

Abstract— Self-assembly is a process during which pre-existing
components are autonomously organized into some special
patterns or structures without human intervention. In this
paper, we propose a new control algorithm on distributed
self-assembly which is implemented on the Sambot robot
platform. A directional self-assembly control model is proposed,
in which a configuration connection state table is used to
represent the configuration of the robotic structures composed
of multiple Sambots. There are three types of Sambots, docking
Sambots, SEED Sambot and Connected Sambots. All docking
Sambots adopt behavior-based controller that is independent of
target configuration. The SEED Sambot and Connected
Sambots are used to implement configuration growth.
Self-assembly experiments of snake-like and quadruped
configurations are conducted on the Sambot platform with five
Sambots. The experimental results show the effectiveness and
scalability of the distributed self-assembly algorithm.

I. INTRODUCTION

Self-assembly is a process during which pre-existing
components are autonomously organized into some special
patterns or structures without human intervention [1]. In the
robotic field, self-assembly provides an effective and
practical paradigm for the collaboration of multiple robots [2].
At present, researches on self-assembly and autonomous
docking of robot mainly focus on modular robots and
multiple mobile robots [2, 3].

In the area of autonomous docking of modular robots, Yim
et al. reported the docking process between PolyBot modular
robots, during which a robot arm consisted of six PolyBot
could approach and hold up another PolyBot module [4].
Rebenstein et al. pointed out that the CONRO robot could
implement autonomous docking within a certain distance and
angle deviation [5]. Stoy et al. used the ATRON
self-reconfigurable robot to demonstrate that two
three-module robots dock and merge into one large robot [6].
Murata et al. proposed a docking method for a
self-reconfigurable modular robot M-TRAN, which is based

This work was supported by the 863 Program of China (2009AA043901,
National Natural Science Foundation of China (Grant No. 60525314), the
973 Program of China (2002CB312204-04).

Hongxing Wei, Dezhong Li, Tianmiao Wang are with School of
Mechanical Engineering and Automation, Beihang University, Xueyuan Rd.
No.37, HaiDian District, Beijing, 100191, China. E-mail: {weihongxing,
itm}@buaa.edu.cn.

Jindong Tan, Hongxing Wei is Electrical Engineering Department,
Michigan Technological University, Houghton, 49931, USA. E-mail: {jitan,
hwei1}@mtu.edu.

on simple visual feedback using an additional camera module
and LED transmitters equipped on the M-TRAN modules [7].

 In the area of docking of mobile robots, Fukuda et al.
studied a docking system for a cell-structured robot using a
hook-type docking mechanism in which the connection
mechanism requires a very precise alignment [8]. Hirose et al.
introduced a distributed and autonomous mobile robot
platform as called the Gunryu. Each Gunryu robot was
equipped with a common robotic arm that could dock with
other Gunryu robots to create multiple Gunryu physical
connections [9]. Super Mechano Colony (SMC) was a kind of
modular robot that was comprised of the parent module and
several sub-unit modules, and each unit was equipped with a
robotic arm that could connect the units [10]. Millibot was a
modular robotic system that was comprised of several
connected track robots, and track robots were connected and
locked by the mechanical joints [11]. Delrobaei et al. recently
found in an experiment that two autonomous mobile robots
could successfully dock within certain misalignment [12].
Swarm-bot was composed of a number of autonomous
mobile robots known as the s-bot [13]. O’Grady et al.
proposed a distributed morphology generation mechanism for
Swarm-bot, SWARMORPH, which could specify global
morphologies using local morphology extension rules that
control the self-assembly process [14]. Klavins proposed a
graph grammar that could be used to model distributed
robotic assembly or formation forming process, and
demonstrated the approach using programmable parts testbed
(PPT) [15].

There is scarcely any research on self-assemble for
multiple robots except Swarm-bot, which does not have the
locomotion ability of the chain-typed self-reconfigurable
robot system. In our previous researches, we have developed
a swarm robot platform called Sambot platform, which has
the advantages of both self-reconfigurable robots and
self-assembly robots [20]. In this paper, a control algorithm
of distributed self-assembly based on the Sambot platform is
presented. A directional self-assembly control model is
proposed, in which a configuration connection state table is
used to represent the configuration of the robotic structures
composed of multiple Sambots. All docking Sambots adopt
behavior-based controller, which is independent of target
configuration. SEED Sambot and Connected Sambots are
used to implement configuration growth. For the snake-like
and quadruped

The Distributed Control and Experiments of Directional
Self-assembly for Modular Swarm Robots

Hongxing Wei, Member, IEEE, Dezhong Li, Jindong Tan, Member, IEEE, Tianmiao Wang

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4169

configuration, the self-assembly experiments have been
implemented using five Sambots.

This paper is organized as follows. Section II introduces
the Sambot platform. Section III outlines the configuration
representation of robotic structure composed of multiple
Sambots, and proposes distributed control model of
self-assembly for given configuration. Section IV describes
control algorithms of SEED, Docking and Connected
Sambots in self-assembly process. In section V, experiments
of self-assembly for snake-like and quadruped configuration
are conducted. Finally, the paper is concluded with prospect
of future research in Section VI.

II. ROBOT PLATFORM

A. Outline of Sambots
Sambot is an autonomous mobile and self-assembly

modular robot consisting of power supply, microprocessor,
sensors, actuators, and wireless communication module. As
shown in Fig. 1, one Sambot module can connect another
module under the guidance of infrared sensors by using
hooks. The details design of mechanical structure and control
system of the Sambot can be found in the paper [20].

Fig. 1. Outline of the Sambot

B. Self-assembly and autonomous docking
Self-assembly is one of the major functions and

characteristics of Sambot. Autonomous docking between two
Sambots is the basis of achieving self-assembly of multiple
Sambots.

As shown in Fig. 2, the process of autonomous docking
between Sambots is divided into four phases: finding, guiding
(navigating), docking and locking. At the beginning of
docking, a Sambot (called active Sambot), through its
detecting infrared sensors, detects the existence of another
Sambot (called passive Sambot). The active Sambot rotates
its active docking interface and moves towards the side of the
passive Sambot. Meanwhile, the active Sambot switches on
the docking infrared sensors at the lower part of the active
docking interface. The docking infrared sensor can receive
the signals sent by the approaching infrared sensor at the
passive docking interface on the passive Sambot. Guided by
two pairs of docking infrared sensors, the active Sambot
approaches the passive Sambot. When it reaches somewhere

within a certain distance, the mechanical docking touch
switch on the active docking interface of the active Sambot is
pressed down, which triggers the active docking hooks to
lock the docking grooves of the passive Sambot. The docking
process is completed.

Fig. 2. The autonomous docking of two Sambots

C. Locomotion of the robotic structure and
self-reconfiguration
After multiple Sambots form a robotic structure with

certain configuration through self-assembly (as the snake-like
robot shown in Fig 3), the robotic structure can move on its
own. Additionally, the robotic structure can change its
configuration and achieve self-reconfiguration to complete
various tasks and adapt to different environments. The
mobility of each Sambot enables the robotic structure to
realize reconfiguration through disconnection and re-docking
between the Sambots. Fig. 3 shows how a robotic structure
reconfigures itself from a snake-like robot into a quadruped
robot. Since the relative positions and orientations between
the Sambots of the snake locomotion are already determined,
the Sambot modules in the snake-like configuration can
easily determine its position in the quadruped configuration.
The flexible locomotion and reconfiguration capability of
Sambots enable them to fulfill self-diagnosis and self-repair
more easily and more quickly.

 Self-Assembly&
Self-Reconfigurable Snake Locomotion

Crawller Locomotion

Fig. 3. Self-assembly and locomotion of multiple Sambots

III. MODEL OF DISTRIBUTED SELF-ASSEMBLY CONTROL

A. Analysis of configuration
The robotic structure which is comprised of multiple

Sambots has outstanding ability of locomotion after
assembled. When multiple Sambots are connected, each
Sambot is equal to a module of the robotic structure.

 Active docking
interface

Docking hooksApproaching IR
(8 pairs)

⎯150⎯

80
m
m10

2
m
m

80mm
80mm

Docking
groove

Detecting IR
(4 pairs)

Docking IR
(4 pairs)

Passive docking
interface

Mail body

(a) Finding

(c) Docking

(b) Guiding

(d) Locking

4170

As shown in Fig. 4, Sambot can be simplified into a
module with one degree of freedom, which is comprised of
two links. The central circle stands for the rotating center and
it corresponds to the main body of Sambot. The white link
stands for the main body of the robot, and the black link
stands for the active docking interface.

Fig. 4. Simplified configuration of the Sambot

In accordance with distribution relationship between robot
joints, we divide the configurations into linear configurations
and multiped configurations.

Fig. 5 (a) show a snake-like configuration is composed of
six Sambots in line. The robotic structure can make it move
like a caterpillar through the rotation of the modules. Fig. 5 (b)
shows a four-legged configuration comprised of 15 modules,
which resembles a four-legged mammal. The robotic
structure can walk through the rotation of leg joints, and foot
joints can make sure that the contact between robotic
structure and ground is plane, so that the stability can be
improved. Fig. 5 (c) ~ (h) show other configurations of
different numbers of modules, which can realize different
locomotion patterns.

 (a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Basic reconfiguration of the robotic structure. (a) line, (b) track, (c)
tripod, (d) parallel quadruped, (e) orthogonal quadruped, (f) six-limbed, (g)
extended parallel quadruped, (h) a dog-like configuration.

B. Configuration representation
Currently, some researches use graph theory to describe

the configuration of the self-reconfigurable robot, such as
Incidence Matrix [16], adjacency matrix [17], configuration
line [18] etc. The Sambot adopts a distributed control strategy
with limited computing and storage capacity. We need to
reduce the requirements for computing and storage capacity
as much as possible. We need to find a unified and effective
method to describe the configuration of the robotic structures.

Fig. 6. Connecting relationship of the Sambot

As shown in Fig. 6, each Sambot has an active docking
interface and four passive docking interfaces, the Front, the
Left, the Back and the Right interface, numbered as 1, 2, 3
and 4 respectively. The connection between each docking
interface and the surrounding Sambots can be shown by three
kinds of states:

1. Active connection. The interface connects with other
Sambot actively, and we set its value to “1”. A Sambot can
only connect with other Sambot actively through the active
docking interface from the Front and the Back.

2. Passive connection. The interface connects with other
Sambot passively, and we set its value to “-1”. The four
interfaces of Sambot, the Front, the Left, the Back and the
Right, can be connected as passive docking interface.

3. No connection. The interface does not connect with
other Sambot actively or passively, and we set its value to
“0”.

The Connection states of each Sambot’s four interfaces can
be shown by an array CS [4], the elements of which
respectively express the states of the Front, the Left, the Back
and the Right interfaces.

We use graph theory to establish configuration model of
the multiple Sambots. We call each Sambot a node, and the
connection between each two nodes is called edge. There is
only one active docking interface for each Sambot. So, we
call the active docking interface directional connection. We
can use the tree structures in the graph theory to describe the
connections. For example, the tree structure of the quadruped
configuration is shown in Fig. 7, where node 1 is the root
node, and other nodes are sub-nodes.

Fig. 7. Tree structure of the quadruped configuration

Because the root node (SEED) of each configuration is
unique, we can begin from the root node to traverse the tree
structure, and define node sequence of target configuration.
The DFS (Depth-first search) algorithm is used to traverse the
tree structure in the order of node 1, 2, 3, 4. For a given
configuration, we can get combination of its node sequence
and the connection state of each node, which is called
Configuration Connection State Table (CCST). Table 1
shows the CCST of the quadruped configuration in Fig. 7.

4171

TABLE 1
 Configuration connection state table of the quadruped configuration

Node
Order

Node’s
Connection State

 Node
Order

Node’s
Connection State

1 (-1 -1 -1 -1) 6 (1 0 -1 0)
2 (1 0 -1 0) 7 (1 0 0 0)
3 (1 0 0 0) 8 (1 0 -1 0)
4 (1 0 -1 0) 9 (1 0 0 0)
5 (1 0 0 0)

C. The task of self-assembly
For a self-assembly task with given configuration, the

process start from the Sambot called SEED, which can be
selected from any Sambot randomly. After the SEED is
selected, we send target configuration’s CCST to the SEED.
On experimental platform, other robots are known as the
Docking Sambot (DSA), which doesn’t have any information
about the target configuration and any global coordinate and
global state information. Considering the differences between
current configuration’s CCST and final configuration’s
CCST, SEED decides which docking interface should be
docked by the DSA, then switches on approaching infrared
sensor (emitter) on this interface, which we call
Docking_Direction, and wait for DSA to dock.

Once DSA docks with SEED, DSA becomes a part of the
current configuration called Connected Sambot (CSA).
CSA establishes CAN BUS communication with SEED
through electrical contact point on the docking interface. At
this time, CSA receives final configuration’s CCST from
SEED, and confirms its label number in the target
configuration. Then SEED and CSA update their connection
states and current CCST, compares with final configuration’s
CCST, and decides the next Doking_Direction.

Fig. 8 shows the self-assembly process of quadruped
configuration composed of by nine Sambots. The red arrow
points out the next Doking_Direction. In each self-assembly
process, the new DSA randomly selects a Doking_Direction
to join the current configuration to make the structure grow,
until it reaches the target configuration.

Fig. 8. Self-assembly process of the quadruped configuration

IV. THE SELF-ASSEMBLY CONTROL ALGORITHM
In this section, we presents the distributed self-assembly

control algorithm for a given configuration. We assume that
CCST of target configuration is CCSTg, and it is saved in the
SEED Sambot, which is always used as the root node of the
new configuration. And the new joined CSA is used as the
leaf node of the current configuration. In the process of

self-assembly, SEED, DSA, CSA need to execute different
control algorithms and control strategies.

A. DSA control algorithm
The DSA adopts behavior-based controller [19], which

consists of a series of behaviors, and each behavior is used to
fulfill a particular task. To perform the function of
self-assembly control, Sambot should have four basic
behaviors—Wandering, Navigating, Docking and Locking.

1. Wandering. The DSA switches on detecting infrared
sensor on the front interface, and wander randomly. The edge
height of experimental platform is 40mm (higher than
approaching infrared sensor of DSA and lower than detecting
infrared sensor of DSA). When DSA wanders to the edge of
the experimental platform, approaching infrared sensor gets
signals, and then DSA goes backward. When the front
detecting infrared sensor receives signals, which means a
current configuration is founded, DSA turns to navigating
behavior.

2. Navigating. DSA goes anticlockwise around the current
configuration to find the Docking_Direction. This behavior is
under the guidance of limited infrared sensors of Sambot.
DSA adjusts its orientation to align itself with SEED (the
orientation of SEED is predetermined). Then it turns left,
until its detecting infrared sensor detects current
configuration. Then DSA turns right for a certain angle, and
moves forward for a short distance. DSA repeats the process,
and it keeps approaching infrared sensor switched on and
faced to the current configuration. After receiving a signal, it
arrives at the Docking_Direction. Then the navigating
behavior ends, and DSA turns to the docking behavior.

3. Docking. DSA is required to switch on the docking
infrared sensors, and adjusts its own position to approach the
Docking_Direction, until the mechanical touch switch on the
active docking surface is pressed down. Then the docking
hooks can lock the docking groove of SEED. DSA turns to
the locking behavior.

4. Locking. This process is simple. The electric touch
points of both DSA and SEED contact each other, and send
handshaking to affirm completion of CAN BUS
communication connection. Afterwards, the DSA sends its
basic information such as ID to SEED. DSA becomes CSA.
Then, SEED and CSA compare current configuration with
target configuration to decide the next Docking_Direction.

B. SEED control algorithm
In the self-assembly process, SEED needs to fulfill two

tasks as the root node:
1. Configuration comparison: SEED compares current

configuration’s CCST with target configuration’s CCSTg to
decide which interface will become the next
Docking_Direction.

2. Self-assembly process control: SEED collects all the
sub-node information connected with SEED as a main
control node, and updates current configuration’s CCST.

4172

When reaching final configuration, SEED decides whether
the self-assembly process has finished.

SEED initializes CCSTg and the module number (Goal) of
target configuration, and updates CCST (CCSTj, j is the
module number of the current configuration). In addition,
SEED sets the value of its initial connection state as Seed_CS
to [0 0 0 0]. The control algorithm of SEED is as follows:

1. Procedure SEED’s control algorithm
2. Initialization：CCSTg, goal, CCSTj, j, SEED_CS=[0 0 0 0]
3. while(j != Goal)
4. {
5. while(SEED_CS != CCSTg .SEED_CS)
6. {
7. Decide Docking_Direction of SEED;
8. DSA dock with SEED; Set new DSA node No.;
9. Update SEED_CS , j and CCSTj .DSA _CS = [1 0 0 0];
10. Transmit CCSTg to the DSA;
11. }
12. while(not receive information of child node);
13. Update CCSTj and j;
14. }
15. then the Self_Aeembly process has been done;
16. then transmit the result to all nodes
17. End Procedure

C. CSA control algorithm
When DSA is connected with SEED or current

configuration, DSA become the CSA as a sub-node of the
current configuration. A unified control algorithm is executed
for all CSA. In the self-assembly process, CSA has two tasks:

1. Configuration comparison: CSA compares its current
connection state with final connection state to decide which
interface of CSA should be the next Docking_Direction.

2. Transmitting information to SEED and child-nodes:
CSA receives CCSTg from SEED, and transmits it to its
child-nodes. At the same time, CSA collects CS information
sent by its child-nodes, and transmits the CS information and
its CS information to SEED.

CSA’s control algorithm is as follows. CSA_CSa is its
current connection state, and ‘a’ is its own node number in
the target configuration. CCSTg.CSA_CSa is the final state.

1. Procedure CSA’s control algorithm
2. Initialization：CSA_CSa, a, CCSTg _CSa
3. if(received result that the Self_Aeembly process has been done)
4. End Procedure
5. if(received CCSTg from the SEED)
6. {
7. while(CSA_CSa != CCSTj .CSA _CSa)
8. {
9. Decide Docking_Direction of CSA;
10. DSA dock with CSA; Set new DSA node No.;
11. Update CSA_CSa, and j, Set DSA _CS = [1 0 0 0];
12. Transmit CCSTg to the DSA;
13. }
14. then transmit j, the No. and CSA _CSa to SEED;
15. if(received information of the CSA’s child node)
16. {
17. Transmit the information to SEED;
18. }
19. End Procedure

V. EXPERIMENTS
This section introduces the self-assembly experiments of

multiple Sambots. SEED Sambot is located at the center of
the bounded experimental platform. DSA could be put
anywhere on experimental platform (corner is the most tough
position). These experiments show that DSA wanders around
to find SEED, navigates to the Docking_Direction, and
autonomously docks with SEED. This assembly process is
referred to as directional self-assembly. We have conducted
experiments of the self-assembly for snake-like and
quadruped configurations.

A. Self-assembly of snake-like configuration
We conducted experiments of self-assembly of snake like

configuration with 5 Sambots on the experimental platform
500ⅹ800mm. SEED is located at the platform center. The
arrow points to the Docking_Direction. For snake-like
configuration, the initial connection state of SEED is [0 0 0 0],
and its final connection state is [-10 0 0]. Therefore, the
Docking_Direction is the Front interface of the SEED.

In order to avoid interference of the infrared sensor of
multiple DSA, we introduce one DSA at a time. As shown in
Fig. 9, the self-assembly experiment of snake-like
configuration with five Sambots is completed within 378
seconds.

Fig. 9. Self-assembly experiments for snake like configuration

Fig. 10. The directional self-assembly time for snake like configuration

with 5 Sambots
Fig. 10 shows the time of self-assembly for the snake like

configuration. For each DSA, the Docking and Locking time
is relatively even, about 12 seconds. With the growing of the
configuration, the wandering time gradually reduces, and
navigating time gradually increases.

B. Self-assembly of quadruped configuration
We conducted experiments of self-assembly of quadruped

configuration with 5 Sambot on the experimental platform

2'46"2'35 "2'08"1'55"

4'36"4'23 "3'20"2'52"

6'24"6'12 "5'29"4'42"

1'51"1'39 "58"0"

4173

600ⅹ600mm. The initial connection state of SEED is [0 0 0
0], and its final connection state is [-1 -1 -1 -1]. Therefore, the
Docking_Direction of SEED have four interfaces—the Front,
the Left, the Back and the Right.

The experiments are shown in Fig. 11 and Fig. 12. They
were completed within 290 seconds. This time was shorter
than the snake-like configuration. The first reason is that
there exist several Docking_Directions simultaneously to
DSA dock. Therefore, the navigating behavior is more
efficient. Second, the dimensions of the experimental
platform are fewer than the snake-like configuration, so the
wandering time is relatively short.

2'12"2'04"1'25"1'10"

3'10"3'02"2'45"2'30"

4'50"4'40"3'40"3'20"

54"45"35"0"

Fig. 11. Self-assembly experiments for quadruped configuration

Fig. 12. The directional self-assembly time for quadruped configuration

with 5 Sambots

In this directional self-assembly experiment, all the DSA
Sambots execute the same control algorithm, which is
independent of the target configuration and other Sambots,
and the controller can extend to more Sambots. The
experimental results show the effectiveness of the algorithm.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a distributed self-assembly

control algorithm based on Sambot platform. A configuration
connection state table is used to represent the configuration
composed of multiple Sambots. For a given configuration, the
distributed self-assembly control model is proposed. The
DSA Sambot adopts a behavior-based controller independent
of target configuration. SEED and CSA Sambot are used to
control the growth of configuration. We conducted
self-assembly experiments for snake-like and quadruped
configuration with five Sambots. The experimental results
show the effectiveness of the algorithm.

Future research is needed to explore the self-assembly
control algorithm simultaneously by multiple Sambots; and
the locomotion control methods of the robotic structure
composed of multiple Sambots. In addition, the uniform
controller from self-assembly to locomotion need to be
designed, and a robotic platform whose configuration and
function can both evolve need to be built up.

REFERENCES
[1] G. M. Whitesides and B.Grzybowski, “Self-Assembly at all scales,”

Science, vol. 295, No. 5564, pp. 2418-2421, Mar. 2002.
[2] R. Groß and M. Dorigo, “Self-Assembly at the Macroscopic Scale,”

Proceedings of the IEEE. vol 96(9), pp. 1490 -1508, 2008.
[3] M. Yim, W. -M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E.

Klavins, and G. S. Chirikjian, “Modular self-reconfigurable robot
systems,” IEEE Robot. Autom. Mag., vol. 14, No. 1, pp. 43–52, 2007.

[4] M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: A modular
reconfigurable robot,” in Proc. Of the 2000 IEEE Int. Conf. Robot.
Autom, vol. 1, pp. 514–520.Apr. 2000.

[5] M. Rubenstein, K. Payne, P. Will, and W. Shen, “Docking among
independentand autonomous CONRO self-reconfigurable robots,” in
Proc. Of the 2004 IEEE Int. Conf. Robot. Autom., vol. 3. New
York:IEEE, pp. 2877–2882, Apr. 2004.

[6] K. Stoy, D. J. Christensen, D. Brandt, M. Bordignon, and U. P. Schultz.
“Exploit Morphology to Simplify Docking of Self-reconfigurable
Robots,” Distributed Autonomous Robotic Systems 8, Springer Berlin
Heidelberg, pp. 441-452, 2009.

[7] S. Murata, K. Kakomura, and H. Kurokawa. “Toward a scalable
modular robotic system: navigation, docking, and integration of
M-TRAN,” IEEE Robot. Autom. Mag., 14(4): pp. 56-63, 2007.

[8] T. Fukuda and S. Nakagawa, “Method of autonomous approach,
docking and detaching between cells for dynamically reconfigurable
robotic system cebot,” JSME Int. J., vol. 33, No. 2, pp. 263–268, 1990.

[9] S. Hirose, T. Shirasu, and E. F. Fukushima, “Proposal for
cooperativerobot Gunryu composed of autonomous segments,” Robot.
Auton. Syst., vol. 17, pp. 107–118, 1996.

[10] R. Damoto, A. Kawakami, and S. Hirose, “Study of super-mechano
colony: Concept and basic experimental set-up,” Adv. Robot., vol. 15,
No. 4, pp. 391–408, 2001.

[11] H. B. Brown, Jr., J. M. V. Weghe, C. A. Bererton, and P. K. Khosla,
“Millibot trains for enhanced mobility,” IEEE/ASME Trans.
Mechatron., vol. 7, No. 4, pp. 452–461, Jul. 2002.

[12] M.Delrobaei,K. A. McIsaac, “Connection mechanism for autonomous
self-Assembly in mobile robots,” IEEE Trans. Robot., pp. 1-7, 2009.

[13] R. Groß, M. Bonani, F. Mondada and M. Dorigo, “Autonomous
self-assembly in swarm-bots,” IEEE Trans. Robot., vol. 22, No. 6, pp.
1115-1130, 2006.

[14] R. O’Grady, A. L. Christensen and M. Dorigo, “SWARMORPH:
multi-robot morphogenesis using directional self-assembly.” IEEE
Trans. Robot., vol. 25, pp. 738-743, 2009.

[15] E. Klavins, “Programmable Self-Assembly,” IEEE Contr. Syst. Mag.,
Vol. 17, No. 4, pp. 43-56, 2007.

[16] I.-Ming Chen, Joel W. Burdick, “Enumerating the Non-Isomorphic
Assembly Configurations of Modular Robotic Systems,” the Int. J.
Robot. Res., Vol. 17, No. 7, pp. 702-719, 1998.

[17] M. Park, S. Chitta, A. Teichman, M. Yim, “Automatic Configuration
Recognition Methods in Modular Robots,” the Int. J. Robot. Res., Vol.
27, No. 3-4, pp. 403-421, 2008.

[18] Feili Hou, Wei-Min Shen, “Distributed, dynamic, and autonomous
reconfiguration planning for chain-type self-reconfigurable robots,” in
proc. Of IEEE Int. Conf. Robot. Autom., p2:3135 – 314, 2008.

[19] R. C. Arkin and T. Balch, “Behavior-based formation control for
multi-robot teams,” IEEE Trans. Robot. Autom., vol. 14, No. 6, pp.
926-939, 1998.

[20] Hongxing Wei, Yingpeng Cai, Haiyuan Li, Dezhong Li, Tianmiao
Wang, “Sambot: A Self-assembly Modular Robot for Swarm Robot,”
in Proc. Of IEEE Int. Conf. on Robot. Autom., pp. 66-71, 2010.

4174

