacobian based control method. Furthermore, we
assume that the forward kinematic model is expressed in the
dual quaternion space [12], and thus

~̇q
i
= Jq

i

~̇θi (10)

where i = 1, 2 refers to the first and second arm and Jq
i

is
the analytical Jacobian.

1) Relative dual position control: The primitive to be
controlled is the relative dual position, and thus ~ud , ~q

r
and

Jtask , Jq
r
. One example for this task definition is illustrated

in Fig. 2a. Jq
r

can be easily found taking the first derivative
of (5) and using the Hamilton operators, that is

q̇
r
= q̇∗

2
q
1
+ q∗

2
q̇
1
, (11)

=
−
H(q

1
)~̇q∗

2
(4)

+
+

H(q∗
2
)~̇q

1
(3)

(12)

=
(10)

−
H(q

1
)J∗q

2

~̇θ2 +
+

H(q∗
2
)Jq

1

~̇θ1 (13)

~̇ud , ~̇q
r
=

[
+

H(q∗
2
)Jq

1

−
H(q

1
)J∗q

2

]
︸ ︷︷ ︸

Jq
r

·
[
~̇θ1 ~̇θ2

]
︸ ︷︷ ︸

~̇θR

T

,

(14)

where

J∗ =

{
Diag(1,−1,−1,−1, 1,−1,−1− 1) · J, if J8×8

Diag(1,−1,−1,−1) · J if J4×4
(15)

that is, J∗ is an operator consisting of the dual quaternion Ja-
cobian premultiplied by a diagonal matrix in order to relate the
joint variables vector derivative with the conjugate dual quater-
nion derivative. More specifically, J∗q

i
= J∗Jq

i
, i = 1, 2.

This same operator can be applied analogously to relate the
joint variables vector derivative with the conjugate quaternion
derivative.

2) Relative Cartesian position control: In this strategy,
illustrated in Fig. 2b, ~ud , ~tr and Jtask , Jcartesian. In order
to find Jcartesian, we isolate the translation quaternion from
q′r =

1
2trqr and take its first derivative

tr = 2q′rq
∗
r , (16)

ṫr = 2q̇′rq
∗
r + 2q′rq̇

∗
r , (17)

~̇u , ~̇tr (18)

=
(3),(4)

(15)

(
2
−
H(q∗r)Jq′

r
+ 2

+

H(q′r)J
∗
qr

)
︸ ︷︷ ︸

Jcartesian

~̇θR, (19)

where we decomposed the relative Jacobian such as Jq =[
Jq

Jq′

]
.
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(a) Relative dual position control (b) Relative Cartesian position con-
trol

(c) Relative distance control (d) Full dual position control

Figure 2: Different control strategies defined for different tasks

3) Relative distance control: In order to control the relative
distance, as illustrated in Fig. 2c, firstly we write ud = f

(
~tr

)
,

and then

u̇d =
∂ud

∂~tr
· ∂
~tr

∂~θ
· d
~θR
dt

(20)

=
(19)
∇udJcartesian~̇θR. (21)

in which ∇ud denotes the gradient of ud.
The most obvious choice for ud would be ud ,‖ ~tr ‖, but

the gradient of this function is singular for ~tr = ~0. Thus, we
choose ud ,‖ ~tr ‖2 and (21) becomes

u̇d = 2~tTr Jcartesian︸ ︷︷ ︸
Jdistance

~̇θR. (22)

In a strict sense, (22) indicates that actually we control the
square distance, but as the distance and its square are related
by a bijective function, controlling the square of the relative
distance is equivalent to control the relative distance.

4) Full dual position control primitives: In this strategy,

illustrated in Fig. 2d, ~ud ,

[
~q
a
~q
r

]
and Jtask ,

[
Jq

a

Jq
r

]
.

The relative Jacobian Jq
r

is given by (14). In order to obtain
Jq

a
we use an argument similar to the one used to derive

Jq
r
, that is, we take the first derivative of (6), then apply the

Hamilton operators and finally use (10), leading to

~̇q
a
=

(
−
H(q r

2

)Jq
2ext

+
+

H(q
2
)Jq r

2

)
︸ ︷︷ ︸

Jq
a

~̇θR, (23)

where Jq
2ext

=
[
08×n1 Jq

2

]
with n1 being the number of

joints of the first arm and ~̇q r
2

= Jq r
2

~̇θR. In order to find Jq r
2

,
we take the first derivative of (7)

~̇q r
2

=

 ~̇q r
2

1
4

(
−
H(q r

2
)~̇tr +

+

H(tr)~̇q r
2

)  (24)

but we still have to calculate ~̇q r
2

. This can be done by using
the quaternion propagation equation q̇ = 1

2ωq [11] for both
q̇r and q̇ r

2
and after some quaternion algebra, we obtain

~̇q r
2
=

1

2

−
H(q∗rq r

2
)Jqr︸ ︷︷ ︸

Jq r
2

~̇θR. (25)

Substituting (25) in (24) we have

~̇q r
2

=

 Jq r
2

1
4

(
−
H(q r

2
)Jcartesian +

+

H(tr)Jq r
2

) 
︸ ︷︷ ︸

Jq r
2

~̇θR. (26)

Finally, we can substitute (26) in (23) for obtaining the
expanded expression for Jq

a
.

A. Two arms control law

In order to perform the two arms control based on the
previous derived primitives, the following classic control law
can be applied

~̇θR = J+
taskKarm (~udesired − ~umeasured) (27)

where Karm is a positive definite gain matrix and ~̇θR is
integrated and passed directly as reference to the robot joints
controller. In our case, we can calculate ~umeasured easily, since
the forward kinematic model of the system is calculated
directly in the dual quaternion space [12]. Thus, it is just
a matter of calculating the forward kinematic model for
both arms and then calculating ~umeasured using the relevant
equations. For example, if we want to perform a relative dual
position control, the controlled primitive is ~u = ~q

r
, where q

r
is given by (5). On the other hand, if the goal is to control
the relative Cartesian position ~u = ~tr, we use (5) followed by
(16), while the square of the relative distance can be obtained
straightforwardly, that is, ud =‖ ~tr ‖2.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In order to illustrate how our framework can be imple-
mented in practice we have chosen two scenarios. In the first
one, we have used the HOAP-3 robot for grabbing a balloon
and in the second one the robot had to pour water in a glass,
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(a) Initial configuration (b) Full dual posi-
tion control: rough
reaching phase

(c) Relative distance
control

(d) Full dual position
control: final configura-
tion

Figure 3: Grabbing a balloon

(a) Initial hands configura-
tion: start of the relative
Cartesian position control

(b) Relative Carte-
sian position control:
intermediate config-
uration

(c) Start of the rel-
ative dual position
control

(d) End configura-
tion of the relative
dual position control

Figure 4: Pouring water

and we intend to show with these experiments how the control
primitives can be chosen in order to accomplish the tasks. For
both examples we have used the control law given by (27).

In the task of grabbing a balloon, given the initial con-
figuration shown in Fig. 3a, we perform a full dual position
control, since we use the current coordinate system of the
balloon as the reference for the absolute frame and we also
roughly specify the relative dual position in order to reach
the object with a suitable pose. The final configuration after
this rough reaching phase is illustrated in Fig. 5c. Then, a
relative distance control is performed and the robot closes the
arms and holds the balloon, as illustrated in Fig.3c. Finally,
in order to maintain the relative dual position and change
the absolute dual position of the object, we perform again
a full dual position control, as illustrated in Fig. 3d. The
reference trajectories and the respective responses for this
task are shown in Fig. 5. The full dual position plots refer
to the final displacement subtask (the plots of the rough
reaching phase are quite similar to this last one in terms of
trajectory tracking). Since the unit quaternion is represented
by q = cos θ2+sin θ

2~n, where ~n is the rotation axis and θ is the
angle of rotation about this axis, the orientation trajectories in
Fig. 5 are represented by each component (nx, ny, nz, θ). We
can note that the tracking errors in the relative distance control
are quite negligible. In contrast, in the full dual position
control the tracking errors of the absolute variables were larger
due to the fact that the two arms system is underactuated
for this task definition, since it requires twelve DOF and the
robot has only four DOF per arm. Thus, as the control law
given by (27) minimizes the error between the desired and
measured variables, we should expect a worse performance,
in terms of tracking errors, when executing the task using

an underactuated system. This is the exact behavior that we
observe in Figs. 5b and 5c.

In the water pouring task the absolute position can be disre-
garded, since the only condition for an effective coordination
is that it must occur inside the two arm workspace. Thus, if
we consider the initial configuration indicated in Fig. 4a, we
can first apply a relative Cartesian position control for the
initial coordination between the hands, as we can see in Figs.
4b and 4c, and then we apply the relative dual position control
strategy. In this way, as the distance between the hands remains
constant, their relative orientation changes and we have the
final configuration indicated in Fig. 4d. Thus, dividing the task
into carefully chosen subtasks permits its execution even if the
two arms system has less DOF than what would be required
if all cooperative dual task-space variables were controlled.
Moreover, as the system is now redundant with respect to the
task, we can observe in Fig. 6 that the tracking errors are quite
negligible.

VI. CONCLUSIONS AND FURTHER WORKS

In this paper we have proposed a set of control strategies for
performing two arm manipulation with the goal of simplifying
the task definition. In order to develop these strategies we
proposed a new representation, derived from the cooperative
task-space, in the dual quaternion domain. The result is a
compact and “singularity free” representation for two arm
systems, named cooperative dual task-space. Our motivation
in developing such representation originated in the context of
the ASSIST project, where a high level of safety is required for
the interaction between the robot and a quadriplegic person,
and thus one should avoid inconsistent task executions due
to singularities in the representation. All the proposed control
strategies share the same general scheme and are derived by
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(a) Relative distance control.
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(b) Full dual position control: translation
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(c) Full dual position control: orientation

Figure 5: Reference trajectories (dash-dotted lines) and re-
sponses (solid lines) for the task of grabbing a balloon
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Figure 6: Reference trajectories (dash-dotted lines) and re-
sponses (solid lines) for the relative Cartesian position control
in the task of pouring water

using an analytical approach. Since both forward kinematics
model and the Jacobian are expressed directly in the dual
quaternion space, all the mathematical treatment is given in a
coherent and systematic fashion, and thus we hope that other
strategies could be derived using the same argument. Finally,
we have performed experiments on the HOAP-3 robot in
order to validate the proposed techniques. These developments
have shown to be promising in the geometric representation
of the cooperation between two manipulators, as well in the
associated kinematic control techniques. Currently, we are
working towards the integration of a vision system into the task

execution, with the goal of replanning the task accordingly to
the visual feedback. Moreover, further works have to be done
to take into consideration the forces acting on the closed chain
mechanism when an object is grasped by both arms. Hence,
suitable control strategies for position/vision/force control in
the cooperative dual task-space will be the next step in our
research.
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