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Abstract— The online generation of underwater image maps
or mosaicking is of high interest for underwater robots, e.g.,
for autonomous navigation, exploration, or object detection.
Here, a cooperative approach is presented that addresses the
particular challenges of the severe constraints on communica-
tion bandwidth in the underwater domain. Concretely, a special
update strategy for a cooperatively maintained pose graph as
basis for Simultaneous Localization and Mapping (SLAM) is
introduced. The strategy tries to transmit the most relevant
information within the limits of the communication bandwidth
to maximize the quality of the cooperative map. It is shown in
experiments with simulations based on real world data that the
strategy leads to near optimal results while obeying the severe
bandwidth constraints of realistic underwater communication.

I. INTRODUCTION

Underwater image mapping or mosaicking has a long
history, starting in the late 1960s [1], [2], [3], [4], [5], [6].
It has been recognized as an important means to generate
detailed underwater maps [7], [5] for example for surveying,
i.e. as a mission deliverable, as well as for the robot control
itself, e.g., for autonomous navigation, exploration, or object
detection.

Different methods to combine image sequences into a
mosaic have been proposed. In many cases, a feature-based
approach is used as it allows registration of full 6-DoF
pose changes independent of camera distortions [8], [6], [9],
[7]. Often, well known image feature descriptors, such as
SIFT [10] and SURF [11] are used, respectively variants
of the Lucas-Kanade point tracker [7]. These methods are
best suited for feature-rich sea floors (e.g. sponge beds,
corals, archaeological sites), but do not work well with
mostly homogeneous (e.g. sandy) ground without many
salient features.

Other approaches for image registration that were suc-
cessfully used in underwater settings are based on image
correlation [5], [12], [3]. This kind of registration approaches
is interesting as it does not require the computation of
image features. Therefore it needs less parameters and is
often faster and more robust than feature-based methods.
It can successfully register image content that does not
contain many discernible features as slight gradients are often
sufficient. However, it is no longer possible to compute as
many registration parameters. Usually, these methods are
limited to two, respectively four motion parameters, namely
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2D translation [5]), respectively 2D translation, rotation,
and scale [3]). Please note that the latter allows ”typical”
3D-motions of Autonomous Underwater Vehicles (AUV),
namely horizontal translations and rotations in the plane and
the change of the depth where the AUV is operating, which
is reflected in the scale parameter.

The execution of missions can in general profit a lot from
multi-robot systems. And as unmanned underwater vehicles
(UUV) in general and AUV in particular get more and more
mature, there is an increasing interest to investigate coop-
erative systems. But previous research on underwater image
mapping with multiple vehicles has mainly focused on the
theoretical aspects [13], [14], [15] of applying Kalman and
information filters in a multi-robot setting. These methods
use landmark-based maps and do not usually construct an
information-rich photo-mosaic map. Constrained underwater
communication has not been investigated thoroughly, though
first steps were taken in [16], [17], where the emphasis of
the work is on encoding the data in small communication
packets.

Naturally, depending on the specific landmark or feature
type used, transmitting a landmark map can be significantly
cheaper than transmitting a photomosaic map. Landmarks
can describe anything, ranging from very high-level and
mission-specific places such as bubble plumes [18] and mine
locations [16], to terrain ridges [19], or local image features
[8], [6], [7], [9], [4]. This is the main reason such very-
low bandwidth and very mission-specific map transmission
and update strategies as discussed in [16] work, even though
they only transmit a very small number of bits. However,
landmark-based maps do not retain the high level of detail
found in photomosaics and can only be used for localization.
The corresponding photomosaic maps produced in some
studies are much more meaningful for a human.

To overcome the inherent bandwidth challenges in multi-
robot underwater image mapping and combine it with the
superior localization performance and small communication
footprint of landmark-based algorithms, this paper presents
a multi-robot map update strategy for pose graph SLAM.

Pose graph SLAM maintains a graph structure in which
vertices denote poses where sensor data was recorded and
added to the map, and edges denote pose differences gen-
erated by odometry, successful sensor data registration, or
other sensors.

Specifically, the iFMI spectral image registration method
developed at Jacobs University [20] is used in this context.
It was recently extended to provide uncertainty estimates
for the registration parameters [21]. Additionally, the pose
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graph map representation has previously been shown to
require significantly less communication bandwidth than
the occupancy grid map representation [22] for incremental
updates in 2D ground robot mapping. This result is extended
to photomosaic maps with 3D trajectories, combined with the
multi-robot update strategy.

The rest of this paper is structured as follows. First,
different off-the-shelf solutions for underwater modems are
discussed in section II. An overview of pose graph SLAM
and the proposed update strategy is given in section III.
Experiments and results are discussed in section IV. The final
section V describes the conclusions reached in this paper.

II. REALISTIC DATA RATES OF UNDERWATER
MODEMS

Underwater communication is a very challenging topic for
many reasons. It is a relatively new field, at least when
compared to research on communication technologies in
standard applications scenarios on the earth’s surface and
air. One way to address the problem is to use tethers even
for AUV [23], but this has its obvious limitations and it
contradicts the main reasons why AUV are used. So, wireless
communication solutions are by far of most interest.

The predominant approach used in standard wireless
technologies, namely to rely on radio frequency (RF), is
impossible or at least tremendously difficult in water. There
is some work on using optical means for wireless underwater
communication [24], [25]. But this is still in a relatively
early, experimental state and it remains unclear how feasible
according approaches are in real world application scenarios.

The predominant carrier for underwater communication is
hence sound, which propagates well in water. But it has -
among many other challenges - the disadvantage that sound
is relatively slow. The communication rates that can hence
be achieved are very limited. There are also quite many
other aspects that limit acoustic underwater communication
like multi-path-effects, presence of noise in many application
scenarios, and so on. For some general discussions of the
challenges and approaches for acoustic underwater modems
see for example [26], [27], [28].

A rough, non-exhaustive overview of commercial-off-the-
shelf (COTS) solutions is given in this section, which is used
to motivate reasonable estimates of communication band-
widths for multi-robot operations in the underwater domain.
Please note that latency does not affect the work presented
here, it is hence omitted in the following discussion. But
latency can of course be relevant for other aspects of robot
cooperation.

The Woods Hole Oceanographic Institution (WHOI) has a
long tradition in underwater communication research. They
offer their WHOI Micro-Modem [29] as a customizable kit to
interested parties. The WHOI Micro-Modem provides up to
5400 bits/sec and up to 4 channels at different frequencies.
The company Evologics [30] provides several high speed
modems. The S2C R 48/78 acoustic modem has a bandwidth
of up to 28,000 bit/sec. Its range is 1000 meters with a
horizontal, omnidirectional spreading, therefore it is best

suited for shallow water scenarios. The Evologics S2C R
40/80 has even a faster data rate of up to 33,000 bit/sec over
a range of 2000 meters. This very high speed is bought at
the cost of a directional beam with 70 degree opening angle.
It hence would require cooperative robots to move in special
patterns or to use actuators to align the transducers to keep
a steady link at this very high rate. The company Linkquest
[31] also offers several underwater modems with quite high
speeds. The UWM1000 and the UWM2000 provide both
data rates up to 19,200 bit/sec. They differ in their power
consumption and range, namely up to 350 meters for the
UWM1000 and up to 1500 meters for the UWM2000. Both
can be used with directional or omni-directional transducers.
The Linkquest UWM2200 offers even higher rates with up to
38,400 bit/sec but again at the cost of requiring a directional
beam.

The amount of actual payload data depends of course on
several additional factors. First of all, the maximum data rates
are only achieved in quite favorable conditions. But as coop-
erative robots tend to operate relatively closely to each other,
namely in the range of a few meters to a few dozen or at most
hundreds meters distance, it is likely to have good conditions.
Second, the data rates are so to say raw values that do not
take the overhead for network management into account.
But the network management can be made very efficiently,
especially once the links are established and the devices are
in burst modes. Last but not least, sound propagation in water
is a shared medium. Directional devices are not obvious to
use for moving multi-robot teams. Hence, either multiple
channels, i.e. non-overlapping frequency bands, must be
available or time division multiplexing must be used.

We assume here small robot teams with up to four robots.
It is quite simple - at least from the perspective of the
architecture and the necessary network protocol overhead -
to establish a fully connected network via three links and one
robot acting as hub in the case of four robots. As discussed
above, the WHOI Micro-Modem provides 5,400 bits/sec and
up to 4 channels. There are several solutions with 19,200
to 28,000 bits/sec and omnidirectional spreading, thus three
time-multiplexed channels may achieve between 6,400 to
9,333 bit/sec. We hence chose 4,800 bit/sec as a realistic
estimate for the upper limit in the experiments presented
later on in section IV.

III. MULTI-ROBOT POSE GRAPH SLAM WITH
IMAGES

A. Pose graph SLAM Overview

In this section, the basis of the Simultaneous Localization
and Mapping (SLAM) used here is introduced in a formal
way. It is based on a pose graph, which is a very popular map
representation in maximum likelihood mapping. In general,
graph based map as have been popular in the recent literature
[22], [32], [33], [34], [35], [36], [37], [38], [39], [40].

A pose graph is an undirected graph G = (V,E). All v∈V
are poses (pose(v)) where sensor observations (sensorob(v))
were made and inserted into the map. The edges e ∈ E
(e = (vstart ,vend)) are constraints on the poses of the vertices
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Robots 1, 2, 3, 4

Fig. 1. Left: Sample paths on a high resolution image for a team of four robots. Start locations are circled. Right: Example images extracted for the start
locations of robots 1 (bottom) and 3 (top).

they connect (start(e) = vstart ,end(e) = vend), usually in the
form of a pose difference (posedi f f (e)) accompanied by
a covariance matrix (cov(e)) to describe the uncertainty of
the constraint (its elasticity). Vertices are marked as start
or end vertices of the undirected edge because the pose
difference depends on the traversal direction. The edges can
be traversed in both directions.

Constraint types other than full pose differences, such as
position-only (for landmarks), range-only, or bearing-only
(for beacons) are also conceivable, but have not found much
use in the literature.

A popular cost function is the sum of squared Mahalanobis
distances

cost(G) = ∑
i
(pe

ei
	 ps

ei
− pei)

TC−1
ei

(pe
ei
	 ps

ei
− pei) (1)

where ps
ei

= pose(start(ei)), pe
ei

= pose(end(ei)), pei =
posedi f f (ei), Cei = cov(ei), and 	 denotes the pose dif-
ference operator [41]. Various methods exist to optimize a
pose graph map containing full pose difference constraints
(3-DoF or 6-DoF) with covariance matrices [35], [34], [38],
[37]. Most of these methods use the above mentioned cost
function.

A multi-robot pose graph consists of one or more discon-
nected components, with vertices and edges supplied by each
member of the team. Components can become connected by
successfully registering sensor data collected by two different
robots. Formally, the multi-robot pose graph

G+ = (V +,E+)

consists of multiple disjoint sets of vertices

V + =
N⋃

i=1

Vi

where N is the number of robots in the team. This set of
edges E+ can be expressed similarly as

E+ =

(
N⋃

i=1

Ei

)
∪

(
N−1⋃
i=1

N⋃
j=i+1

Ei j

)
Here Ei is the set of edges just involving vertices of robot i
(that is all incremental and loop closing edges of the single
robot map of robot i), and Ei j is the set of edges connecting
vertices of robot i with vertices of robot j.

The edges in Ei j∪E j are significant as they allow robot i to
close additional loops, for example when two robots start at
one location and meet at another after having taken different
routes. Robots i and j do not have to revisit places in their
own trajectory, but can reuse their teammates’ trajectories
for the same purpose.

It is also important to note that the above mentioned
optimization methods can be run anytime, which means
that they will find the best configuration of the pose graph
given the currently available information. This means that
additional edges or sensor observations from other robots
are not necessary for the optimization to succeed. Therefore,
any latency or delay caused by exhaustion of the bandwidth
in transmission of pose graph vertices, edges, and sensor
observations from other robots is irrelevant. New information
coming from other robots can easily be integrated as it is
received, even if the mission is already over.
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While the edges in Ei are readily available after local loop
closing, the efficient retrieval of edges in Ei j, j = 1 . . .N, j 6= i
is the main objective of this paper.

B. Multi-Robot Map Update Strategy

The main idea behind the strategy proposed here is that
only selected data needed to form the edges in Ei j must
be transmitted between robots i and j. Other robots do not
need to know specific sensor observations used to generate
these inter-robot edges as their vertices are not involved
in these edges. Usually, these edges occur in overlapping
regions of the two robots’ trajectories. As long as all robots
know the current estimates of their teammates trajectories,
which are explicitly contained in the pose graph structure
build so far, robots can request specific images from locations
they believe are most likely to coincide with their own
path and hence well suited to improve the overall joined
map. Additionally, when remaining bandwidth allows, likely
candidate images can be pro-actively sent by robots to
their peers to maximize the exploitation of the available
bandwidth.

Algorithm 1: Pseudo code for determining the image to
send from robot i to robot j

Data: pose graph G+

Data: The set of sent data to robot j S j (initially empty)
Data: distance threshold dmax
Output: Sensor observation to send to robot j
v∗ = NIL;
d∗ = ∞;
for vi ∈Vi \S j do

d = argmin
v j∈V j

dist(pose(vi), pose(v j));

if d < d∗ then
d∗ = d;
v∗ = vi;

end
end
if v∗ 6= NIL∧d∗ < dmax then

S j = S j ∪{v∗};
return sensorob(v∗);

end
return NIL;

Algorithm 1 sketches the strategy to determine the image
to be sent from robot i to robot j at a given time step. The
Euclidean distance between the estimate vertex positions is
used to determine a good sensor observation (here a camera
image) to share between the robots. Once robot j has the
image, it will try to register it with any nearby images. All
generated edges are then broadcast to all robots.

Using this strategy, a team of robots can fully localize each
other, and generate a joint photo-mosaic map. However, each
robot mainly stores specific images for the area it covered
itself. It is important to note that the pose graph constructed
by this method contains full uncertainty information. Global

optimization algorithms, as mentioned in section III-A, can
be applied to this logical graph structure without requiring
sensor observations (e.g. camera images, etc) to be trans-
mitted between the peers. This allows to make a trade off
between computational cost to re-optimize the graph on each
robot and the bandwidth cost to transmit the optimized graph.
Since computational resources are significantly cheaper in
an underwater setting than bandwidth resources, the update
strategy limits the amount of data sent to just topological
updates. Metric updates, such as specific pose estimates of
vertices, are never transmitted as they can be recomputed by
each robot with the available information.

C. Data Transmission

In the experiments below, all data is transmitted in binary
form. Data-specific knowledge is used to choose a format that
requires the least amount of bytes to transmit the message.
Compression is only used for the images transmitted between
the robot peers.

In total, three distinct messages are used to communicate
all mapping related information.

1) Start: A message containing the ID of the sending
robot and its starting pose (3D vector and a quater-
nion), if available.

2) Update: A message containing the complete edge
information, which consists of IDs of the two vertices
linked by this edge, and a pose difference (3D vector
and a quaternion) with an accompanying covariance
matrix. This matrix is either stored as a 7x7 float
array or a list of matrix indices and float values (with
the indices being two four bit integers), whichever is
smaller.

3) Image: This message contains the ID of the vertex
this image belongs to and the compressed JPEG image
itself. The images were compressed with 30% quality
using ImageMagick.

Thus, a Start message is 2 + 7 · 4 = 30 bytes long. It
contains a short integer as the robot ID and a pose, consisting
of a 3D float vector and a quaternion, also using floats.

An Image message contains a two byte and a four byte
integer as the vertex reference (robot ID and vertex ID), a
four byte integer to store the size of the binary data, and
the binary compressed image data itself. In the data set used
for the experiment, this message is on average 1212.87 bytes
long (σ = 347.0156).

An Update message has a length of 2 · (2 + 4) + 7 · 4 +
1 + sizeo f (cov) bytes, which is at least 41 bytes with a
zero covariance matrix, and at most 237 bytes with a dense
covariance matrix. Matrices are either stored as a list of
indices and values, with two four bit integers as indices
and a four byte float value, or a dense list of 49 four byte
float values. In practice, given the amount of uncertainty
information extracted from the image registration method,
the message is always 92 bytes long, which includes 10 non-
zero matrix values. Since the employed registration method
decouples translation and rotation, the matrices are mostly
sparse.
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1

2

Fig. 2. An example result of the cooperative mapping strategy. The pose graph structure is superimposed (poses are black arrow heads, edges are blue,
inter-robot edges are yellow, residual errors are red, startposes are marked with circles, ground truth is shown in gray). Details of the areas indicated by
red squares are shown in figure 3

Since only covariances for 2D translation and a rotational
variance are extracted, the message could theoretically be
as small as 44 (2 · (2 + 4) + 3 · 4 + 5 · 4) bytes if the pose
was 2D and the translation and rotation were independent.
However, the cooperative pose graph update strategy itself
allows for other - possibly full 6 DoF - motion estimation
methods to be used. Using the presented multi-robot map
update strategy, it is thus possible to build full 3D maps
within severe communication constraints.

D. Minimum required bandwidth
At a minimum, all robots shall receive pose graph updates

from all other robots. This is conceptually similar to just
broadcasting the current robot poses, however it allows for
later optimization of the trajectories by the receiving robot.
Such extra information is especially useful for autonomous
behaviors during the mission.

A Start message has to be sent at the beginning if the
robot starting pose is known. Every time step, an Update
message has to be sent to allow other robots to reconstruct
the trajectory. Thus, at a minimum, 41 bytes per time step

per robot has to be available. Using the registration method
and the uncertainty estimation described in [21], at least 92
bytes per time step have to be transferred. More detailed
uncertainty information, as might be computed from other
registration methods, usually results in larger message sizes.

However, this only allows the transmission of incremental
edges, not the transmission of loop closures within a robot’s
trajectory, i.e. registrations of sensor data with data stored
in previously visited nodes. This information is needed by
other robots to be actually able to optimize the trajectory. A
single trajectory without loops is informative already, but
loops allow the definition of a meaningful cost function
of vertex positions that can be optimized. With a more
accurate trajectory of its peers after optimization, a robot
can also more accurately estimate the potential usefulness
of its images to other robots. Therefore, all possible edges
to previous already known vertices need to be transmitted
as well. This is of course dependent on the specific robot
trajectory and how many times it crosses its own path.

The average number of back edges in the example tra-
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jectories shown in figure 1 is 2.314 (σ = 0.725). Thus, on
average, every vertex is involved in 1.314 loop closing edges
to previous vertices, not counting incremental registration
edges. Finally, on average for the trajectories in figure 1,
212.92 bytes per time step need to be transmitted (σ = 66.71)
in order to communicate all incremental and loop closing
edges.

IV. EXPERIMENTS

1

2
Single Robot Maps Combined Multi-Robot Map

Seam

Fig. 3. Map details from figure 2. No Comms case (left) is compared with
the map built with the Multi-Robot strategy (right). Numbers correspond to
indicated areas in figure 2.

The presented multi-robot map update strategy is tested
in simulation using real world data. Image sequences were
extracted from high resolution underwater image data. One
example of the underlying data for generating the video
streams is shown in figure 1. The stream of images generated
along the paths drawn on the high resolution source image
was used as camera data for image mapping. No odometry
or similar motion estimates are used in the experiments.

A team of four robots is simulated, including their com-
munication. Following assumptions are made to keep the
simulation realistic. The first assumption is that the under-
water communication system is limited to a data rate of
4,800 bit/sec per channel. Each channel is assumed to allow
two-way communication, with one robot sending data and
one robot receiving at a time. Full duplex communication,
i.e. where both robots send and receive at the same time,
is explicitly assumed to be not possible. Secondly, the
communication system is assumed to have three channels
to allow a full network. Finally, the data rate of the channels
is assumed to be constant given the distance of the two
communicating robots. Usually, the last assumption should
be fulfilled if the robots stay within a local area, given the

Errors: Positions (pixel) Rotations (rad)
Full Comms 15.9090 (σ = 8.85) 0.5652
Multi-Robot 13.5177 (σ = 7.7041) 0.5086
No Comms 28.9373 (σ = 20.99) 1.3217

TABLE I
COMPARISONS OF MAP QUALITY WITH RESPECT TO GROUND TRUTH.

rather large range of underwater acoustic modems of several
hundred meters to kilometers.

Figure 1 shows the set of pre-programmed paths of the first
experiment. The source image contains 4416x3312 pixels,
the extracted video frames are all 128x128 pixels large.
A total of 1581 video frames were extracted. The longest
sequence was 438 images long.

To assign some real world values to the simulation world,
it is assumed that the image covers an area of 50 by 66
m (3300m2). One pixel then corresponds to an area of
approximately 15 by 15 cm. One time step is one second,
the following bandwidth capacities follow accordingly. On
average, each robot traveled 30.68 pixels per time step, which
translates to an average speed of 0.463m/sec or 0.9 knots.
The robots move at a constant height of 3.35m above the
sea-floor, and the opening angle of the camera is assumed
to be 60◦. This results in an area of 14.94m2 covered by the
camera image.

Please note that the above speed estimate of the simulated
vehicles is quite high for underwater robots and that the
distance to the floor is quite small. Thus, the following ex-
periments and the preceding assumptions actually represent
a conservative estimate of the potential performance. If the
available bandwidth is smaller, or less channels are available,
the robots can decrease their speed to reduce bandwidth
requirements and the following results remain valid. There
is also the option to increase the distance to the seabed to
cover a larger area of the sea floor with one camera image
to accommodate lower communication rates.

Figure 4 shows a plot of the average amount of transferred
bytes by each robot pair (i.e. per communication channel)
in the team per time step. Faster map updates would have
resulted in a congestion of the communication channels. Just
transferring the pose graph updates at a faster rate would have
exceeded the available bandwidth.

The plot compares required data rates for an update strat-
egy that does not take the available bandwidth into account
with the proposed multi-robot update strategy. Concretely,
the Full Comms strategy transmits all acquired images at
every time step and thus exceeds the available limited
bandwidth by a factor of two.

Naturally, it has to be expected that transmitting less infor-
mation in map updates results in deteriorated maps. However,
as large portions of the global map are of no consequence
to individual robots, especially regions that have few or no
overlap, parts of this information are likely to be safely
omitted. Table I shows a comparison between three possible
update strategies: Full communication (i.e. transmitting all
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Fig. 4. Bytes transferred per time step, first experiment. The multi-robot update strategy uses the available bandwidth almost optimally.

video streams to all robots), no communication at all (i.e.
only single robot maps overlaid by known starting poses),
and the proposed multi-robot update strategy. The mean
euclidean distance, the corresponding standard deviation and
the mean angle difference between the estimated and ground
truth poses of each vertex in the pose graph map is shown.
The proposed multi-robot update strategy performs very
similar to the Full Comms, and theoretically best, strategy.
Concretely, it even produces slightly less errors than the
optimal strategy, which can be explained by the stochastic
nature of the optimization processes in the pose graph opti-
mization. Both strategies produce significantly more accurate
maps than non-cooperative, communication-free mapping.

Generating the map shown in figure 2 took a total of
1752.23 seconds on a Core 2 Duo 2.8GHz with 4GB of
RAM. This simulation was done for four robots in a single
thread, which results in an average simulation time of 438.06
seconds per robot, about 7.5 minutes where each robot travels
about 225 m. The team was active for a total of 513 time
steps, or seconds given the simulation rate of 1 Hz, so the
process is real-time capable.

The image registration algorithm runs at a rate of 10Hz
in Matlab, a C++ prototype implementation exists that can
achieve 30Hz. The main bottleneck is actually the loop
search, which is accelerated by indexing the vertex positions
in an octtree and takes O(NM log(M)), where N is the
number of robots and M = max(|Vi|). For all other j =
1 . . .N robots, a nearest neighbor v j has to be found for
every vertex vi. Each nearest neighbor query in an octtree
takes O(log(M)) time. Note that the case i = j is explicitly
included, as that corresponds to the loop search within the
robot’s own map.

As mentioned before, the robots travel quite fast with

0.9 knots and they are close to the ocean floor, thus there
is a lot of change and little overlap between consecutive
images in the video streams. Nevertheless, the approach is
already real-time capable with significant parts implemented
in MATLAB.

V. CONCLUSION
A cooperative approach to generate underwater image

maps was presented that takes the particular challenges of
the severe constraints on communication bandwidth in the
underwater domain into account. In doing so, a special up-
date strategy was introduced to maintain a joined pose graph
for Simultaneous Localization and Mapping (SLAM). The
strategy tries to transmit the most relevant information within
the limits of the communication bandwidth to maximize the
quality of the cooperative map. It was shown in experiments
with simulations based on real world data that the strategy
leads to near optimal results while obeying the severe band-
width constraints of realistic underwater communication.
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