
  

  

Abstract— The paper presents innovative kinematics and 
control of a planar redundant robot designed to improve 
spatial resolution by a factor 5. This result is obtained in a 
restricted area of the workspace using position information 
from external sensors. This innovation results from a clearer 
understanding of the factors that influence the robot 
micrometric behavior: axes control resolution generates a set of 
attainable points in the robot workspace and different spatial 
resolution patterns appear when introducing redundancy 
depending on the final axes chosen to correct the position. 

I. INTRODUCTION 
HOOSING and designing the adequate robot to perform a 
task is not easy. Manufacturers provide some 

performance criteria such as payload, workspace 
dimensions, acceleration and repeatability. These criteria are 
detailed in ISO9283 [1] or ANSI R15-05.1-1990 [2] but 
these norms describe numerous other criteria which are not 
often available for industrial robots.  For instance, if we 
wanted to choose the right robot to perform minute assembly 
tasks like pick and place in electronic assembly, which 
criteria should be used ?  
Should we consider the pose repeatability, the pose 
accuracy, the robot spatial resolution ? Should we choose a 
serial or a parallel robot ?  
Optimal robot design is a key issue in robotics and a clear 
insight is given in [3]. Numerous methodologies exist to 
optimize robot kinematics. A large body of them proposes 
using manipulability or dexterity indexes [4]. Others are 
more concerned with dynamic [5]-[7] or elastostatic 
performance [8], [9]. The pros and cons of these different 
methodologies are well-known for serial robots [10]. Now 
recent research deals with accuracy analysis in parallel 
robotics [11]. One of these papers [12] is a comparison of 
the accuracy of a parallel and a serial robot and the 
methodology is based on the sensitivity. Other criteria can 
be used for this kind of comparison for example in relation 
to the stochastic ellipsoid theory based on the angular 
covariance matrix [13]. 
In this paper, we describe innovative serial robot kinematics 
that can greatly improve precision in a limited area of the 
workspace. This architecture was not discovered using a 
traditional approach because roboticians usually avoid 
redundancy and singularities. In fact, new properties of 
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redundancy on spatial resolution are here presented and  
used in an innovative control scheme to improve local 
precision. 
In section II, we describe the traditional approach to local 
resolution modeling based on axis resolution. In section III, 
we study the SCARA robot case and describe in detail the 
strong variations of the spatial resolution in the workspace. 
In section IV, we introduce redundancy and point out two 
interesting properties. At the same time, we show how 
internal and external sensors can be used in a control 
strategy paving the way to different spatial resolutions. In 
section V, we present a redundant kinematic robot structure 
improving spatial resolution in a limited area of the 
workspace. In section VI, we explain how this architecture 
is efficient to improve precision on the micrometric scale. 

II. SPATIAL RESOLUTION  DEFINITION 
The precision of a rotational or linear axis is characterized 

by different indices displayed in fig.1. The control resolution 
r is the smallest difference between two different targets 

1i ir T T+= − . The precision error can be described by two 
different indices :  

 The repeatability index Rep which estimates the 
distance error around the position mean; 

 The exactitude index Ex which is the distance 
between the position mean and the real target.   

 
Fig.1 Resolution, repeatability, exactitude.  
When the control is perfect and the target iT  is to be 

reached, the final position lies in the interval 

2 2[ ; ]r r
i i iI T T= − + + + . Some authors consider that the 

position distribution is constant over the interval iI . We 
studied statistically this distribution and showed that in 
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reality it was Gaussian [14]. From this it is possible to model 
repeatability with stochastic ellipsoids. This approach is 
highly interesting because it is possible to study all 
repeatability influence factors. For example, we proved that 
for two 6 axis serial robot studied, the load influence was far 
less important than the workspace location influence [15], 
[16].  

This was not the first work on this subject. Statistical 
work has been proposed to quantify the influence of some 
factors on repeatability [17], [18]. Riemer and Edan were 
interested in workspace location influence [19]. Offodile and 
Ugwu have studied load and speed influence [20]. 

When controlling the robot from the angular space, the 
angular resolutions of each actuator are combined to create 
the spatial resolution patterns. For a given target 

1 2 3 4 5 6( , , , , , )θ θ θ θ θ θΘ =  where the resolution of each 
actuator is 1 2 3 4 5 6( , , , , , )R r r r r r r= , the final angular position 
will be: 

3 5 61 2 4
1 2 3 4 5 6( , , , , , )

2 2 2 2 2 2 2
r r rr r rR θ θ θ θ θ θΘ ± = ± ± ± ± ± ±  

We studied the performances of one Samsung Faraman 
FARA2 and one Kuka IR384 robots with respective angular 
resolution of 0.01° and 0.001 °. Currently, we are working 
on an EPSON RS450. It is possible to control this robot by 
specifying the number of pulses. If the servo-control is 
perfect with nil errors, the spatial resolution is then at its 
best. 

Let the spatial resolution SR be the set of points of the 
final robot position ( ), ,X x y z=  corresponding to the target 
Θ with the uncertainty R. It can be computed in two 
different ways. 

In the first method 62  points are computed in the 
Cartesian space using the interval analysis and the forward 
kinematics function ( )X F θ=  transforming joint 

coordinates Θ  into workspace coordinates ( ), ,X x y z= . 
The spatial resolution SR will be a convex polyhedron 
obtained from the convex envelop of the 62 points 

( )2
RF Θ ± : 

{ }2( )RSR Conv F= Θ ± . 
The second method consists in differentiating the forward 

kinematics function ( )X F θ=  and using the Jacobian 
function mapping the joint velocity vector to the Cartesian 
velocity vector in the linear transformation ( )dX J dθ θ= . 
This relationship can also be understood as the link between 
small angular and Cartesian variations. The spatial 
resolution SR will be a convex polyhedron obtained from 
the convex envelop of the 62 points 2( ) RJ± Θ × :  

{ }2( ) RSR Conv J= ± Θ ×  
Whatever the method, the results will be the same because 

the resolution R is usually very small compared to the 
angular value Θ  so the first order approximation is very 

precise. The two methods are only different because the first 
one considers the set of points and the other one, the point 
variations. In both cases, the following results in section III 
are identical.  

In general, it is difficult to evaluate the evolution of size, 
volume, orientation of these different polyhedra. This could 
explain why spatial resolution has been sometimes replaced 
by repeatability, hoping that the repeatability sphere could 
approximate the polyhedron. But the repeatability index will 
not give any clue about spatial distribution [21]. 

Using this traditional approach where the resolution is 
constant in angular space, the variations of the spatial 
resolution in the workspace depend only on the lengths of 
the links. The final uncertainty interval at the end of a 
rotating arm is equal to the product of the link length by the 
angular resolution. If the angular resolution is constant, the 
longer the arm, the larger the uncertainty for the extremity’s 
final position. This phenomenon is known as lever-arm 
amplification error. As robots are mostly built with 
rotational joints, the spatial resolution depends on the robot 
posture and location which determine the lever-arm length 
for each actuator. This function is non-linear and difficult to 
study in the general case.  

III. SPATIAL RESOLUTION VARIATIONS FOR THE SCARA  
To illustrate the strong variations of spatial resolution, let 

us consider a SCARA robot with the usual four dof and the 
same angular resolution on the 1st and 2nd axis. The third 
axis is a rotation around the robot endpoint. It does not 
intervene for spatial resolution but only for orientation 
resolution. The fourth axis corresponding to the Z-
translation is easy to take into account adding vertical 
vertices to the patterns drawn on the plane. So to illustrate 
the resolution variations, the representation will be drawn on 
the horizontal plane considering only the first and second 
axes. In this particular case, the spatial resolution is a 
parallelogram.  For the three different locations in the 
SCARA workspace displayed on fig.2, we draw the mesh of 
the different parallelograms corresponding to the closest 
targets with the same scale.  

 
Fig.2  The three different chosen locations of the SCARA.  
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The parallelogram patterns are displayed on fig.3 and lead 
to the following conclusions: 
 The surface, size and orientation of the spatial resolution 

parallelograms are very different according to the workspace 
location. 
 The spatial resolution is much finer in the center of the 

workspace corresponding to the 1st location, compared to 
the other locations because the surface of the parallelogram 
is smaller. It means that the final position will be in a smaller 
area and that it is possible to reposition more precisely the 
robot changing slightly the target. The position can be 
minutely corrected in the X-direction but as the rectangle 
sides are in a 1/10 ratio, the resulting Y-position uncertainty 
is larger. Moreover, in this case, displacements are 
decoupled in the X and Y directions. 
 For the 3rd location, the spatial resolution is better in the 

Y direction than in the X direction.  
The main conclusion is that spatial resolution is better near 
the singularities of the robot. For the 1st location, this best 
resolution direction corresponds to the move induced by the 
first axis rotation. The length of this move is obtained 
multiplying the distance between the 1st axis and the 
location by the first axis angular resolution. So it is really 
the distance of the lever-arm that is the main parameter to 
take into account for resolution improvement. 

 
Fig.3 Parallelogram of spatial resolution for the three locations. 
 

IV. IMPACT OF REDUNDANCY ON SPATIAL RESOLUTION 
Redundancy is often used in robotics to give more 

dexterity to the robot. When some areas are difficult to attain 
because of obstacles or when some tasks need special 
orientations that are not compatible with a 6 dof robot, 
introducing redundancy can be a solution. Unfortunately the 
robot control is then less easy. 

What is the impact of redundancy on spatial resolution ? 

Roughly speaking, the introduction of redundancy produces 
both a densification and pattern modifications related to the 
moving axes. 

A. Densifying Cartesian  space 
To illustrate this property, let us draw the spatial 

resolution polygons for two planar robots, SCARA2 and 
SCARA3. SCARA2 is the SCARA described in the 
preceding section. SCARA3 is a planar redundant robot with 
three degrees of mobility as shown in fig.4. The three links 
of the SCARA3 have the same length. Let 3SCJ be the 
Jacobian matrix of the SCARA3. 

 
Fig.4 Geometry of SCARA3 robot and posture 
 
Let 1 2 3r r r r= = = be the resolution of angular control. 

The spatial resolution polygons are hexagons corresponding 
to the convex envelop of the 23 points:  

[ ]{ }1
3 1 2 32 , , t
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One of this hexagon displayed on fig.5 is geometrically 
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The disposition of some close polygons are shown on 
fig.6 corresponding to 3 translations of 1 2 32 , 2 ,2u u ur r r . It 
illustrates the fact that a point in a given area does not 
correspond to a unique target. This is quite obvious because 
the robot is redundant but this has important consequences 
for the micrometric positioning performance. On the other 
hand, it does not mean it is easier to control the robot to 
reach the desired area. The choice of the right target is still a 
difficult problem. But when one of the three axes is locked, 
activating an electromechanical brake for instance, then the 
polygon mesh representing the different repositioning area 
associates again one point to one unique target.  
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Fig.5 Hexagon for spatial resolution of the SCARA3. 
 
 

 
Fig.6 The mesh of spatial resolution hexagons for SCARA3 
  

B. Modifying polygon resolution patterns 
We are now considering a new strategy consisting of 

controlling the SCARA3 robot using only two axes instead 
of three. The remaining axis is locked. The robot is no 
longer redundant and a new polygon mesh can be built. For 
instance, for the posture of fig.4, the pattern will change 
depending on the pair of axes chosen to drive the robot. 
Fig.7 illustrates this principle. If the final control uses only 
the 1st and 3rd axes, then the polygons are parallelograms in 
an orthogonal layout. If the control uses only 2nd and 3rd 
axes, then the orientation of the parallelogram is quite 
different. So it is clear that the choice of the final pair of 
axes has an important influence on the structure of the final 
parallelogram mesh. 

 It is then possible to choose the axes to be controlled in 
the last positioning step according to the performance 
criterion, here spatial resolution. It will be easier to correct 
the position using the 1st and 3rd axes because the induced 
displacements are orthogonal. The final uncertainty will be 
twice larger in the X-direction if the 2nd and 3rd axes are 
chosen for the control, but the final error will be the same in 
the Y-direction. But in both cases, the final spatial resolution 

is finer than the hexagon of fig.5. The square on the left side 
of fig.7 corresponds to the grey square of fig.5. 

At this point, we are still aware that the final polygon 
surface is still the same as the move is performed using the 
three axes and the global spatial resolution has not been 
improved yet. Here is the new strategy: a first rough 
positioning is performed using the three axes and at the end 
of the move, the minute final position correction is done 
using only two of the three axes. In this strategy, the final 
polygon resolution depending of the last pair of axes, is 
smaller than the global one and it is possible to choose a 
better target to improve the final position. This is the 
strategy that will be used in the next sections.  

 

 
Fig.7 Spatial resolution patterns for 1st and 3rd axes control (left) or 2nd 

and 3rd axes final control (right).  

V. INNOVATIVE KINEMATICS AND CONTROL TO IMPROVE 
SPATIAL RESOLUTION 

We are now considering the previous results to improve 
the spatial resolution for a specific location PI “point of 
interest” in the workspace.  A minute positioning is 
demanded near this point, so the final spatial resolution must 
be fine in two orthogonal directions. This could be done 
using two joint articulations whose rotation centers are as 
close as possible to PI. It is for instance 1st and 2nd axes of 
fig.8. Then to enlarge the workspace, it is necessary to add a 
third axis. Consequently, the robot is now redundant, and 
able to grasp an object in a wider area. 

The control strategy consists of two steps: in a first step, 
the robot endpoint is brought close to the desired target PI 
using the three axes. Then the 3rd axis is locked. The 
position error is estimated from external sensor information 
and the new target is computed. In the second step, the robot 
comes closer to PI using only the 1st and 2nd axes. 

For the structure displayed in fig.8, let the lengths of the 
links be 1 2 31, 5, 4.5l l l= = = (dm). For the angular position 

1 2 3( 135 , 90 , 173 )θ θ θ= ° = ° = ° , the location of the robot 
endpoint is ( 0.697, 0.058)IP − − (dm) very close to the the 1st 
and 2nd axes. The parallelogram mesh resulting from the 1st 
and 2nd axes final control in the vicinity of the point of 
interest is orthogonal and consists of short-sided squares 
displayed on Fig.9. The scale of the drawing is obtained for 
a resolution of 42.10− rad. Fig.10 is a comparison of this 
square mesh with the hexagon of spatial resolution when the 
3 axes are used. It then becomes obvious that it is easier to 
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correct the final position using only 1st and 2nd axes in the 
final step.  

 
Fig.8 Innovative planar redundant structure SCARA3  
 
This minute spatial resolution is still true if the final point 

moves away from PI but stays in the vicinity of PI. The mesh 
is slightly changed in orientation and the square becomes a 
parallelogram, but the dimensions of the parallelogram 
remain small as long as the final point stays in a disk 
centered on PI with a radius lower than 0.35 for instance.  

This point PI is named point of interest and the vicinity of 
IP is an interesting area for local precise repositioning.  
The interesting area surface may seem to be quite small 

but in reality, other 1st and 2nd axis configurations produce 
more interesting surfaces and the total interesting area is a 
ring centered around the 1st axis and with 0.35 dm internal 
and 1.05 dm external radius.  

This can be a disadvantage in certain applications but it 
can be useful in some specific tasks for instance in some 
electronic manufacturing operations where the assembly 
zone is often small and precision is limited by the camera or 
binocular visual field, and the pieces are grasped elsewhere 
in the workspace. The precision for the grasping in this 
example is not as high as for the final placement on the 
PCB.  

This improvement in spatial resolution can be roughly 
estimated from the ratio of the third link length above the 
first link length, reaching a factor 5 at least in this example. 

This innovative kinematics and control strategy have to be 
compared to a traditional approach to obtain minute spatial 
resolution. In fact, until now, the answer consisted in 
associating a micro and a macro positioner, in what was 
called a micro-macro approach. 

One solution is for tool held by the robot to have a micro-
positioner for minute spatial resolution. In this case, the 
robot performs the rough positioning and the tool the minute 
positioning. 

The other solution is to put the tool on the robot and the 
part on a table. The minute spatial resolution is obtained by 
small movements of the table. 

In both cases, 4 actuators are necessary for the process. 
The innovative solution described in this paper needs only 3 
actuators. So the total cost is lower. In fact, the micro 

positioning is part of the robot structure itself, hidden in its 
geometrical characteristics. 

 

 
Fig.9 spatial resolution parallelogram resulting from different final 

control (in micrometers) 
 

 
Fig.10 comparison of the spatial resolution resulting from different final 

control ; hexagon for the 3 axes and square for 1st and 2nd axes. 

VI. EXTERNAL SENSORS AND CONTROL STRATEGY 
In the preceding section, we explained the strategy. At the 

end of the rough positioning, in the last step, we need to 
estimate the position correction before the minute last move. 
This last movement must be estimated from measures by 
external sensors. For example, these sensors can be a camera 
with high resolution. As the final zone for minute 
positioning is small compared to the total workspace area, it 
is possible to choose a camera with high resolution  and a 
narrow visual field, for instance 4-micron resolution with a 
visual field of one cm2.  

Two important problems may appear and ruin our efforts 
if not tackled seriously. 

The first one deals with the lost motion zone described in 
fig.11. It is sometimes impossible to move the robot 
endpoint directly by a small increment, because of friction. 

3499



  

If the robot endpoint is within the lost motion zone, nothing 
may happen or the robot could move (from S2 to F2) but the 
trajectory is unknown which can be very dangerous in some 
applications. Conversely it is possible to go directly from S1 
to F1. 

 
 
Fig.11 Corrective trajectories to come closer to the target  
 
So what could be done when the robot endpoint is S3, in 

the lostmotion area, but too far from the desired target? The 
correct strategy is to repeat one portion of a trajectory and 
try to change it slightly so that the final endpoint position is 
very close to the preceding one. The start point of the 
trajectory to be repeated will be named “harmonization 
point” (HP), because it is from this point that every 
trajectory is repeated in nearly the same conditions. For 
instance, starting at S3, coming backwards to HP, correcting 
the target, arriving at F3, backwards to HP, correcting again 
the target, arriving at F4 show how this strategy works. For 
both attempts, the final target is slightly changed.  

The second problem is to decide when to stop correcting 
the target considering that the final position is “good 
enough”. In general, if the position error is inferior to the 
spatial resolution, the result is considered satisfactory and 
the correction process is stopped. 

VII. CONCLUSIONS 
Spatial resolution was here investigated and we have 

concluded that it was strongly dependent on the robot 
topology, architecture, posture and workspace location. 
Hence an innovative robot structure is detailed based on 
redundant kinematics and a new control strategy: a rough 
positioning using 3 axes, then for the final control, extra 
information is collected via external sensors and a minute 
final move is performed using only the two axes with the 
shorter lever-arm lengths. This innovation opens the field to 
great improvements in the performance of serial robot for 
minute micrometric positioning with promising applications 
in minute assembly tasks, electronic and microelectronic 
assembly industry,  optoelectronics, medical and biological 
fields… 

REFERENCES 
[1] ISO “Manipulating industrial robots – Performance criteria and related 

test methods”. ISO9283 (1998) 
[2]  Institute, A. N. S., American National Standard for Industrial Robots 

and Robot Systems - Point-to-Point and Static Performance 
characteristics -Evaluation, R15.05-1-1990.  

[3] Angeles, Jorge, & Park, Franck. 2008. Springer handbook of robotics. 
Springer. Chap. 10. 

[4] C.Gosselin, “the optimum design of robotic manipulators using 
dexterity indices”, Robotics and Automonous Systems, Vol.9, N°4, 
pp.213-226, 1992  

[5] H. Asada: A geometrical representation of manipulator dynamics and 
its application to arm design, Trans. ASME J. Dyn. Meas. Contr. 
105(3), 131-135, 1983. 

[6] T. Yoshikawa : dynamic manipulability of robot manipulators, Proc. 
IEEE Int.Conf. Robot. Autom., pp.1033-1038, 1985. 

[7] P.A. Voglewerde, I. Ebert-Uphoff : Measuring closeness to 
singularities for parallel manipulators, Proc. IEEE Int. conf. robot. 
Autom., pp.4539-4544, 2004. 

[8] M. griffis, J. Duffy: Global stiffness modelling of a class of simple 
compliant couplings, Mechanism Machine Theory 28, 207-224, 1993. 

[9] S. Howard, M.J. Zefran Kumar: On the 6x6 cartesian stiffness matrix 
for the three-dimensional motions, Mechanism and Machine Theory 
33, 389-408, 1998. 

[10] J-P. Merlet, “Jacobian, manipulability, condition number and accuracy 
of parallel robots”, Journal of Mechanical design 128, Jan 2006, pp 
199-205 

[11] J. Hesselbach, J. Wrege, A. Raatz, O. Becker, Aspects on the design of 
high precision parallel robots, Assembly Automation 24 (1), 2004 49-
57 

[12] S. Briot and I.A. Bonev, “Are parallel robots more accurate than serial 
robots ?” CSME Transactions, 2007, vol31 n°4 pp 445-456 

[13] Brethé, Jean-François, & Lefebvre, Dimitri.. Granular space structure 
on a micrometric scale for industrial robots. pp 4931–4936  ICRA07. 
Roma, 2007. 

[14]  J-F. Brethé, E. Vasselin, D. Lefebvre and B. Dakyo, “Determination 
of the repeatability of a Kuka Robot using the stochastic ellipsoid 
approach,”  in ICRA05, Barcelone, pp. 4350-4355. 

[15]  J-F. Brethé and B. Dakyo, “A stochastic ellipsoid approach to 
repeatability modelisation of industrial robots,” in IROS02, Lausanne, 
pp. 1608-1613. 

[16] J-F. Brethé, E. Vasselin, D. Lefebvre and B. Dakyo, “Modelling of 
repeatability phenomena using the stochastic ellipsoid approach,”  in 
Robotica, 2006, vol.24, pp. 477-480. 

[17] Einar Ramsli. Probability distribution of repeatability of industrial 
robots. The international Journal of Robotics Research. 10(3):279-
283, 1991 

[18] Y.Edan, L. Friedmare A. Mehrez and L. Slustki . “A three-
dimensional statistical framework for performance measurement of 
robotic systems“, Robotics and Computer Integrated Manufacturing, 
14, 1998, pp.307-315 

[19] Raziel Riemer et Yael Edan. “Evaluation of influence of target 
location on robot repeatability“, Robotica, vol.18 (2000) pp.443-449 

[20] O.F. Offodile and K. Ugwu, “Evaluating the effect of speed and 
payload on robot repeatability’, Robotics and computer Integrated 
Manufacturing 8,  1991,pp.27-31 

[21] J-F. Brethé, “Intrinsic Repeatability: a new index for repeatability 
characterisation,”  in ICRA10, Anchorage, accepted for publication. 

 

3500




