
Integrating IMU and Landmark Sensors for 3D SLAM and The

Observability Analysis

Farhad Aghili

Abstract— This paper investigates 3-dimensional Simultane-
ous Localization and Mapping (SLAM) and the corresponding
observability analysis by fusing data from landmark sensors
and a strap-down Inertial Measurement Unit (IMU) in an
adaptive Kalman filter (KF). In addition to the vehicle’s states
and landmark positions, the self-tuning filter estimates the
IMU calibration parameters as well as the covariance of the
measurement noise. Examining the observability of the 3D
SLAM system leads to the the conclusion that the system
remains observable provided that at least one of these conditions
is satisfied i) two known landmarks of which the connecting line
is not collinear with the vector of the acceleration are observed
ii) three known landmarks which are not placed in a straight
line are observed.

I. INTRODUCTION

To measure the pose of a vehicle with high bandwidth

and long-term accuracy and stability usually involves data

fusion of different sensors because there is no single sensor to

satisfy both requirements. Inertial navigation systems where

rate gyros and accelerations are integrated provides a high

bandwidth pose measurement. However, long-term stability

cannot be maintained because the integration inevitably

results in quick accumulation of the position and attitude

errors. Therefore, inertial systems require additional infor-

mation about absolute position and orientation to overcome

long-term drift [1].

Vision system and IMU are considered complementary

positioning systems. Although vision systems provide low

update rate, they are with the advantage of long-term position

accuracy. Hence, fusion of vision and inertial navigation data,

which are, respectively, accurate at low and high frequen-

cies makes sense. Additionally, integration of the inertial

data continuously provides pose estimation even when no

landmark is observable or the vision is blocked for a short

time. Most vision-based navigation systems work based on

detecting several landmarks along which the vehicle pose is

estimated. The challenge for localization of a vehicle travers-

ing an unstructured environment is that the map of landmarks

is not a priori known. The SLAM is referred to the capability

to construct a map progressively in unknown environment

being traversed by a vehicle and, at the same time, to estimate

the vehicle pose using the map. In the past two decades,

there have been great advancements in solving the SLAM

problem together with compelling implementation of SLAM

methods for field robotics [2]–[5]. Among other methods, the

extended KF based SLAM has gained widespread acceptance
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in the robotic community [5], [6]. Observability analysis of

the for 2-dimensional SLAM problem has been studied in

the literature [7]–[10]. 3D SLAM and its implementation

for mobile robots and airborne applications have been been

proposed [11]–[16]. The observability of 3D SLAM has

been also investigated in [16], [17]. However, 3D SLAM by

integrating landmark sensors and IMU and the observability

analysis of such a system is not addressed in these references.

This work is aimed at investigating at 3D Simultaneous

Localization and Mapping and its corresponding observabil-

ity analysis by fusing data from a 3D Camera and strap-down

IMU in an adaptive KF. Since no wheel odometry is used

in this methodology, it is applicable to terrestrial and aerial

vehicles alike. The IMU calibration parameters in addition

to the covariance matrix of the noise associated with the

measurement landmarks’ relative positions are estimated so

that the KF filter is continually “tuned” as well as possible.

The observability of such a technique for 3D SLAM is

investigated and the observability conditions base on the

number of fixed landmarks are derived.

II. MATHEMATICAL MODEL

A. Observation

Fig.1 illustrates the coordinate frames which are used to

express the locations of a vehicle and landmarks. Coordinate

frame {B} is attached to the vehicle, while {A} is the inertial

frame. We assume that coordinate frames {B} and {A} are

coincident at t = 0. Moreover, without loss of generality,

we assume that {B} represents the frame of resolution of

a landmark sensor as well as the IMU coordinate frame.

The attitude of a rigid body relative to the specified inertial

frame can be represented by a quaternion qT = [qT
v qo],

where subscripts v and o denote the vector and scalar parts

of the quaternion.

By definition, qv = e sin ϑ
2 and qo = cos ϑ

2 , where e is a

unit vector, known as the Euler axis, and ϑ is a rotation angle

about this axis. Below, we review some basic definitions

and properties of quaternions used in the rest of the paper.

Consider quaternions q1, q2, and q3 and their corresponding

rotation matrices A1, A2, and A3. Then,

A3 = A1A2 ⇐⇒ q3 = q2 ⊗ q1

where q3 is obtained from the quaternion product. The

quaternion product [q⊗] is defined, analogous to the cross-

product matrix, as

[q⊗] =

[
qo13 − [qv×] qv

−qT
v qo

]

.
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Fig. 1. Coordinate frames for 3D localization of a vehicle.

Also, the conjugate1 q∗ of a quaternion is defined such that

q∗ ⊗ q = q ⊗ q∗ = [0 0 0 1]T .

Let us assume that there exists a set of n > 2 landmarks

which have a fixed position in the inertial frame, i.e.,

ρ̇i = 03×1 ∀i = 1, · · · , n (1)

The position of the landmarks in the vehicle frames, {B}, are

denoted by vectors p1, · · ·pn. The position and orientation of

the vehicle with respect to the inertial frame are represented

by vector r and unit quaternion q, respectively. Apparently,

from Fig. 1, we have

pi = AT (q)
(
ρi − r

)
, ∀i = 1, · · · , n. (2)

where A(q) is the rotation matrix of frame {B} with respect

to frame {A} that is related to the corresponding quaternion

by

A(q) = (2q2
o − 1)13 + 2qo[qv×] + 2qvq

T
v . (3)

The IMU is equipped with an accelerometer, which can

be used for the measurements of vehicle acceleration. The

acceleration equation can be written as

a = AT (q)
(
g + r̈

)
− ba + va, (4)

where a is the accelerometer output, g is the gravity vector

in frame {A}; and ba and va are the accelerometer bias and

noise, respectively. We treat va as a random walk noise with

covariance E[vavT
a ] = σ2

a13.

As suggested in [8], we assume that the map is anchored

to a set of m landmarks observed at time t = 0. Without

loss of generality, we can say that the initial pose is given

by r(0) = 03×1 and A(0) = 13. Thus

ρj = pj(0) ∀j = 1, · · · , m.

The measurement vector includes the outputs of the ac-

celerometer and the landmark sensor, i.e.,

z =

[
a

p

]

+

[
va

vp

]

, (5)

where p = [pT
1 , · · · , pT

n ]T , and vector vp = [vT
p1

· · ·vT
pn

]T

is landmark sensor noise. Assuming that the noises of the

1q∗o = qo and q∗

v = −qv .

landmark sensor and IMU are not mutually correlated, the

covariance matrix of the measurement noise is given by

R = E[vvT ] = diag{σ2
a13, Rp}, (6)

where Rp is the covariance matrix of the landmark mea-

surement noises. As will be later discussed in Section IV-D,

factory-supplied value can be used for σa, while Kalman

filter tries to estimate the remaining covariance.

Substituting (2) and (4) into (5) yields

z = h + v, (7a)

where

h =








AT (q)
(
g + r̈

)
− ba

AT (q)
(
ρ1 − r

)

...

AT (q)
(
ρn − r

)








. (7b)

constitutes the nonlinear observation model. To linearize

the observation vector, we need to derive the sensitivity of

the nonlinear observation vector with respect to the system

variables. Consider small orientation perturbations

∆q = q ⊗ q̄∗. (8)

around a nominal quaternion q̄—in the following, the bar

sign stands for nominal value. Now, by virtue of A(q) =
A(∆q⊗ q̄), one can compute the observation vector (7b) in

terms of the perturbation ∆q. Using the first order approx-

imation of nonlinear matrix function AT (∆q) from expres-

sion (3) by assuming a small rotation ∆q, i.e., ‖∆qv‖ ≪ 1
and ∆q0 ≈ 1, we have

A(∆q) ≈ 13 + 2[∆qv×].

Therefore, by the first-order approximation, the observation

vector can be written as as the following bilinear function

h =








(
13 − 2[∆qv×]

)
ĀT

(
g + r̈

)
− ba(

13 − 2[∆qv×]
)
ĀT

(
ρ1 − r

)

...
(
13 − 2[∆qv×]

)
ĀT

(
ρn − r

)








+ HOT.

Since out of the set of n landmarks there are m known

landmarks, the entire state vector to be estimated is:

x = [qT
v bT

g rT ṙT r̈T bT
a ρT

m+1 · · · ρT
n ]T ∈ R

18+3(n−m),
(9)

where bg is the gyro bias as will be later discussed in the

next section. Thus, the observation sensitivity matrix H =
∂h
∂x

∣
∣
A=Ā

can be written as

H =















2[c×] 03 03 03 ĀT
−13 03 · · · 03

2[d1×] 03 −ĀT
03 03 03 03 · · · 03

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

2[dm×] 03 −ĀT
03 03 03 03 · · · 03

2[dm+1×] 03 −ĀT
03 03 03 ĀT

· · · 03

.

..
.
..

.

..
.
..

.

..
.
..

.

..
. . .

.

..

2[dn×] 03 −ĀT
03 03 03 03 · · · ĀT















,

(10)

where c , ĀT
(
g + r̈

)
and di , ĀT (ρi − r) for i =

1, · · · , n.
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B. Motion Dynamics

Denoting the angular velocity of the vehicle by ω, the

relation between the time derivative of the quaternion and

the angular velocity can be readily expressed by

q̇ =
1

2
ω ⊗ q where ω =

[
ω

0

]

(11)

The angular rate obtained from the gyro measurement is

ωg = ω − bg − ǫg (12)

where bg is the corresponding bias vector and ǫg is the

angular random walk noises with covariances E[ǫgǫ
T
g ] =

σ2
g13. The gyro bias is modeled as

ḃg = ǫbg
, (13)

where ǫbg
is the random walk with covariances E[ǫbg

ǫT
bg

] =

σ2
bg

13. Adopting a linearization technique similar to [18],

[19] one can linearize (11) about the nominal quaternion q̄

and nominal velocity

ω̄ = ωg + b̄g,

to obtain

d

dt
∆qv = −ω̄ × ∆qv +

1

2
∆bg +

1

2
ǫg. (14)

The process noise dynamics associated with the transla-

tional motion is considered as

...
r= ǫw and ḃa = ǫba

(15)

where ǫw and ǫba
represent the process noise, which are as-

sumed with covariances E[ǫwǫT
w] = σ2

w13 and E[ǫba
ǫT

ba
] =

σ2
ba

13. Then, setting the dynamics equations (1), (13), (14),

and (15) in the standard state space form, we get

d

dt
δx = F δx + Gǫ, (16a)

where F = diag{F ′,0(3n−6)×(3n−6)},

F ′ =











−[ω̄×] 1
213 03 03 03 03

03 03 03 03 03 03

03 03 03 13 03 03

03 03 03 03 13 03

03 03 03 03 03 03

03 03 03 03 03 03











, (16b)

G =













1
213 03 03 03

03 13 03 03

03 03 03 03

03 03 03 03

03 03 13 03

03 03 03 13

0(3n−6)×12













, (16c)

and vector ǫ = [ǫT
g ǫT

bg
ǫT

w ǫT
ba

]T contains the entire

process noise.

III. OBSERVABILITY ANALYSIS

A successful use of Kalman filtering requires that the

system be observable. A linear time-invariant (LTI) systems

is said to be globally observable if and only if its observ-

ability matrix is full rank. If a system is observable, the

estimation error becomes only a function of the system noise,

while the effect of the initial values of the states on the

error will asymptotically vanish. The original observation

model, (7), and a part of the process model, (11), are

nonlinear systems. For nonlinear system, Hermann et al.

proposed a rank condition test for “local weak observability”

of nonlinear system that involves Lie derivative algebra [20].

Although this technique has been applied for observability of

2D SLAM [9], the analysis is too complex to be useful for the

3D case. The observability analysis can be simplified if the

state-space is composed of the errors in terms of δx. In that

case, the time-varying system (10) and (16) can be replaced

by a piecewise constant system for observability analysis

[16], [21]. The intuitive motion is that such a time-varying

system can be effectively approximated by a pieces-wise

contact system without loosing the characteristic behavior

of the original system [21].

Now assume that Fj be Hj are the jth time segment of

the system’s state transition matrix and observation model,

respectively. Then, the observability matrix associated with

linearized system (16) together with the observation model

(10) is

Oj =
[
HT

j (HjFj)
T · · · (HjF

3n+11
j )T

]T
.

The states of the system is instantaneously observable2 if and

only if

rank Oj = 3n + 12 (17)

which is equivalent to Oj having 3n + 12 independent
rows. In the following analysis, we remove the index j from
the corresponding variables for the sake of simplicity of
the notation. Now, we can construct the submatrices of the
observability matrix as

HF=








−2[c×][ω̄×] [c×] 03 03 03×3n

−2[d1×][ω̄×] [d1×] 03 −ĀT
03×3n

...
...

...
...

...

−2[dn×][ω̄×] [dn×] 03 −ĀT
03×3n








(18a)

HF
2=








2[c×][ω̄×]2 −[c×][ω̄×] 03×6 03 03×(3n−3)

2[d1×][ω̄×]2 −[d1×][ω̄×] 03×6 −ĀT
03×(3n−3)

.

..
.
..

.

..
.
..

.

..

2[dn×][ω̄×]2 −[dn×][ω̄×] 03×6 −ĀT
03×(3n−3)








(18b)

It is apparent from (10) that the sensitivity matrix H depends

on the number of known or fixed landmarks, and hence so

does the observability matrix. In the following analysis, we

will derive the observability conditions for two cases: i) two

known landmarks are observed, ii) three known landmarks

are observed.

2Instantaneous observability means that the states over time period
[tj−1, tj ] can be estimated from the observation data over the same period
[16].
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A. Two Fixed Landmarks

We consider the observability of the SLAM when there

are two fixed landmarks, i.e., m = 2. Before we pay our

attention to the observability matrix, let us define

Π1 , [e1×] + [c×] (19)

where e1 , ĀT (ρ1 − ρ2). As shown in the Appendix, if

matrix Π1 is invertible, then the following block-triangular

matrix can be constructed from the observability matrix by

few elementary Matrix Row Operations (MRO)

O∆=





















2Π1 03 03 03 03 03 03 · · · 03

× Π1 03 03 03 03 03 · · · 03

× × −ĀT
03 03 03 03 · · · 03

× × × −ĀT
03 03 03 · · · 03

× × × × −ĀT
03 03 · · · 03

× × × × × −13 03 · · · 03

× × × × × × ĀT
· · · 03

× × × × × × ×

. . . 03

× × × × × × × × ĀT

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.





















.

(20)

Note that rankO = rankO∆ because MRO preserves matrix

rank. It is clear from (20) that the full rankness of the block-

triangular matrix rests on the invertibility of the square matrix

Π1. In other words, if Π1 is invertible, then the system is

observable.

Proposition 1: If the line connecting two known land-

marks, ∆ρ = ρ1 − ρ2, is not collinear with the vector of

total acceleration α = g + r̈, then matrix Π1 is full-rank

meaning that the observation matrix is full rank too.

PROOF: In a proof by contradiction, we show that Π1 ∈
R

3×3 must be a full-rank matrix if ∆ρ and α are not

collinear. If Π1 is not full-rank, then there must exist a non-

zero vector η 6= 0 such that Π1η = 0, i.e.,

(Ā∆ρ) × η + (Āα) × η = 0

⇒ Ā
(
∆ρ × (ĀT η) + α × (ĀT η)

)
= 0

⇒ ∆ρ × η′ + α × η′ = 0, (21)

where η′ = ĀT η 6= 0. However, vectors ∆ρ × η′ and α ×
η′ can not annihilate one other because ∆ρ and α are not

parallel. Thus, it is not possible for (21) to be true, meaning

that matrix Π1 must be full rank and hence the system should

be observable. �

B. Three Fixed Landmarks

Consider the case in which three known landmarks are

observed, i.e., m = 3. Similar to (22), define the following

matrix

Π2 , [e1×] + [e2×], (22)

where e2 , ĀT (ρ3 − ρ1).
Remark 1: By using the same argument of Proposition 1,

one can prove that matrix Π2 is full-rank if and only if

vectors e1 and e2 are not collinear. In other words, if the

three fixed landmarks are not located on a straight line, then

matrix Π2 is full-rank.

Proposition 2: If the three known landmarks are not

placed on a straight line, then the observation matrix is full

rank.

PROOF: The observability matrix of the case of three fixed

landmarks can be transformed to the following triangular ma-

trix through almost similar MRO described in the Appendix

O∆=





















2Π2 03 03 03 03 03 03 · · · 03

× Π2 03 03 03 03 03 · · · 03

× × −ĀT
03 03 03 03 · · · 03

× × × −ĀT
03 03 03 · · · 03

× × × × −ĀT
03 03 · · · 03

× × × × × −13 03 · · · 03

× × × × × × ĀT
· · · 03

× × × × × × ×

. . . 03

× × × × × × × × ĀT

...
...

...
...

...
...

...
...

...





















.

(23)

Here, the first row of the above matrix is obtained by

subtracting the fourth and third rows of matrix H from

its second row and then adding the resultant row vectors.

Performing the similar row operations on matrix HF , (18a),

yields the second row. The rest of rows are generated

through the same elementary operations as described in the

Appendix. In view of Remark 1, one can conclude that if

the argument of Proposition 2 is held, then Π2 is full-rank

and so is the observability matrix (23). �

C. Observability of Piecewise Constant Equivalent

Now assume that Hj and Fj vary from segment j = 1
to j = r. Then, the system (10)-(16) is to be completely

observable if the total observability matrix

Õ =








O1

O1e
F1t∆1

...

Ore
Fr−1t∆r−1 · · · eF1t∆1








(24)

is full rank [21]. Moreover, if

null(Oj) ⊂ null(Fj) ∀j = 1, · · · , r (25)

then it has been shown that null(Õ) = null(Õs), where

Õs , [OT
1 · · · O

T
r ]T (26)

is the stripped observability matrix [21]. If the condition of

the Propositions 1 or 2 for every single segment j = 1, · · · , r
are satisfied, then the corresponding observability matrices

are full rank, i.e., null(Oj) = ∅. Consequently, condition

(25) in trivially satisfied and the stripped observability matrix

(26) is full rank.

The above development in conjunction with Propositions 1

and 2 can be summarized in the following Remark:

Remark 2: Assume that linearized system (10)-(16) is

piecewise constant for every single segment j = 1, · · · , r.

Then, the system during the time interval t1 ≤ t ≤ tr is

completely observable if at least one the following condition

is satisfied
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i) two known landmarks of which the connecting line is

not collinear with the vector of the acceleration are

observed

ii) three known landmarks which are not placed in a

straight line are observed

IV. ESTIMATOR DESIGN

A. Discrete-time Model

The equivalent discrete-time model of (16) is

δxk+1 = Φkδxk + wk (27)

where Φk = Φ(tk + t∆, tk) is the state transition matrix

over time interval t∆ and wk is the equivalent discrete-

time process noise. The state transition matrix takes a block

diagonal form as Φ = diag{Φ,13n−6}, and matrix Φ
′ =

diag{Φr,Φt} contains the state-transition matrices associ-

ated with the rotational system, Φr and the translational

systems, Φt. Assume that the nominal value of the angular

velocity is given by

ω̄k = b̂gk
+ ωgk

, (28)

where the hat sign stands for estimation value, and define

̟k , ‖ω̄k‖. Then, the state transition matrix Φrk
(τ) =

Φr(τ, tk + τ) takes on the form:

Φr(τ) =

[
Φr11

(τ) Φr12
(τ)

03 13

]

0 ≤ τ ≤ t∆ (29a)

where

Φr11
=13 −

sin ̟kτ

̟k

[ω̄k×] +
1 − cos̟kτ

̟2
k

[ω̄k×]2

Φr12
=

1

2

(
13τ +

cos̟kτ − 1

̟2
k

[ω̄k×] +
̟kτ − sin̟kτ

̟3
k

[ω̄k×]2
)
.

The state-transition matrix associated with the translational

motion is given by

Φt =







13 t∆13
t2
∆

2 13 03

03 13 t∆13 03

03 03 13 03

03 03 03 13







. (30)

In setting the corresponding process noise covariance

matrix, Qk = E[wkwT
k ], a continuous-time white-noise

model is assumed as follows

E[ǫkǫT
k ] = Σk = diag(σ2

g13, σ
2
bg

13, σ
2
w13, σ

2
ba

13).

With this assumption, the following process noise covariance

matrix can be derived from

Qk =

∫ tk+t∆

tk

Φ(t)GΣkGT
Φ

T (t)dt, (31)

which has the following structure: Qk =
diag{Q′

k,0(3n−6)×(3n−6)}, where

Q′

k =





Qr11
Qr12

03

× σ2
bg

t∆13 03

× × Qt



 , (32)

Qr11
=

(σ2
gt∆

4
+

σ2
bg

t2∆

12

)

13+

(3σ2
gt∆

8̟2
k

+
σ2

bg
t3∆

6̟2
k

−
3σ2

bg
t∆

8̟4
k

+
σ2

g̟2
k − σ2

bg

16̟5
k

sin 2̟kt∆,

+
σ2

bg
t∆

2̟4
k

cos̟kt∆ −
σ2

g

2̟3
k

sin ̟kt∆

)

[ω̄k×]2

Qr12
=

σ2
bg

t2∆

4
13 +

σ2
bg

(sin ̟kt∆ − ̟kt∆)

2̟3
k

[ω̄k×]

+
σ2

bg
(2 cos̟kt∆ + ̟2

kt2∆ − 2)

4̟4
k

[ω̄k×]2,

Qt =








σ2

t

20 t5∆13
σ2

w

8 t4∆13
σ2

w

6 t3∆13 03

× σ2

w

3 t3∆13
σ2

w

2 t2∆13 03

× × σ2
wt∆13 03

× × × σ2
ba

t∆13








.

B. Extended Kalman Filter Cycle

Before we pay attention to the EKF estimator design,

it is important to point out that only the variation of the

quaternion, ∆qvk
, and not the quaternion itself, qk, is

estimated by the KF. Nevertheless, the full quaternion can

be obtained from the former variables if the value of the

nominal quaternion q̄(tk) is given, i.e.,

∆q̂−

k = q̂−

k ⊗ q̄∗(tk) (34)

For the linearization of the quaternion to make sense, the

nominal quaternion trajectory, q̄(t), should be close to actual

one as much as possible. A natural choice for a posteriori

nominal value of quaternion at tk−1 is its update estimate,

i.e., q̄(tk−1) = q̂k−1. Since the nominal angular velocity ω̄k

is assumed constant at interval tk−1 ≤ t ≤ tk, then according

to (11) the nominal quaternion evolves from its initial value

q̄(tk−1) to its a priori value q̄(tk) by

q̄k , q̄(tk) = e
t∆
2

[ω̄
k
⊗]q̂k−1, (35)

which will be used at the innovation step of KF. The above

exponential matrix function has the following closed-form

expression

e
t∆
2

[ω̄k⊗] =
(
cos

̟kt∆
2

+ sin
̟kt∆

2

)
14

+
( 2

̟kt∆
sin

̟kt∆
2

−
1

2
cos

̟kt∆
2

)

[ω̄k⊗]

The EKF-based observer has two steps: (i) Estimate

correction and (ii) estimation propagation. The estimate

correction process begins by calculating the filter gain matrix

as

Kk = P−

k HT
k

(
HkP−

k HT
k + R

)−1
(36a)

Next, the states of KF and the covariance matrix are updated

in the innovation step. Recall that only the vector part of the

quaternion variation, not the full quaternion, is included in

the KF state vector. Therefore, we use a priori value of the

nominal quaternion q̄k , q̄(tk) from expression (35) first to

calculate the a priori quaternion deviation and then, after the

2029



state update in the innovation step, a posteriori quaternion

deviation is recombined with the nominal quaternion to

obtain the quaternion update. That is
[
∆q̂vk

ŷk

]

=

[
vec(q̂−

k ⊗ q̄∗

k)
ŷ−

k

]

+ Kk

(
zk − hk(x̂−

k )
)

(36b)

q̂k = ∆q̂k ⊗ q̄k =

[
∆q̂vk√

1 − ‖∆q̂vk
‖2

]

e
t∆
2

[ω̄k⊗]q̂k−1 (36c)

Note that ∆q̂−
vk

= vec(q̂−

k ⊗ q̄∗

k) in (36b) is a priori

estimation of the quaternion deviation, where vec(·) returns

the vector part of a quaternion. The covariance matrix is

updated according to

Pk =
(
13n+12 − KkHk

)
P−

k , (36d)

In the second step, the states and the covariance matrix are

propagated into the next time step. Combining equations of

(1), (11), (13), and (15), we then get the state-space model

of the system as

ẋ = f(x, ǫ),

which can be used for estimating propagation of the states.

Thus

x̂−

k+1 = x̂k +

∫ tk+t∆

tk

f(x(t),0) dt (37a)

P−

k+1 = ΦkPkΦ
T
k + Qk (37b)

=

[
Φ

′

k

[
P11 P T

12

]
Φ

′T
k + Q′

k ×
[
P12 P22

]
Φ

′T
k P22,

]

,

where P11 ∈ R
18×18 and the other submatrices are obtained

from adequate partitioning of the covariance matrix.

C. Landmark Augmentation

The KF estimation proceeds according to (36)-(37) cycle

as long as the landmarks are reobserved. However, if a new

landmark is observed then the KF states and its covariance

matrix have to be augmented. Let us assume znew represent

the observation associated with a new landmark at location

ρnew. Then, the explicit expression of the new landmark

position can be obtained from the inverse kinematics of the

observation as

ρnew = A(∆q ⊗ q̄)(znew − vnew) + r

≈ Ā(13 + 2[∆qv×])(znew − vnew) + r

≈ Āznew + r̂−Āvnew − 2Ā[znew×]∆q̃v + r̃
︸ ︷︷ ︸

noise

where q̃v and r̃ are the corresponding estimation errors

and Rnew = E[vnewvT
new]. Consequently, the states and

covariance matrix are augmented as

x̂new =

[
x̂

Āznew + r̂

]

and Pnew =

[
P Υ

T

Υ ĀRnewĀT

]

where

Υ =
[
−2Ā[znew×] 03 13 03×(3n+6)

]
P .

D. Noise-Adaptive Filter

Efficient implementation of the KF requires the statistical

characteristics of the measurement noise (6). The IMU noises

are not usually characterized by a time-invariant covari-

ance. Therefore, σa can be treated as a constant parameter,

which can be either derived from the sensor specification

or empirically tuned. However, the landmark measurement

errors may vary from one point to the next. Therefore, in

order to improve the quality of the state estimate, it would

be desirable to weight the landmark measurement with the

“good” data more heavily than the one with “poor” data in

the estimator. This requires readjusting the covariance matrix

associated with vp in the filter’s internal model, so that the

filter is continually “tuned” as well as possible based upon

information obtained in real time from the measurements.

In a noise-adaptive Kalman filter, the issue is that, in addi-

tion to the states, the covariance matrix of the measurement

noise has to be estimated. Let us define the residual error

̺k , pk − Lkχ̂−

k where Lk =






2[d1k
×] 13

...
...

2[dnk
×] 13




 ,

χk = [∆qT
vk

rT
k ]T . Then the following identity holds

̺k = Lk(χk − χ̂−

k ) + vpk
.

Taking variance of both sides of the above equation gives

Rpk
= Wk − LkP−

χk
LT

k with Wk = E[̺k̺T
k ].

Note that the covariance matrix P−
χk

= E[χ̃kχ̃T
k ], where

χ̃k = χk − χ̂−

k , can be extracted from the covariance matrix

of the Kalman filter, P−

k . The above equation can be used

to estimate the measurement covariance matrix R̂pk
from an

an ergodic approximation of the covariance of the zero-mean

residual ̺ in the sliding sampling window with finite length

w. That is

Ŵk ≈
1

w

k∑

i=k−w

̺i̺
T
i (38a)

= Ŵk−1 +
1

w

(

̺k̺T
k − ̺k−w̺T

k−w

)

. (38b)

where w is chosen empirically to give some statistical

smoothing, i.e., w should take a small value if the statistical

characteristic of the landmark sensor noises change signifi-

cantly over time, conversely, it takes a large w if the noise

is stationary.

V. A CASE STUDY

A series of case studies were conducted on the CSA’s

red-rover traversing the 30 × 60 m Mars Emulation Terrain

(MET), as shown in Fig. 2, in order to demonstrate the con-

vergence property of the 3D SLAM with respect to different

numbers of fixed landmarks. The rover is equipped with

IMU plus three RTK GPS antennas, which allows to measure

not only the vehicle position but also its attitude using the

method described in [22]. Consequently, the vehicle pose
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Fig. 2. CSA Mars emulation terrain.
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Fig. 3. 3D path taken by the vehicle.

trajectories obtained from the GPS system are considered as

the “ground-truth” path.

Figs. 3 and 4A show the 3D path taken by the mo-

bile robot and its attitude, respectively, while the vehicle

passing through seven via points. The IMU measurements

are received at the rate of 20 Hz, and the corresponding

trajectories are depicted in Figs. 5. In this case study, the

relative positions of the landmarks are simulated by using

the ground truth trajectories and a set of random noise

sequences with difference standard deviations bounded by

0.1 < σpi
< 0.25 (m). The filter processed the data from

three scenarios as: (i) one of the observed landmarks used

as a global reference, (ii) two of the observed landmarks used
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as a global reference (iii) three of the observed landmarks

used as a global reference. Figs. 3 shows trajectories of the

position estimates for the three cases, while the correspond-

ing orientation estimate errors are shown in 4B. Here, the

orientation errors is calculated by

Orientation Error = 2 sin−1 ‖vec(q̂∗ ⊗ qref)‖. (39)

It is evident from the graphs that the filter did not converge if

only one of the first observed landmark is used as the global

reference. However, the results clearly show that the pose

estimates very well converges to the actual values if either

two or three of the observed landmarks are used as the global

references. Fig. 6 illustrates the time history of the estimates

of the gyroscope bias and the accelerometer bias.

VI. CONCLUSIONS

Development and the corresponding observability analysis

of a 3D SLAM by fusing IMU and landmark sensors in an

adaptive KF have been presented. Examining the observabil-

ity of such SLAM technique in 3-dimensional environment

led to the conclusion that the system is observable if at least

one of the following condition is satisfied: i) two known

landmarks of which the connecting line is not collinear

with the vector of the acceleration are observed ii) three

known landmarks which are not placed in a straight line are

observed. The IMU calibration parameters and the covari-

ance matrix of measurement noise associated with landmark

sensors were estimated upon the sensor information obtained

in real time so that the KF filter is continually “tuned” as

well as possible.

APPENDIX

The following matrix,

















2Π1 03 03 03 ĀT
−13 03 · · · 03

× Π1 03 03 03 03 03 · · · 03

× × −ĀT
03 03 03 03 · · · 03

× × × −ĀT
03 03 03 · · · 03

× × × × −ĀT
03 03 · · · 03

× × × × × −13 03 · · · 03

× × × × × × ĀT
· · · 03

× × × × × × ×

. . . 03

× × × × × × × × ĀT


















,

(40)

can be constructed via the following elementary operations:

The first row of the above matrix is obtained by subtracting

the third row from the second row of matrix H , (10),

and then adding the first row of matrix H . Performing the

similar row operations on matrix HF , (18a), yields the

second row of the above matrix. The third to sixth rows

of matrix (40) are picked from the second rows of matrices

H , HF , and HF 2, (18b), plus the first row of matrix H ,

respectively. Finally, the remaining rows of matrix (40) are

picked from the fourth to n rows of matrix H . Since Π

and ĀT are invertible matrices, one can show that ĀT and

−13 terms appeared in the first row of the above matrix can

be eliminated by adequate linear combinations of other row

vectors.
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