
 
 

 

  

Abstract— Self-assembly is a process during which pre-existing 
components are autonomously organized into some special 
patterns or structures without human intervention. In this 
paper, we propose a new control algorithm on distributed 
self-assembly which is implemented on the Sambot robot 
platform. A directional self-assembly control model is proposed, 
in which a configuration connection state table is used to 
represent the configuration of the robotic structures composed 
of multiple Sambots. There are three types of Sambots, docking 
Sambots, SEED Sambot and Connected Sambots. All docking 
Sambots adopt behavior-based controller that is independent of 
target configuration. The SEED Sambot and Connected 
Sambots are used to implement configuration growth. 
Self-assembly experiments of snake-like and quadruped 
configurations are conducted on the Sambot platform with five 
Sambots. The experimental results show the effectiveness and 
scalability of the distributed self-assembly algorithm. 

I. INTRODUCTION 

Self-assembly is a process during which pre-existing 
components are autonomously organized into some special 
patterns or structures without human intervention [1]. In the 
robotic field, self-assembly provides an effective and 
practical paradigm for the collaboration of multiple robots [2]. 
At present, researches on self-assembly and autonomous 
docking of robot mainly focus on modular robots and 
multiple mobile robots [2, 3].  

In the area of autonomous docking of modular robots, Yim 
et al. reported the docking process between PolyBot modular 
robots, during which a robot arm consisted of six PolyBot 
could approach and hold up another PolyBot module [4]. 
Rebenstein et al. pointed out that the CONRO robot could 
implement autonomous docking within a certain distance and 
angle deviation [5]. Stoy et al. used the ATRON 
self-reconfigurable robot to demonstrate that two 
three-module robots dock and merge into one large robot [6]. 
Murata et al. proposed a docking method for a 
self-reconfigurable modular robot M-TRAN, which is based 
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on simple visual feedback using an additional camera module 
and LED transmitters equipped on the M-TRAN modules [7]. 

 In the area of docking of mobile robots, Fukuda et al. 
studied a docking system for a cell-structured robot using a 
hook-type docking mechanism in which the connection 
mechanism requires a very precise alignment [8]. Hirose et al. 
introduced a distributed and autonomous mobile robot 
platform as called the Gunryu. Each Gunryu robot was 
equipped with a common robotic arm that could dock with 
other Gunryu robots to create multiple Gunryu physical 
connections [9]. Super Mechano Colony (SMC) was a kind of 
modular robot that was comprised of the parent module and 
several sub-unit modules, and each unit was equipped with a 
robotic arm that could connect the units [10]. Millibot was a 
modular robotic system that was comprised of several 
connected track robots, and track robots were connected and 
locked by the mechanical joints [11]. Delrobaei et al. recently 
found in an experiment that two autonomous mobile robots 
could successfully dock within certain misalignment [12]. 
Swarm-bot was composed of a number of autonomous 
mobile robots known as the s-bot [13]. O’Grady et al. 
proposed a distributed morphology generation mechanism for 
Swarm-bot, SWARMORPH, which could specify global 
morphologies using local morphology extension rules that 
control the self-assembly process [14]. Klavins proposed a 
graph grammar that could be used to model distributed 
robotic assembly or formation forming process, and 
demonstrated the approach using programmable parts testbed 
(PPT) [15]. 

There is scarcely any research on self-assemble for 
multiple robots except Swarm-bot, which does not have the 
locomotion ability of the chain-typed self-reconfigurable 
robot system. In our previous researches, we have developed 
a swarm robot platform called Sambot platform, which has 
the advantages of both self-reconfigurable robots and 
self-assembly robots [20]. In this paper, a control algorithm 
of distributed self-assembly based on the Sambot platform is 
presented. A directional self-assembly control model is 
proposed, in which a configuration connection state table is 
used to represent the configuration of the robotic structures 
composed of multiple Sambots. All docking Sambots adopt 
behavior-based controller, which is independent of target 
configuration. SEED Sambot and Connected Sambots are 
used to implement configuration growth. For the snake-like 
and quadruped 
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configuration, the self-assembly experiments have been 
implemented using five Sambots.  

This paper is organized as follows. Section II introduces 
the Sambot platform. Section III outlines the configuration 
representation of robotic structure composed of multiple 
Sambots, and proposes distributed control model of 
self-assembly for given configuration. Section IV describes 
control algorithms of SEED, Docking and Connected 
Sambots in self-assembly process. In section V, experiments 
of self-assembly for snake-like and quadruped configuration 
are conducted.  Finally, the paper is concluded with prospect 
of future research in Section VI. 

II. ROBOT PLATFORM 

A. Outline of Sambots 
Sambot is an autonomous mobile and self-assembly 

modular robot consisting of power supply, microprocessor, 
sensors, actuators, and wireless communication module. As 
shown in Fig. 1, one Sambot module can connect another 
module under the guidance of infrared sensors by using 
hooks. The details design of mechanical structure and control 
system of the Sambot can be found in the paper [20].  

 
Fig. 1.  Outline of the Sambot 

B. Self-assembly and autonomous docking 
Self-assembly is one of the major functions and 

characteristics of Sambot. Autonomous docking between two 
Sambots is the basis of achieving self-assembly of multiple 
Sambots. 

As shown in Fig. 2, the process of autonomous docking 
between Sambots is divided into four phases: finding, guiding 
(navigating), docking and locking. At the beginning of 
docking, a Sambot (called active Sambot), through its 
detecting infrared sensors, detects the existence of another 
Sambot (called passive Sambot). The active Sambot rotates 
its active docking interface and moves towards the side of the 
passive Sambot. Meanwhile, the active Sambot switches on 
the docking infrared sensors at the lower part of the active 
docking interface. The docking infrared sensor can receive 
the signals sent by the approaching infrared sensor at the 
passive docking interface on the passive Sambot. Guided by 
two pairs of docking infrared sensors, the active Sambot 
approaches the passive Sambot. When it reaches somewhere 

within a certain distance, the mechanical docking touch 
switch on the active docking interface of the active Sambot is 
pressed down, which triggers the active docking hooks to 
lock the docking grooves of the passive Sambot. The docking 
process is completed.  

 
Fig. 2.  The autonomous docking of two Sambots 

C. Locomotion of the robotic structure and 
self-reconfiguration 
After multiple Sambots form a robotic structure with 

certain configuration through self-assembly (as the snake-like 
robot shown in Fig 3), the robotic structure can move on its 
own. Additionally, the robotic structure can change its 
configuration and achieve self-reconfiguration to complete 
various tasks and adapt to different environments. The 
mobility of each Sambot enables the robotic structure to 
realize reconfiguration through disconnection and re-docking 
between the Sambots. Fig. 3 shows how a robotic structure 
reconfigures itself from a snake-like robot into a quadruped 
robot. Since the relative positions and orientations between 
the Sambots of the snake locomotion are already determined, 
the Sambot modules in the snake-like configuration can 
easily determine its position in the quadruped configuration. 
The flexible locomotion and reconfiguration capability of 
Sambots enable them to fulfill self-diagnosis and self-repair 
more easily and more quickly.  

 Self-Assembly&
Self-Reconfigurable Snake Locomotion

Crawller Locomotion

 
Fig. 3.  Self-assembly and locomotion of multiple Sambots 

III. MODEL OF DISTRIBUTED SELF-ASSEMBLY CONTROL 

A. Analysis of configuration 
The robotic structure which is comprised of multiple 

Sambots has outstanding ability of locomotion after 
assembled. When multiple Sambots are connected, each 
Sambot is equal to a module of the robotic structure.  
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As shown in Fig. 4, Sambot can be simplified into a 
module with one degree of freedom, which is comprised of 
two links. The central circle stands for the rotating center and 
it corresponds to the main body of Sambot. The white link 
stands for the main body of the robot, and the black link 
stands for the active docking interface.  

                           
Fig. 4.  Simplified configuration of the Sambot 

In accordance with distribution relationship between robot 
joints, we divide the configurations into linear configurations 
and multiped configurations. 

Fig. 5 (a) show a snake-like configuration is composed of 
six Sambots in line. The robotic structure can make it move 
like a caterpillar through the rotation of the modules. Fig. 5 (b) 
shows a four-legged configuration comprised of 15 modules, 
which resembles a four-legged mammal. The robotic 
structure can walk through the rotation of leg joints, and foot 
joints can make sure that the contact between robotic 
structure and ground is plane, so that the stability can be 
improved. Fig. 5 (c) ~ (h) show other configurations of 
different numbers of modules, which can realize different 
locomotion patterns. 

 
  (a)                      (b)                      (c)                       (d) 

 
(e)                       (f)                       (g)                       (h) 

Fig. 5.  Basic reconfiguration of the robotic structure. (a) line, (b) track, (c) 
tripod, (d) parallel quadruped, (e) orthogonal quadruped, (f) six-limbed, (g) 
extended parallel quadruped, (h) a dog-like configuration. 

B. Configuration representation 
Currently, some researches use graph theory to describe 

the configuration of the self-reconfigurable robot, such as 
Incidence Matrix [16], adjacency matrix [17], configuration 
line [18] etc. The Sambot adopts a distributed control strategy 
with limited computing and storage capacity. We need to 
reduce the requirements for computing and storage capacity 
as much as possible. We need to find a unified and effective 
method to describe the configuration of the robotic structures. 

 
Fig. 6.  Connecting relationship of the Sambot 

As shown in Fig. 6, each Sambot has an active docking 
interface and four passive docking interfaces, the Front, the 
Left, the Back and the Right interface, numbered as 1, 2, 3 
and 4 respectively. The connection between each docking 
interface and the surrounding Sambots can be shown by three 
kinds of states: 

1. Active connection. The interface connects with other 
Sambot actively, and we set its value to “1”. A Sambot can 
only connect with other Sambot actively through the active 
docking interface from the Front and the Back. 

2. Passive connection. The interface connects with other 
Sambot passively, and we set its value to “-1”. The four 
interfaces of Sambot, the Front, the Left, the Back and the 
Right, can be connected as passive docking interface. 

3. No connection. The interface does not connect with 
other Sambot actively or passively, and we set its value to 
“0”. 

The Connection states of each Sambot’s four interfaces can 
be shown by an array CS [4], the elements of which 
respectively express the states of the Front, the Left, the Back 
and the Right interfaces. 

We use graph theory to establish configuration model of 
the multiple Sambots. We call each Sambot a node, and the 
connection between each two nodes is called edge. There is 
only one active docking interface for each Sambot. So, we 
call the active docking interface directional connection. We 
can use the tree structures in the graph theory to describe the 
connections. For example, the tree structure of the quadruped 
configuration is shown in Fig. 7, where node 1 is the root 
node, and other nodes are sub-nodes. 

 

 

 
Fig. 7.  Tree structure of the quadruped configuration 

Because the root node (SEED) of each configuration is 
unique, we can begin from the root node to traverse the tree 
structure, and define node sequence of target configuration. 
The DFS (Depth-first search) algorithm is used to traverse the 
tree structure in the order of node 1, 2, 3, 4. For a given 
configuration, we can get combination of its node sequence 
and the connection state of each node, which is called 
Configuration Connection State Table (CCST). Table 1 
shows the CCST of the quadruped configuration in Fig. 7. 
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TABLE 1 
 Configuration connection state table of the quadruped configuration  

Node 
Order 

Node’s 
Connection State 

 Node 
Order 

Node’s 
Connection State

1 (-1 -1 -1 -1) 6 (1 0 -1 0) 
2 (1 0 -1 0) 7 (1 0 0 0) 
3 (1 0 0 0) 8 (1 0 -1 0) 
4 (1 0 -1 0) 9 (1 0 0 0) 
5 (1 0 0 0)   

C. The task of self-assembly 
For a self-assembly task with given configuration, the 

process start from the Sambot called SEED, which can be 
selected from any Sambot randomly. After the SEED is 
selected, we send target configuration’s CCST to the SEED. 
On experimental platform, other robots are known as the 
Docking Sambot (DSA), which doesn’t have any information 
about the target configuration and any global coordinate and 
global state information. Considering the differences between 
current configuration’s CCST and final configuration’s 
CCST, SEED decides which docking interface should be 
docked by the DSA, then switches on approaching infrared 
sensor (emitter) on this interface, which we call 
Docking_Direction, and wait for DSA to dock. 

Once DSA docks with SEED, DSA becomes a part of the 
current configuration called Connected Sambot (CSA).  
CSA establishes CAN BUS communication with SEED 
through electrical contact point on the docking interface. At 
this time, CSA receives final configuration’s CCST from 
SEED, and confirms its label number in the target 
configuration. Then SEED and CSA update their connection 
states and current CCST, compares with final configuration’s 
CCST, and decides the next Doking_Direction.  

Fig. 8 shows the self-assembly process of quadruped 
configuration composed of by nine Sambots. The red arrow 
points out the next Doking_Direction. In each self-assembly 
process, the new DSA randomly selects a Doking_Direction 
to join the current configuration to make the structure grow, 
until it reaches the target configuration. 

Fig. 8.  Self-assembly process of the quadruped configuration 

IV. THE SELF-ASSEMBLY CONTROL ALGORITHM 
In this section, we presents the distributed self-assembly 

control algorithm for a given configuration. We assume that 
CCST of target configuration is CCSTg, and it is saved in the 
SEED Sambot, which is always used as the root node of the 
new configuration. And the new joined CSA is used as the 
leaf node of the current configuration. In the process of 

self-assembly, SEED, DSA, CSA need to execute different 
control algorithms and control strategies. 

A. DSA control algorithm 
The DSA adopts behavior-based controller [19], which 

consists of a series of behaviors, and each behavior is used to 
fulfill a particular task. To perform the function of 
self-assembly control, Sambot should have four basic 
behaviors—Wandering, Navigating, Docking and Locking. 

1. Wandering. The DSA switches on detecting infrared 
sensor on the front interface, and wander randomly. The edge 
height of experimental platform is 40mm (higher than 
approaching infrared sensor of DSA and lower than detecting 
infrared sensor of DSA). When DSA wanders to the edge of 
the experimental platform, approaching infrared sensor gets 
signals, and then DSA goes backward. When the front 
detecting infrared sensor receives signals, which means a 
current configuration is founded, DSA turns to navigating 
behavior. 

2. Navigating. DSA goes anticlockwise around the current 
configuration to find the Docking_Direction. This behavior is 
under the guidance of limited infrared sensors of Sambot. 
DSA adjusts its orientation to align itself with SEED (the 
orientation of SEED is predetermined). Then it turns left, 
until its detecting infrared sensor detects current 
configuration. Then DSA turns right for a certain angle, and 
moves forward for a short distance. DSA repeats the process, 
and it keeps approaching infrared sensor switched on and 
faced to the current configuration. After receiving a signal, it 
arrives at the Docking_Direction. Then the navigating 
behavior ends, and DSA turns to the docking behavior. 

3. Docking. DSA is required to switch on the docking 
infrared sensors, and adjusts its own position to approach the 
Docking_Direction, until the mechanical touch switch on the 
active docking surface is pressed down. Then the docking 
hooks can lock the docking groove of SEED. DSA turns to 
the locking behavior. 

4. Locking. This process is simple. The electric touch 
points of both DSA and SEED contact each other, and send 
handshaking to affirm completion of CAN BUS 
communication connection. Afterwards, the DSA sends its 
basic information such as ID to SEED. DSA becomes CSA.  
Then, SEED and CSA compare current configuration with 
target configuration to decide the next Docking_Direction. 

B. SEED control algorithm 
In the self-assembly process, SEED needs to fulfill two 

tasks as the root node: 
1. Configuration comparison: SEED compares current 

configuration’s CCST with target configuration’s CCSTg to 
decide which interface will become the next 
Docking_Direction. 

2. Self-assembly process control: SEED collects all the 
sub-node information connected with SEED as a main 
control node, and updates current configuration’s CCST. 
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When reaching final configuration, SEED decides whether 
the self-assembly process has finished. 

SEED initializes CCSTg and the module number (Goal) of 
target configuration, and updates CCST (CCSTj, j is the 
module number of the current configuration). In addition, 
SEED sets the value of its initial connection state as Seed_CS 
to [0 0 0 0]. The control algorithm of SEED is as follows: 

 

1. Procedure SEED’s control algorithm 
2.     Initialization：CCSTg,  goal, CCSTj,  j, SEED_CS=[0 0 0 0] 
3.     while( j != Goal ) 
4.         { 
5.             while( SEED_CS != CCSTg .SEED_CS) 
6.                  { 
7.                      Decide Docking_Direction of SEED; 
8.                      DSA dock with SEED; Set new DSA node No.; 
9.                      Update  SEED_CS , j and CCSTj .DSA _CS = [1 0 0 0]; 
10.                      Transmit CCSTg to the DSA; 
11.                   } 
12.             while( not receive information of child node); 
13.             Update CCSTj and j; 
14.          } 
15.     then the Self_Aeembly process has been done; 
16.     then transmit the result to all nodes 
17. End Procedure 

C. CSA control algorithm 
When DSA is connected with SEED or current 

configuration, DSA become the CSA as a sub-node of the 
current configuration. A unified control algorithm is executed 
for all CSA. In the self-assembly process, CSA has two tasks: 

1. Configuration comparison: CSA compares its current 
connection state with final connection state to decide which 
interface of CSA should be the next Docking_Direction. 

2. Transmitting information to SEED and child-nodes: 
CSA receives CCSTg from SEED, and transmits it to its 
child-nodes. At the same time, CSA collects CS information 
sent by its child-nodes, and transmits the CS information and 
its CS information to SEED. 

CSA’s control algorithm is as follows. CSA_CSa is its 
current connection state, and ‘a’ is its own node number in 
the target configuration. CCSTg.CSA_CSa is the final state. 

1. Procedure CSA’s control algorithm 
2.     Initialization：CSA_CSa, a, CCSTg _CSa 
3.     if( received result that the Self_Aeembly process has been done ) 
4.        End Procedure 
5.     if( received CCSTg from the SEED ) 
6.        { 
7.            while(CSA_CSa != CCSTj .CSA _CSa ) 
8.               { 
9.                   Decide Docking_Direction of CSA; 
10.                   DSA dock with CSA; Set new DSA node No.; 
11.                        Update CSA_CSa, and j, Set  DSA _CS = [1 0 0 0]; 
12.                        Transmit CCSTg to the DSA; 
13.                     } 
14.                then transmit j, the No. and CSA _CSa to SEED; 
15.          if( received information of the CSA’s child node ) 
16.             { 
17.                 Transmit the information to SEED; 
18.             } 
19.      End Procedure 

V. EXPERIMENTS 
This section introduces the self-assembly experiments of 

multiple Sambots. SEED Sambot is located at the center of 
the bounded experimental platform. DSA could be put 
anywhere on experimental platform (corner is the most tough 
position). These experiments show that DSA wanders around 
to find SEED, navigates to the Docking_Direction, and 
autonomously docks with SEED. This assembly process is 
referred to as directional self-assembly. We have conducted 
experiments of the self-assembly for snake-like and 
quadruped configurations. 

A. Self-assembly of snake-like configuration  
We conducted experiments of self-assembly of snake like 

configuration with 5 Sambots on the experimental platform 
500ⅹ800mm. SEED is located at the platform center. The 
arrow points to the Docking_Direction. For snake-like 
configuration, the initial connection state of SEED is [0 0 0 0], 
and its final connection state is [-10 0 0]. Therefore, the 
Docking_Direction is the Front interface of the SEED. 

In order to avoid interference of the infrared sensor of 
multiple DSA, we introduce one DSA at a time. As shown in 
Fig. 9, the self-assembly experiment of snake-like 
configuration with five Sambots is completed within 378 
seconds.  

 
Fig. 9.  Self-assembly experiments for snake like configuration  

 
Fig. 10.  The directional self-assembly time for snake like configuration 

with 5 Sambots 
Fig. 10 shows the time of self-assembly for the snake like 

configuration. For each DSA, the Docking and Locking time 
is relatively even, about 12 seconds. With the growing of the 
configuration, the wandering time gradually reduces, and 
navigating time gradually increases. 

B. Self-assembly of quadruped configuration  
We conducted experiments of self-assembly of quadruped 

configuration with 5 Sambot on the experimental platform 

2'46"2'35 "2'08"1'55"

4'36"4'23 "3'20"2'52"

6'24"6'12 "5'29"4'42"

1'51"1'39 "58"0"
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600ⅹ600mm. The initial connection state of SEED is [0 0 0 
0], and its final connection state is [-1 -1 -1 -1]. Therefore, the 
Docking_Direction of SEED have four interfaces—the Front, 
the Left, the Back and the Right. 

The experiments are shown in Fig. 11 and Fig. 12. They 
were completed within 290 seconds. This time was shorter 
than the snake-like configuration. The first reason is that 
there exist several Docking_Directions simultaneously to 
DSA dock. Therefore, the navigating behavior is more 
efficient. Second, the dimensions of the experimental 
platform are fewer than the snake-like configuration, so the 
wandering time is relatively short.  

2'12"2'04"1'25"1'10"

3'10"3'02"2'45"2'30"

4'50"4'40"3'40"3'20"

54"45"35"0"

  
Fig. 11.  Self-assembly experiments for quadruped configuration  

 

 
Fig. 12.  The directional self-assembly time for quadruped configuration 

with 5 Sambots 

In this directional self-assembly experiment, all the DSA 
Sambots execute the same control algorithm, which is 
independent of the target configuration and other Sambots, 
and the controller can extend to more Sambots. The 
experimental results show the effectiveness of the algorithm. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a distributed self-assembly 

control algorithm based on Sambot platform. A configuration 
connection state table is used to represent the configuration 
composed of multiple Sambots. For a given configuration, the 
distributed self-assembly control model is proposed. The 
DSA Sambot adopts a behavior-based controller independent 
of target configuration. SEED and CSA Sambot are used to 
control the growth of configuration. We conducted 
self-assembly experiments for snake-like and quadruped 
configuration with five Sambots. The experimental results 
show the effectiveness of the algorithm. 

Future research is needed to explore the self-assembly 
control algorithm simultaneously by multiple Sambots; and 
the locomotion control methods of the robotic structure 
composed of multiple Sambots. In addition, the uniform 
controller from self-assembly to locomotion need to be 
designed, and a robotic platform whose configuration and 
function can both evolve need to be built up. 
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