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Abstract— Reinforcement learning in the high-dimensional,
continuous spaces typical in robotics, remains a challenging
problem. To overcome this challenge, a popular approach has
been to use demonstrations to find an appropriate initialisation
of the policy in an attempt to reduce the number of iterations
needed to find a solution. Here, we present an alternative
way to incorporate prior knowledge from demonstrations of
individual postures into learning, by extracting the inherent
problem structure to find an efficient state representation.
In particular, we use probabilistic, nonlinear dimensionality
reduction to capture latent constraints present in the data. By
learning policies in the learnt latent space, we are able to solve
the planning problem in a reduced space that automatically
satisfies task constraints. As shown in our experiments, this
reduces the exploration needed and greatly accelerates the
learning. We demonstrate our approach for learning a bi-
manual reaching task on the 19-DOF KHR-1HV humanoid.

I. INTRODUCTION

The application of reinforcement learning (RL) to contin-

uous, high-dimensional systems such as anthropomorphic

robots (Fig. 8) remains a challenging problem. While a

large variety of RL algorithms exist for solving complex

planning problems [1], typically the scalability of these

is limited to applications involving small, discrete worlds.

Continuous state spaces necessitate discretisation, or the use

of function approximators, but both are affected by the

curse of dimensionality, that states that the resources needed

to solve a learning problem scale exponentially with the

dimensionality of the state space.

In this context, recent attention in the robotics commu-

nity has focused on this issue of scaling RL to higher-

dimensional problems. For example, in a programming by

demonstration framework, demonstrated trajectories can be

used to initialise a parametrised policy [2]. Because such an

initial policy is assumed to be close to the optimal policy,

only a limited number of policy updates may be needed to

find an acceptable solution. Hierarchical RL [3] is a more

general approach in which the RL problem is broken down

into a hierarchy of sub-problems, solutions of which are

combined to solve the high-level problem. This divide and

conquer approach is intuitively plausible, but the difficulty is

then shifted towards selection and learning of the hierarchy.

Despite recent advances [4], problems remain, in particular

with large state spaces. Abstractions [5] have been suggested

as a general term describing a mapping of state space to a
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more compact, abstract space which benefits learning. The

simplest abstraction, for example, just selects a subset of the

state dimensions, but any transformation of the state space

is possible. If an insight into the control problem exists a

priori, an abstraction can be chosen by hand [6], but ideally

we would like to learn suitable abstractions from experience.

In this paper, we investigate the suitability of dimensional-

ity reduction (DR) as a method for automatically determining

abstractions for RL from demonstrations and the conditions

for the success of this approach. While the idea of using

DR to aid RL has recently been explored by Morimoto

et al. [7], to find a low dimensional state representation

that preserves the reward structure, unfortunately, using their

approach only uses a DR technique (i.e., Kernel DR) which,

in many problems, is not sufficient to represent the state

space faithfully (see Sec. IV). In contrast, our contribution

shows that the GPLVM, as a non-linear DR method based

on Gaussian Processes (GPs) [8], can produce much more

faithful state representations for simplifying the learning

problem. Using such an approach, we show the feasibility

of RL for very high-dimensional robotic systems, even when

no initialisation of the policy is available. We illustrate our

approach for learning a bi-manual reaching task on the 19-

DOF KHR-1HV humanoid robot.

II. PROGRAMMING BY DEMONSTRATION FRAMEWORK

The idea of our approach is to use data acquired from expert

demonstrations to extract a non-linear manifold capturing

the inherent structure of the data. The latter is then used

as a reduced representation of the system state that can be

exploited to improve the efficiency of RL. A schematic of

the approach is illustrated in Fig. 1.

A. Extracting the Latent Space for Reinforcement Learning

In our framework, kinesthetic demonstration (in which the

robot’s movements are manually guided and recorded) is

used to generate a set of postures that are deemed useful

for the task by the demonstrator. Using kinesthetic demon-

strations in this way has several benefits, for example,

(i) it ensures that all demonstrated postures are feasible

for the robot, (ii) the demonstrator can directly see that

task constraints are satisfied within the demonstrations and

(iii) it avoids correspondence issues that may arise due to

differences in embodiment between the demonstrator and

imitator (since the demonstrations are already performed on

the robotic plant).

One of the downsides of kinesthetic demonstration is that

it becomes increasingly difficult to demonstrate movements
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Fig. 1. Schematic of our approach. Given a set of demonstrated movements,
DR is used to find a low-dimensional manifold on which the demonstrations
lie (the latent space). The space defined by this manifold can then be used
as the state-space representation within reinforcement learning.

(i.e., continuous trajectories) with increasing number of

degrees of freedom of the robotic plant. To counter this,

in our framework we use discrete demonstrations, where

desired postures are demonstrated individually1 (similar to

‘keyframing’ in animation). Specifically, in our framework,

demonstrations are recorded by first moving all robot joints

to the desired posture, recording the joint angles, and then

repeating the procedure for the next one. In this way, even

a single person can, with ease, provide demonstrations to a

high-DOF humanoid to generate full-body movements.

Using the demonstrations, we then apply nonlinear DR

techniques to extract a manifold that captures the latent

structure of the data. In effect, here DR acts as a nonlinear

interpolator that allows us to generate continuous movements

from a discrete set of samples. At the same time, it provides

a state representation which makes RL feasible even when

the dimensionality of the original state space is very high.

We assume that the demonstrated postures fulfil con-

straints, when they are necessary for the achievement of the

task (see example below). By introducing this invariance into

the demonstrations, this latent structure (i.e., the constraint

manifold) can be incorporated into the state space model

learnt by the DR2. This, in turn, benefits RL by restricting

exploration to parts of the space in which (in the eyes of the

demonstrator) a feasible solution to the task exists.

B. Example: Constrained Bi-manual Manipulation

As a simple example of the above, consider a bi-manual

manipulation task in which we want to move an object with

two hands from one place to another (see Fig. 2). If the

full state of the two arms is defined by the positions of the

shoulder and elbow joints, then the total dimensionality of

the system is four. However, for the movement to succeed,

the condition that the two hands must remain a fixed distance

apart must be fulfilled throughout the movement (see Fig. 2,

left), otherwise the object will be dropped. In effect, this con-

strains the possible movements that can be used to solve the

1Please note that, if demonstrations of continuous movements are avail-
able, our approach can still be applied to find a compact state representation
for RL. In this case, the sample density will simply be higher and,
potentially, the sequential structure of the demonstrations could be exploited.

2This has interesting parallels with the idea of looking for generalised

coordinates in analytical dynamics (e.g., see [9]) where, under a holonomic
constraint (i.e., an equality constraint), it is possible to find a coordinate
system in which the constraint is automatically satisfied. This greatly
simplifies the problem of solving the equations of motion of the system.

Fig. 2. In order to move the ball to the target (x), the movement must
be constrained so that the hands remain a fixed distance apart (left). If the
constraint is broken, the ball is dropped (right).

task: one degree of freedom is eliminated by constraining the

distance between the two hands, and a second is eliminated

if we do not allow rotations of the object. In other words,

for this problem, any successful movement (fulfilling these

task constraints) must lie on a 2-D manifold embedded in

the full 4-D state space.

Now, if we can find an an appropriate representation of

this manifold, then we can exploit it by restricting RL to

only explore in the space where the constraints are satisfied.

In some cases, this could be derived from an expert analysis

of the task (here, involving derivation of kinematics of the

plant and the constraints) resulting in an analytical model

of the manifold. However, for the non-expert user, this

greatly increases the complexity of finding the appropriate

representation. Instead, in our framework, we propose to

learn the manifold by demonstration. That is, we rely on the

demonstrator to provide appropriate example postures that

(i) satisfy the task constraints (here, postures in which the

hands are in the right position to grasp the object), (ii) have

sufficient coverage to make a reasonable approximation of

the underlying manifold, and (iii) define a space in which

a feasible solution to the task (here, a path to the target)

exists. In other words, by taking appropriate care in selecting

example postures, a non-expert demonstrator can use our

framework to automatically learn a state representation that

captures structural elements of the task (in this example, an

implicit model of the constraints) without the need to define

them formally by hand.

While this is a simple example, similar arguments also

apply to more complicated situations, in particular for natural

movements with many degrees of freedom such as that

of humans [10] or humanoid robots [11] subject to more

complex environmental or task constraints [12]. For systems

such as these, using DR is even more appealing since formal

definition of the task structure is much harder as the system

dimensionality increases. In the next section we turn to the

implementation details of the proposed framework.

III. METHOD

In this section, we describe the design choices made for im-

plementing our programming by demonstration framework.

As mentioned in the preceding sections, we assume that a

non-expert demonstrator provides a number of kinesthetic

demonstrations of key postures for a given task. These come

in the form of vectors of joint angles qn, from which we wish

to learn a nonlinear manifold that captures salient elements

of the task. Having done this, we can then apply RL to find

the optimal policy within the space defined by the learnt

manifold, in order to find a feasible solution to the task.
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A. Dimensionality Reduction

A number of DR techniques are available for extracting

the latent structure from our demonstrations. In our setting,

we require a method that (i) is able to represent manifolds

that are potentially non-linear in the robot’s joint space,

and (ii) gives good generalisation with relatively little data

(to minimise the number of demonstrations required for

learning). Furthermore, in order to incorporate our DR model

into RL, the DR technique must provide both a generative

mapping and its inverse (i.e., generative mapping from latent

to joint space, and the inverse mapping back).

By far the simplest and most popular approach to DR is to

use principal components analysis (PCA) [13] which defines

a linear mapping between low-dimensional latent space and

high-dimensional data space based on eigenanalysis of the

data covariance. It is robust and computationally efficient,

but, as a linear technique, is not adequate for our purposes (as

we show in Sec. IV). Our method of choice is the Gaussian

Process Latent Variable Model (GPLVM) [14], a nonlinear

extension to PCA based on Gaussian processes (GPs). In the

next section we briefly review the formulation of the GPLVM

employed in our experiments.

B. The Gaussian Process Latent Variable Model

The GPLVM defines a generative, probabilistic model of the

data which uses GPs to map latent variables z ∈ R
d to ob-

served variables x ∈ R
D. Each data dimension j ∈ 1, . . . , D

has its own GP, but all GPs share the same covariance

parameters. In particular, the data likelihood of the model

is defined as

P (X|Z,θ) ∝
D
∏

j=1

exp
[

x⊤
j K

−1xj

]

(1)

where X ∈ R
N×D is the data matrix containing N data

points, xj is a column of this matrix, Z ∈ R
N×d is the matrix

of latent points, θ is a vector of covariance parameters and

K is the covariance matrix of the GPs which depends on Z

and θ. We use the standard squared exponential covariance

function with added white noise defined as

Kmn=k(zm, zn)=θ1 exp

(

−
‖(zm − zn)‖

2

2θ2

)

+δmnθ3 (2)

where zm and zn are latent points, θ1 controls the amplitude

of the modelled function, θ2 controls its smoothness and θ3
is the variance of the Gaussian noise around the data. This

formulation of the GPLVM can be derived from the dual

formulation of probabilistic PCA which integrates out the

parameters of the PCA model as shown in [14].

The positions of the latent points, Z, and the covariance

parameters, θ, are found simultaneously by minimising the

negative GP data log-likelihood

{Z,θ} = argmin
Z,θ

− log P(X|Z,θ) (3)

using gradient descent. We initialise Z with points found by

applying PCA as suggested in [14]. Because the inverse of K

needs to be computed, each gradient step has a complexity of

O(N3) which means that the learning gets expensive with

increasing number of data points. In our setting, however,

where the number of data points (as discrete demonstrations)

this is not a significant problem.

More important in our setting is the speed of prediction

since this is required at every time step during the RL (see

Sec. III-C). In the GPLVM this is standard GP prediction

which has O(N) complexity, because K−1 is fixed after

learning and can be pre-computed. Prediction for a single

data point z∗ returns a Gaussian distribution with mean µj

and variance σ2
j in data dimension j

µj = k∗⊤K−1xj σ2
j = k∗ − k∗⊤K−1k∗ (4)

where k∗=k(z∗, z∗) is the covariance function evaluated at

that point and k∗=[k(z∗, z1), . . . , k(z
∗, zN )]⊤. The returned

variance (equal in all data dimensions) gives a measure

for the confidence in the prediction, usually indicating the

quality of generalisation away from the data. In our setting,

this relationship can be exploited in the RL to prevent

the expensive evaluation of states for which the predictive

variance indicates that the generated posture is unlikely to

adhere to the task structure anyway (see Sec. IV-C).

The GPLVM only learns the mapping from latent to

data space, but does not provide the mapping back. Many

DR methods have the same problem and various out-of-

sample extensions have been suggested. In our experience,

the most accurate of these for the GPLVM projects a test

point x∗ into latent space by maximising its probability

under the predictive distribution N(x∗|µ,σ2) by varying

the corresponding z∗ with gradient descent only on µ (4).

Unfortunately this iterative procedure is comparatively slow,

even though only a few iterations are needed, if initialised

with the nearest data point. Consequently, we fit another set

of GPs for the data-to-latent mapping after the GPLVM has

been learnt. The resulting mapping has good accuracy in

high confidence regions of the latent space and is efficient

to compute.

C. Reinforcement Learning

A number of RL techniques are available for planning and

optimising movements based on exploration of the environ-

ment. For the experiments in this paper, we restrict ourselves

to the popular class of methods known as temporal difference

learning (TD(0)) [1] since these perform robustly without the

need for careful initialisation of parameters. In the following

we briefly describe TD(0) learning for approximating the

value function, as used in our framework.

D. TD(0) V-Learning

The general goal of learning is to find a policy π(u|x) that

maximises

V π(x) = Eπ

{

∞
∑

t=0

γtrt|x0 = x

}

(5)

under dynamics xt+1 = xt + δt f(xt,ut). Here, x ∈ R
n

denotes the (continuous) state, u ∈ R
d the action and δt

is the time step. V π(x) is the expected return accumulated

by the agent when following the policy π starting from state

x0, γ is a discount factor and rt denotes the instantaneous
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Fig. 3. Exploiting the latent dimensionality of demonstrations for RL.

reward collected at time t. V π(x) can also be identified as

the value function of π.

TD(0) methods update the estimate of the value function or

Q-function based on the one-step temporal difference (a.k.a.

the Bellman error) [1]. In our experiments, we used the

variant of TD-learning that uses a function approximator of

the form
V̂ (x) = wTb(x) (6)

to learn (5). Here, w ∈ R
M is a vector of weights, and

b(x)∈R
M is a vector of fixed basis functions. For the latter

we used normalised radial basis functions (RBFs) bi(x) =
K(x−ci)∑

M
j=1

K(x−cj)
calculated from squared exponential kernels

K(·) around M pre-determined centres ci, i = 1 . . .M .

During episodes, the value function is learnt online ac-

cording to
V̂ (xt+1) = V̂ (xt) + αδt (7)

where α is the learning rate and δt is the temporal difference

δt = rt + γV̂ (xt+1)− V̂ (xt). (8)

For our parametric model (6), this means we apply the update

wt+1 = wt + αδtb(xt). (9)

Finally, using the approximated V̂ (x), actions are selected

according to a soft-max policy to provide directed explo-

ration during episodes. Specifically, actions are drawn from a

discrete set of |U | continuous actions ui∈R
d, i={1, . . . |U |}

according to the Boltzmann distribution

p(ui|x) =
exp(β Q̂(x,ui))
∑|U |

j=0 β Q̂(x,uj)
(10)

where β controls the rate of exploration and Q̂(x,ui) is the

state-action value for action ui, calculated using one-step

look-ahead on the learnt value function, i.e.,

Q̂(x,ui) = V̂ (x+ δt f(x,ui)). (11)

For further details of the implementation see [15].

E. Incorporating the Latent Space State Representation

For including the representation learnt with DR into our RL

framework, we replace the high-dimensional state x with its

DR representation z, and modify the state update equations

accordingly. Fig. 3 illustrates this for a single RL step.

Starting from a state in latent space, z1, RL selects and

executes action a according to its current policy, leading

to a new latent space state z′2. The latter is then used to

generate a target in the environment x′
2 by mapping through

the generative GPLVM model, which can be reached, for

example, using a simple PD controller. In general, (due to

tracking errors, noise, etc.) we will not exactly reach x′
2 but

instead a slightly different state x2 which we must estimate

(e.g., by taking a sensor reading). It is at this point that

we receive a reward (i.e., based on the true environmental

state). Finally, we return to latent space via the inverse

mapping (out-of-sample GP) to estimate the new reduced

state z2, which is then used to select the next action. Note

that, due to the non-linearity of the DR mapping, the same

action executed in different locations of latent space may

correspond to different movements in the environment. This,

however, is not a problem, if a suitably flexible local policy

is chosen (i.e., one that selects actions based solely on the

current state). Also note that, since the RL is restricted to the

smaller latent space, it may not be possible to find globally

optimal (or even feasible sub-optimal) solutions if they do

not lie on this manifold. In practice, however, this is easily

rectified by the demonstrator by, for example, adjusting the

demonstrated poses and re-learning the DR model.

IV. EXPERIMENTS

In this section, we report experiments exploring the perfor-

mance of learning for systems of varying complexity and

size. First, in order to illustrate the concepts involved, we

apply our method to a simulated 4-DOF toy system with

linear state dynamics. We then test the scalability of the

method to a more complex, non-linear system and, finally,

we illustrate the use of our approach for learning on the

19-DOF KHR-1HV humanoid robot (Fig. 8).

All our experiments are based on the intuitive example

of carrying an object to a target using a bi-manual strategy,

similar to the example described in Sec. II-B. The task of

the learner is to find a movement that brings the hands to a

target x∗ without dropping the object. For this, the learner

is rewarded according to

R(x) = exp
{

−θ‖x− x∗‖2
}

(12)

where θ is a scaling parameter. Under (12), the learner

receives very little reward over most of the space, but this

rapidly increases as the hands approach x∗. To increase the

difficulty of this problem, we also placed an obstacle in the

environment obstructing the path to the target. Accordingly,

the learner was penalised if the hands (i) hit the obstacle

or, (ii) hit the boundaries of the state space. In both cases,

a fixed penalty R0 =−1 was added to the reward and the

episode terminated. Equal penalisation occurred at any time

the object was dropped. As described in Sec. II-B, one of

the keys to success in this task is, therefore, to maintain

the hands on either side of the object throughout movement.

Formally, this can be expressed as a set of constraints on

the hands of the robot. Note, however, that this information

is not explicitly available to the learner and therefore must

be learnt either (i) from experience (i.e., exploration), or (ii)

from the examples given to the learner as demonstrations.

A. Bi-manual Reaching in End-effector Space

Here, we formulate the bi-manual reaching problem in end-

effector space and assume that the full state of the system can
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Fig. 4. (a) Cumulative reward over episodes for the two-hand problem
when learning in the full 4D state space (red) and the reduced 2D space
(black). The mean±s.d. over 25 trials are shown. (b) Left (green) and right
(red) hand trajectories generated at equal intervals throughout 5000 episodes
of training in 4D (top) and 2D (bottom). Darker colours indicate later phases
of learning. (c) 5 test trajectories sampled from different starting points after
5000 episodes of training with the two approaches. The grey area indicates
the location of the obstacle and the target is marked with an ’x’.

be described by the horizontal-planar coordinates of the two

hands, x ∈ R
4. State transitions followed linear dynamics,

i.e., xt+1=xt+δtut with time step δt=0.1 and we placed a

square obstacle (0.5×0.5m) in the environment (see Fig. 4).

The target was at x∗ = (0, 0, 0.1, 0)T and we set θ = 0.75
in the reward function (12). We compared two approaches

to learning in this setting, namely (i) standard RL, whereby

we used TD(0) to learn the optimal policy in the full state

space x and (ii) the proposed approach, whereby a reduced

state representation is learnt from demonstrations, prior to

applying RL.

For the direct RL approach, the set up was as follows.

The learner was given a set U of actions ui∈R
4 allowing it

to move the hands either independently or simultaneously, in

the four orthogonal directions in x. A Gaussian RBF network

(6), with centres placed on a 20×20×20×20 grid was used to

approximate the value function. A soft-max policy (10) was

used to select actions where, to encourage exploration, we

set β = 10.0. As parameters to the RL, we chose learning

rate α=0.9 and discount factor γ=0.95.

For the proposed approach, we randomly sampled 200

points across the space, which fulfilled the constraint on the

distance between the hands. These were used to train the

GPLVM to learn a reduced, 2D state representation, within

which we applied TD(0). For the latter, all RL parameters

were identical to those used for direct RL, with the exception

that (i) the number of RBFs used in the value function

approximation was scaled down to a 2D (as opposed to 4D)

grid of 20×20 bases in latent space, and (ii) the learner’s

action set was reduced to that of movement in the four

orthogonal directions in latent space. Please note that, for

both approaches, if the global optimal policy is found, the

learner can reach the target in the same number of steps,

with the same reward.

Training was conducted for 5000 episodes, with each

episode lasting 500 steps (50 s). Start states were drawn

from a Gaussian distribution N (x0, 0.1) around the point

x0 = (1, 1, 1.1, 1)T . To evaluate learning performance,

the experiment was repeated for 25 trials and the reward

accumulated in each episode of learning was recorded. The

Bi-manual TS Bi-manual JS

PCA 0.05± 0.01 3.25± 0.41
GPLVM 0.24± 0.18 0.80± 0.70

PCA 100.00± 0.00 4.92± 0.81
GPLVM 94.50± 5.61 61.03± 6.16

TABLE I

TOP: RECONSTRUCTION ERROR (RMSE×10
2) ON 1000 RANDOM

POINTS IN END-EFFECTOR SPACE. BOTTOM: PERCENTAGE OF POINTS IN

LATENT SPACE THAT FULFIL CONSTRAINTS (CF. FIG. 5). SHOWN ARE

MEAN±S.D. OVER 20 TRIALS.

results are shown in Fig. 4.

As can be seen, initially, the average reward accumu-

lated by the two learners increases rapidly. However, when

learning in the full 4D space, beyond the first 500 episodes

the average reward starts to level out and the progress

of learning is slow. In contrast, learning in the reduced

dimensional space proceeds much quicker, with convergence

already after approximately 3000 episodes. The reason for

the performance difference becomes clear when looking at

the trajectories generated during training. In Fig. 4(b) we

show examples of trajectories generated at regular intervals

during training with the two approaches. Clearly, due to the

higher dimensionality, learning in the full 4D state space

requires far more exploration to cover the same proportion of

space. The trajectories generated during training also appear

to be shorter than those generated with the DR represen-

tation, despite both having to avoid the same obstacle and

boundaries. The difference is that the trajectories generated

in the reduced space automatically satisfy the constraint on

the hands. This means that exploration is focused only on the

reduced part of the space in which possible solutions lie, and

exploration of actions that lead to the object being dropped

is avoided. As a result, the learner using DR rapidly learns a

policy that allows it to satisfy the constraints and reach the

goal from a larger range of the state space (compare example

trajectories in Fig. 4(c)).

It should be noted that, in this simple example there in

fact exists a simple linear transformation between the 2D

constrained space and the 4D space of the hand positions.

Consequently, linear PCA also gives good results (and even

outperforms the GPLVM as shown in Table I) in this

experiment. In our next experiment, however, the nonlinear

relationship between the spaces introduced through the kine-

matics necessitates the use of nonlinear DR techniques.

B. Bi-manual Reaching in Joint space

In our second experiment we investigated a similar problem

to that described in the previous section, with the difference

that the task must be achieved by controlling 2 planar, 2-

link arms. The constraints of the problem are identical (i.e.,

to keep the end-effectors keep a fixed distance apart) and full

state space is still 4D, but instead of end-effector positions,

the state is described by the joint angles of the robot. Due

to the kinematics of the arms, non-linearities are introduced

into the problem which cannot be handled by linear DR. To

illustrate this point, we first compare the GPLVM with PCA

and evaluate their ability to represent the constraint.
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Fig. 6. RL results for the planar 2-link arms. (a) Rewards during learning,
thick black line: average over the plotted trials, blue line: trial for which
results in (b)-(d) are plotted. (b) and (d) Value function before and after
learning. (c) Example trajectories in end-effector space (left hand only), red
cross: goal. Shading in (b) and (c) visualises predictive variance of GPLVM
generative mapping (white means low variance, high confidence). Black
object is latent space representation of the obstacle after mapping through
out-of-sample GP of GPLVM.

Fig. 5 shows a visualisation of our simulation in which

several data sets are plotted. For clarity all data points shown

are from the left hand of the robot only. The circles depict

123 randomly sampled data points which fulfil the con-

straints. We executed DR on their joint space representation,

drew uniform samples from the resulting latent space and

then mapped these to joint angles of the robot using the

generative DR mapping. The dots are the corresponding

hand positions as computed with the forward kinematics

of the robot, colour-coded as to whether they fulfil the

constraint within a small error margin. The results clearly

show that PCA (Fig. 5, right) can only correctly represent

the constraint in a very small region of end-effector space

while the GPLVM (Fig. 5, left) covers almost the complete

work space. Table I further documents this result.

Having established that the constraints are correctly repre-

sented by the GPLVM we ran RL in its latent space. We used

the above setup with the following changes: we set the width

of the Gaussian reward to θ=0.35, learning rate to α=0.8,

discount factor to γ=0.99, time step to δt=0.05, soft-max

policy to β = 20, extended the action set to also include

diagonal actions and ran the learning for 5000 episodes with

(a) PCA error (b) Initial value func-
tion (demonstr. indi-
cated as dots)

(c) Learnt value func-
tion with example tra-
jectories.

(d) Example traj. in
end-effector space.
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(e) Rewards during learning, thick black line: average
over the plotted trials, blue line: trial for which results
(b)-(d) are plotted.

Fig. 7. (a) KHR-1HV in a demonstrated pose reconstructed by the GPLVM
(wire frame) and PCA (solid). There is no visual difference between the
GPLVM pose and the original demonstration. (b)-(e): RL results for the
KHR-1HV. Shading in (b) and (c) visualises predictive variance of GPLVM
generative mapping (white means low variance, high confidence).

1000 steps each (or the episode was stopped prematurely

under the conditions given above). We again introduced an

obstacle which, this time, only allowed successful trajectories

to pass through a ‘corridor’ in end-effector space (Fig. 6(c)).

Start states were drawn uniformly across latent space. The

results are presented in Fig. 6.

Fig. 6(a) shows running averages over a window of 500

episodes of the cumulative reward per episode for 25 runs of

RL (trials). We plot running averages, because the random

start states mean that the cumulative reward per episode is

highly variable. The accumulated reward clearly increases

with learning. For the trial highlighted as the blue line, we

present the initial and learnt value functions in latent space in

Figures 6(b) and 6(d), respectively. As demonstrated by the

sample trajectories in Fig. 6(d) the learnt policy successfully

solves the task, leading trajectories around the obstacle into

the goal. Fig. 6(c) depicts the resulting trajectories in end-

effector space. For clarity we only plot the trajectories of the

left hand, but right hand trajectories follow with the desired

distance of 0.1m behind the left hand.

C. Full-Body Humanoid Reaching

In our final experiment, we demonstrate the complete ap-

proach on the 19 DOF KHR-1HV humanoid (Fig. 8). Similar

to the preceding experiments, we investigate a bi-manual

task, this time to lift an object while avoiding obstacles.

Instead of devising an inverse kinematics for this task by

hand, we demonstrated individual poses of 2 alternative ways

of lifting an object (7 poses in total). Of the 19 DOF, 10 were

major contributors to the changes in posture, the remaining 9
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Fig. 8. Left: Kinematic model showing the 19 DOF of the robot.Orientation
of circles indicates axis of rotation of rotation of the joints; x: vertical
ellipse, y: circle, z: horizontal ellipse. Right: Video frames of successful,
obstacle avoiding trajectory executed on KHR-1HV after RL.

(marked in red in Fig. 8(b)) changed by less than 10 degrees

across different postures. The realised postures all lay on a

central y-z-plane of the robot, i.e., the hands of the robot

did not move sidewards (subject to noise originating from

the manual demonstrations). Therefore, the space of related

movements was inherently 2D which motivated the use of 2D

latent spaces for DR. Compared to the previous examples,

PCA already performed remarkably well in reconstructing

and interpolating the demonstrated postures. The remaining

inaccuracies, however, meant that the robot leant excessively

backwards (Fig. 7(a)) causing it to fall after transition be-

tween relevant poses. In contrast, with the GPLVM, the learnt

latent space almost perfectly reconstructed the demonstrated

postures and, in high confidence regions, avoided unstable

positions.

We applied RL in the learnt latent space with the following

changes to the parameters: we replaced the Gaussian reward

function (12) with a more pointed Laplacian3 R(x) =
exp {−20‖x− x∗‖}, set γ = 0.995, δt = 0.5, allowed for

more stochastic action selection β = 10 and reduced the

number of steps per episode to 200. An episode was aborted

when an obstacle was hit, or when the predictive variance

of a latent point was larger than 0.0004 (corresponding to

standard deviation of 1.15 degrees in each joint). The latter

criterion is an indirect measure of constraint fulfilment and

replaces the direct measures from the previous experiments

as they are unavailable in this completely unsupervised

setting (where the only information about the task is given

indirectly by the demonstrations themselves). In Fig. 7 we

present the results.

As in the previous examples, RL consistently learnt good

approximations of the value function and resulting policies

moved the hands of the robot to the target while avoiding

the obstacle. In the accompanying video we present these

results on the real robot. We show an example demonstra-

tion, explore the resulting latent space online and execute

trajectories of the learnt policy (see also Fig. 8).

V. CONCLUSION

In this paper, we explored the potential use of DR as abstrac-

tion for RL to improve its scalability to high-dimensional

continuous spaces. Our hypothesis was that for constrained

problems DR provides an alternative state representation,

that exploits the hidden low-dimensional structure of the

3The reward was defined over the positions of the hands and used the
forward kinematics to evaluate the generated movements in simulation.

task. This benefits RL by (i) reducing the size of the

space in which planning is done, and; (ii) avoiding wasteful

exploration of the parts of the space in which the constraints

are not satisfied and no solution exists. These benefits were

evident in our experiments where RL in latent spaces em-

phatically outperformed learning in the original state space

of the problem. By using this approach we saw that RL

becomes feasible even in very high-dimensional, continuous

systems such as the KHR-1HV humanoid to which the used

RL method could otherwise not be applied.
For future work, we are looking into extending the ap-

proach in [7] to the nonlinear case within our framework
to provide the DR with additional information about the
relevance of demonstrated postures to the task given by
the reward. Furthermore, we aim to reduce the number of
episodes needed during RL training by employing more
sophisticated RL techniques.
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