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Abstract— This paper proposes a novel approach for ex-
tracting a model of movement primitives and their sequential
relationships during online observation of human motion. In the
proposed approach, movement primitives, modeled as hidden
Markov models, are autonomously segmented and learned
incrementally during observation. At the same time, a higher
abstraction level hidden Markov model is also learned, en-
capsulating the relationship between the movement primitives.
For the higher level model, each hidden state represents a
motion primitive, and the observation function is based on the
likelihood that the observed data is generated by the motion
primitive model. An approach for incremental training of the
higher order model during online observation is developed. The
approach is validated on a dataset of continuous movement
data.

I. INTRODUCTION

The study and analysis of human movement is an im-

portant area of research, with potential for a great many

applications, including activity recognition, understanding

and predicting movement and intent, and learning from

observation. In particular, for humanoid robots, the ability to

understand and imitate human behavior will be a key skill

to allow such robots to operate and become useful in the

human environment.

It is postulated that human movement consists of atomic

units called primitives, which are sequenced together and

combined to form more complex behavior [1]. In order to

learn and imitate human behavior, humanoid robots must

learn both the movement primitives and the higher level order

governing the sequencing of primitives. In addition, in order

to be applicable in arbitrary human domains, where the task

and the demonstrator may be changing, the learning system

should be capable of continuous learning of both primitives

and their sequencing, during online observation of human

motion. In previous work [2], [3], we have been developing

algorithms for incremental learning of movement primitives

from continuous observation, based on stochastic modeling.

In this paper, we propose an approach for simultaneously

also learning the higher level order in the sequencing, by

extending the stochastic model to higher levels of abstraction.
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A. Related Work

Robot learning from observation is an active area of

research [4], [5]. The decomposition of human movement

into motion primitives has been a popular approach, with sev-

eral different frameworks proposed for modeling primitives,

including neural networks [6], [7], stochastic models such

as Hidden Markov Models (HMMs) or Gaussian Mixture

Models (GMMs) [8], [9], phase oscillators for rhythmic

motions [10], dynamical models [11], polynomial functions

[12] or weighted graph structures [13]. In addition, learning

at different hierarchy levels has also been studied. Several

researchers consider the imitation of the motion primitives

themselves [9], [10], [8], while other works consider how

a system may learn a sequence of primitives which are

defined a-priori [14], [15]. Takano and Nakamura [16] and

Kulić et al. [17] consider the case where both the motion

primitives and their sequencing is learned simultaneously.

However, when motion primitives are being learned, as noted

by Breazeal and Scasellati [4], the majority of algorithms

discussed in the literature assume that the motions to be

learned are segmented and clustered a-priori, and that the

model training takes place off-line.

Taylor et al. [18] describe an approach for modeling

human motion using a conditional restricted Boltzmann ma-

chine (CRBM). The learned model can generate continuous

motion sequences, as well as learn the transitions between

motions. Once the low level model consisting of individual

motion patterns has been trained, additional higher order

layers can be added to model the higher order structure of

motion patterns. Jenkins and Matarić [19] describe a system

for modeling motion in a lower dimensional subspace. In

their algorithm, continuous time series data is first segmented

using the kinematic centroid segmentation algorithm, and

is then embedded in a lower dimensional space using the

spatio-temporal Isomap (ST-Isomap) algorithm [20]. Once

the data has been reduced, it is clustered into groupings

using the “sweep-and-prune” technique. Once a model of the

primitive behaviors is formed, a higher level re-processing of

the data can be performed to discover meta-behaviors, i.e.,

probabilistic transition probabilities between the behaviors.

While both these systems autonomously segment and cluster

data, the algorithms cannot operate incrementally, as the

entire range of motions is required to form the lower-

dimensional space embedding and perform model training.

Takano et al. [16] describe a hierarchical system of Hidden

Markov Models (HMMs) for learning and abstracting both

human motion patterns and human to human interaction
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patterns during combat. The lower layer of HMMs abstract

the primitive motion patterns, such as kick, punch, etc.,

based on observations of joint angles and velocities obtained

from a motion capture system. Once the primitive motion

patterns (the proto symbols) are learned, a proto symbol

space is generated using dissimilarity measures between the

HMMs. The upper layer of HMMs encode the interaction

patterns between two participants during combat. However,

this approach also requires an offline training component

to construct the proto symbol space, requiring that the

motion primitives be learned offline and that their number be

specified a-priori. A similar approach for modeling physical

human-robot interaction is proposed by Lee et al. [21].

Kulić et al. [17] propose an approach for simultaneously

learning an arbitrary number of motion primitives and their

sequential relationship during online observation. In their

approach, observed motion time series data stream is first

stochastically segmented into potential motion primitive seg-

ments. The segmented motions are then passed to an incre-

mental clustering algorithm which forms a tree representation

of the learned motions, and abstracts each motion type into

a generative model. Concurrently, a graph model is built

representing the sequential relationship between the motion

primitives. However, due to the deterministic graph model,

this approach can be sensitive to motion primitive recognition

errors.

In the domain of mobile robot trajectory learning, in-

cluding vehicle or pedestrian trajectories, Vasquez et al.

[22] propose an approach for incrementally learning a set

of vehicle or pedestrian trajectories using Growing Hidden

Markov Models (GHMMs). In the proposed approach, the

system incrementally learns (following the observation of the

location of the vehicle at each time step) a topological map

via the Instantaneous Topological Map (ITM) algorithm [23].

In this algorithm, for each observed location, nearest nodes

and edges are updated, including centroid adaptation for the

closest node, as well as edge and node addition/deletion.

Following the update of the topological map, the GHMM

structure is updated by adding a state in the GHMM corre-

sponding to each new node in the topological map, the state

connectivity equal to the connectivity in the topological map,

and initializing the observation model to a Gaussian centered

on the centroid location computed by the topological map

with a fixes size Gaussian. The initial state distribution and

the state transition model are then learned incrementally

using an incremental variant of the Baum-Welch algorithm.

B. Proposed Approach

The aim of our research is to develop robots that can

learn motion primitives and higher level behaviors on-line

while observing and interacting with a human partner over

extended periods of time. In previous work, we have been

developing algorithms for autonomous segmentation and ex-

traction of movement primitives from continuous observation

of human motion [2], [3]. Using continuous time-series data

as the input, we first segment the data into potential motion

primitives, using a modified version of the Kohlmorgen

and Lemm [24] algorithm for unsupervised segmentation.

Next, the extracted segments are input into an automated

clustering and hierarchical organization algorithm [2]. The

resulting clusters are then used to form a generative model

of each abstracted motion primitive, which can be used

for subsequent recognition of previously extracted motion

primitives as well as for motion generation on a humanoid

robot. In previous work [17], we also proposed a method

for learning the sequencing of the motion primitives based

on a motion primitive graph. However, since the motion

primitive graph encodes movement primitive transitions in a

deterministic fashion, it can be sensitive to errors in motion

primitive recognition, leading to the formation of spurious

edges. In this paper, we propose an alternate, probabilistic

approach for learning the higher level ordering between

movement primitives, based on a higher abstraction HMM

modeling the transitions between motion primitives. In the

proposed approach, each hidden state of the higher order

model corresponds to a motion primitive. The system is

illustrated in Figure 1. We propose a novel approach for mod-

eling the observation function at each state and incrementally

learning the transition model during online observation of

human motion. Section 2 summarizes the previously pro-

posed segmentation and clustering algorithms used to extract

the motion primitives[2], [3], while Section 3 describes the

higher order model and the proposed incremental learning

algorithm. In Section 4, the results of experiments verifying

the complete algorithm on a continuous stream of human

motion capture data are reported. Section 5 concludes the

paper and provides directions for future work.
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Fig. 1. Overview of the system. The bottom row show the lower level
processing, detailed in Section II. [x,y,z] marker position data is first
converted to joint angle data for the humanoid kinematic model using on-
line inverse kinematics. The joint angle data is next segmented using on-line
stochastic segmentation. Segments are incrementally clustered and organized
in a tree-structure. The top row shows the upper level processing, detailed
in Section III. At the higher level of the hierarchy, sequences of motion
primitives are observed and used to incrementally train a higher order model
representing the temporal relationships between the primitives.

4650



II. SEGMENTATION AND MOTION PRIMITIVE

LEARNING

In the proposed approach [2], [3], the on-line learning

system autonomously segments, clusters and learns the se-

quencing of full-body motion primitives from on-line ob-

servation of full body human motions. First, the incoming

continuous time series data is autonomously segmented into

potential motion primitive segments. The Kohlmorgen and

Lemm segmentation algorithm [24], [25] is used to perform

the segmentation. This algorithm finds optimal segment

points by defining a Hidden Markov Model over a set of

sliding windows defined over recently observed data. A state

transition model is defined such that the cost is lowest to

remain in the same state (i.e, there is an increased cost

to switch states), and an observation function based on the

difference between the current data and the data in the state

window. The optimal sequence of segments is found by

formulating an optimization based on the tradeoff between

data similarity and the cost of switching to a new state. The

optimization problem is solved via an online version of the

Viterbi algorithm.

Once the incoming time series data has been segmented

into potential primitives, each segment is sequentially passed

to the clustering module. In the proposed clustering approach

[2], a hierarchical tree structure is incrementally formed

representing the motions learned by the system. Each node in

the tree represents a motion primitive, which can be used to

recognize a similar motion, and also to generate a model of

the motion. Each motion primitive is modeled as an HMM

or a Factorial HMM, which abstracts the modeled data as

stochastic dynamic process. In the case of an HMM, the

dynamics of the motion are modeled by a single hidden

discrete state variable, which varies according to a stochastic

state transition model A[N,N ], where N is the number of

states in the model. Each state is associated with a continuous

output distribution model B[N,K], where K is the number

of outputs in the observation vector. For continuous data

such as motion data in this case, a Gaussian or a mixture

of Gaussians output observation model is used.

bi(O) =
C∑

c=1

wicCicexp(−
1

2
(O−µic)

T Σ−1

ic (O−µic)) (1)

Cic =
1

(2π)K/2|Σic|1/2
(2)

where O represents the observation vector at a given time

step, bi(O) represents the likelihood that the given obser-

vation vector was generated by hidden state i, C represents

the number of Gaussian distributions in the mixture of Gaus-

sians, and µic and Σic represent the mean and covariance

matrix of Gaussian distribution c in state i.

In an FHMM, multiple independent dynamic chains con-

tribute to the observed output. Each dynamic chain m is

represented by its own state transition model Am[Nm, Nm]
and output model Bm[Nm,K], where M is the number of

dynamic chains, Nm is the number of states in dynamic

chain m, and K is the number of outputs. At each time

step, the outputs from all the dynamic chains are summed,

and output through an expectation function to produce the

observed output.

The algorithm initially begins with one node (the root

node). Each time a motion is observed from the teacher,

it is encoded into an HMM or FHMM and compared to

existing nodes via a tree search algorithm, and placed into

the closest node. Each time a new observation is added to a

node, local clustering is performed within the observations

of the node, using a standard clustering technique [26] based

on the Kullback-Leibler distance between motion models.If

a a cluster with sufficiently similar data is found, a child

node is formed with this data subset, representing a newly

learned motion primitive. A node model is then trained with

the data from the clustered motions. The model can be

used for subsequent recognition and generation. Therefore

the algorithm incrementally learns and organizes the motion

primitive space, based on the observations seen thus far.

III. HIERARCHICAL MODELING

As movement primitives are being extracted from the

demonstration, we also seek to learn the higher order struc-

ture of the motion primitives, and how motion primitives

may be sequenced. We model the higher level structure in

the form of a second, higher-level hidden Markov Model.

At the lowest level, each HMM represents a single motion

primitive, i.e., there is a separate model of each movement

pattern. In the higher order HMM, a single model represents

the grouping of movment patterns, each motion primitive is

represented by a single hidden state in the model. The higher

order HMM consists of the set (Ah, Bh, πh), where Ah is the

state transition model, Bh is the observation model, and πh is

the initial probability distribution. The state transition model

Ah[Nh, Nh] represents the sequencing relationship between

the primitives. We use an ergodic model [27], where any

node may transition to any other node, and initial probability

distribution πh[Nh] gives the likelihood that a movement

sequence will begin with a given motion primitive. For each

state, the output observation model Bh[Nh] is defined as

the likelihood that an observed data sequence segment could

have been generated by the model of the motion primitive.

bh
i (Os) = P (Os|λi), (3)

where bh
i is the output observation model for state i, λi is the

lower level HMM or FHMM model of the motion primitive

corresponding to state i, and Os is an observation sequence

segment,

Os = [Ot=1 Ot=2 ... Ot=T s ] (4)

The probability P (Os|λi) that the observation sequence

segment Os could have been generated by the motion

primitive model λi is computed via the forward procedure

[27].

Given a set of motion primitives [λ1 λ2 ... λNh ] and a seg-

mented time series data of human movement [Os
1 Os

2 ... Os
T ],
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the state transition model and initial probability distribution

can be learned via the Baum-Welch algorithm [27].

Nij =

T−1∑

t=1

αh
t (i)ah

ijb
h
j (Os

t+1)β
h
t+1(j) (5)

Di =
T−1∑

t=1

Nh∑

j=1

αh
t (i)ah

ijb
h
j (Os

t+1)β
h
t+1(j) (6)

āh
ij =

Nij

Di
(7)

π̄h
i =

Nh∑

j=1

αh
t (i)ah

ijb
h
j (Os

t+1)β
h
t+1(j) (8)

Di is the expected number of transitions from state i, Nij

is the expected number of transitions from state i to state j,

ah
ij is the state transition probability from state i to state j,

πh
i is the probability that a sequence of movement primitives

will begin with state i, and αh and βh are the forward and

backwards variables [27],

αh
t (i) = P (Os

1 Os
2 ... Os

t , qt = Si|λ
h) (9)

βh
t (i) = P (Os

t+1 Os
t+2 ... Os

T |qt = Si, λ
h) (10)

However, this learning approach requires that the number

of motion primitives be specified a-priori and that the training

takes place off line. To allow incremental learning during

observation, the system must be able to handle the addition

of new hidden states each time a new motion primitive is

learned, and have the ability to learn the transition rules

incrementally, from partial observation sequences. To enable

this functionality, we implement an incremental learning rule

as follows:

ãh
ij =

āh
ij + (Nts − 1)ah

ij

Nts
(11)

π̃h
i =

π̄h
i + (Nts − 1)πh

i

Nts
(12)

where Nts is the number of training sequences applied to

date, x̄ is the parameter obtained via the Baum-Welch algo-

rithm and x̃ is the parameter computed using the incremental

learning rule. The incremental learning rule is applied each

time a partial observation sequence is available. Following

an incremental update, each row of the state transition matrix

and the initial probability distribution are normalized so that

the sum over all states is equal to one.

A partial observation sequence, used to incrementally train

the model, is generated each time a sequence of two or more

known motion primitives are recognized during observation.

A partial observation sequence consists of all consecutive

instances of known motion primitives, starting with the first

recognized pair, and terminating when the first unknown

motion primitive is detected. A sequence is also terminated

if an invalid motion is detected (i.e., a period of time during

which no significant movement takes place).

However, when incremental learning is used with partial

observation sequences, it is likely that some sequences

will not contain exemplars of all the states. Applying the

incremental learning rule to all states will result in spurious

updates not supported by the actual training data. To avoid

this problem, states are updated only when transitions from

a state are observed in the incremental training sequence,

as measured by Dij (Equation 6). A separate counter N i
ts

is maintained for each state, so that incremental training

updates are only made when the exemplar sequence contains

the corresponding state.

When a new motion primitive is learned, a new hidden

state is added to the higher order model. The state transition

model and the initial probability model are modified to

include a small probability of transitions to the new state

and a small probability of starting from a new state. The

state transition values from previous states to the new state

are initialized to random and normalized.

Our approach is most similar to the growing HMM model

proposed by Vasquez et al. [22]. Vasquez et al. develop an

algorithm for learning trajectories in Cartesian space, so they

use a topological map and the Instantaneous Topological

Map (ITM) algorithm to initially learn the trajectories. In

this algorithm, for each observed location, nearest nodes

and edges are updated, including centroid adaptation for the

closest node, as well as edge and node addition/deletion.

Following the update of the topological map, the GHMM

structure is updated by adding a state in the GHMM corre-

sponding to each new node in the topological map, the state

connectivity equal to the connectivity in the topological map,

and initializing the observation model to a Gaussian centered

on the centroid location computed by the topological map

with a fixed size Gaussian. The initial state distribution and

the state transition model are then learned incrementally. Un-

like the Vasquez et al. approach, the trajectories being learned

in this paper consist of high DoF full body trajectories. We

use the lower level learning HMMs, as detailed in Section II,

to form new nodes and the observation model for each node.

Once a new node is added to the higher order HMM, similar

to Vasquez et al., learning of the state transition model is

carried out incrementally. However, unlike Vasquez et al.,

the proposed approach is also able to make use of very short

training sequences, by only updating the affected portion of

the state transition model.

Unlike previously proposed deterministic models of prim-

itive sequencing [17], the approach proposed herein is more

robust to recognition errors, especially when similar motion

primitives are present. Similar to a deterministic model, the

stochastic model can also be used to generate sequences of

movement primitives for a humanoid robot, to detect and

monitor human activity, and to predict future movement of

the observed human, based on the sequence of primitives

executed thus far.
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IV. EXPERIMENTS

A human motion data set was used to test the proposed

algorithms on a continuous sequence of a variety of whole

body motions. A total of 34 reflective markers are attached

to the demonstrator’s body, located on key body parts such

as the hands, feet, elbows and knees, and the marker [x,y,z]

position is captured and computed by the motion capture

system online. The demonstrator performs arm raises, bow

and squat motions.

The Motion Analysis motion capture system captures the

Cartesian position of markers located on the body with a

sampling rate of 5ms. An online inverse kinematics algorithm

[28] is used to perform inverse kinematics computations to

convert the data to joint angle positions in real time. A

simplified inverse kinematics model of the demonstrator is

used, consisting of 34 DoFs for the joint movement and the

6 DoF base body joint.

The video of the demonstrator motions was also analyzed

manually. In the manual analysis, segment points between

motion primitives were determined and each motion primi-

tive labeled.

The continuous time series data consisting of the demon-

strator base body and joint angles was used to incrementally

learn the motion primitives and the higher order model, using

the approach proposed in Sections II and III. A data flow

diagram showing an overview of the entire process is shown

in Figure 1. In addition, the entire sequence of segmented

motion primitives was used to train the higher order model

off line for comparison purposes.

The sequence begins with the demonstrator repeatedly

performing the arms raise (AR) - arms lower (AL) motion

8 times each. The data is incrementally passed to the

algorithm, where autonomous segmentation is performed,

and segmented movements are clustered to learn the in-

dividual movement primitives. The two motion primitives

AR and AL are extracted after 8 repetitions. At this point

the primitives become available for recognition, but the

demonstrator immediately switches to the bow down/ bow

raise motion, before a sequence of known motion primitives

can be recognized and observed. After 7 repetitions of the

bow motions, two more motion primitives are extracted, the

bow lower (BL) and the bow raise (BR) primitive, bringing

the system up to four known motion primitives. The system

then observes and recognizes a sequence consisting of 6

known motion primitives, the sequence bow down - bow raise

repeated 3 times. This sequence is presented to the higher

level model as the first incremental training sequence. Table I

shows the state transition table following the first incremental

training sequence. Since the training sequence only contains

exemplars of the last two motion primitives, the expected

number of transitions from the first two states (as computed

by equation 6) approaches zero, so these two states are not

updated. As no previous sequences with these two states have

been used for training, the section of the state transition table

for these two states is not yet trained. This is indicated by

”NT” in Table I.

TABLE I

STATE TRANSITION TABLE FOLLOWING THE FIRST INCREMENTAL

TRAINING SEQUENCE

State
State

AR AL BL BR

AR NT NT NT NT

AL NT NT NT NT

BL 0.001 0.001 0.000 0.998

BR 0.001 0.001 0.998 0.000

TABLE II

STATE TRANSITION TABLE FOLLOWING THE SECOND INCREMENTAL

TRAINING SEQUENCE

State
State

AR AL BL BR

AR 0.000 0.998 0.001 0.001

AL 0.998 0.000 0.001 0.001

BL 0.001 0.001 0.000 0.998

BR 0.001 0.001 0.998 0.000

After a brief pause in movement, the demonstrator next re-

turns to perform more arm raise motions. Since these move-

ments have been previously learned, they are recognized by

the system as known motion primitives. A sequence of 4

repetitions of these two motions is recognized, generating

the next incremental training sequence. This sequence is

presented to the higher level model as the second incremental

training sequence. Table II shows the state transition table

following the second incremental training sequence. In the

second training sequence, the first two nodes are activated,

allowing the system to train the corresponding section of the

state transition table.

The demonstrator next begins performing a new move-

ment, consisting of the squat lower and squat raise primi-

tives. Following 6 and 8 repetitions respectively, the squat

lower (SL) and the squat raise (SR) motion primitives are

recognized. The demonstrator then continues performing the

squat movements, resulting in a sequence of 13 recognized

motion primitives consisting of SL and SR repetitions, which

is presented to the higher level model as the third incremental

training sequence. Table III shows the state transition table

following the third incremental training sequence. Following

the addition of two new motion primitives, the state transi-

tion table is expanded to add the new nodes. In the third

training sequence, the two new nodes are activated, allowing

the system to train the corresponding section of the state

transition table.

For comparison, the entire data sequence is used to train

the higher order model using off-line training via the standard

Baum-Welch algorithm. Table IV shows the state transition

model obtained with the off-line training method. The incre-

mentally trained model was trained on a very small subset of

the full movement sequence (only sequences of recognized

motion primitives), while the off-line trained model was

trained on the entire sequence, including both recognized and
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TABLE III

STATE TRANSITION TABLE FOLLOWING THE THIRD INCREMENTAL

TRAINING SEQUENCE

State
State

AR AL BL BR SL SR

AR 0.000 0.978 0.001 0.001 0.010 0.010

AL 0.978 0.000 0.001 0.001 0.010 0.010

BL 0.001 0.001 0.000 0.978 0.010 0.010

BR 0.001 0.001 0.978 0.000 0.010 0.010

SL 0.001 0.001 0.001 0.001 0.000 0.996

SR 0.001 0.001 0.001 0.001 0.996 0.000

TABLE IV

STATE TRANSITION TABLE GENERATED BY OFF-LINE TRAINING

State
State

AR AL BL BR SL SR

AR 0.000 0.935 0.001 0.001 0.062 0.001

AL 0.935 0.000 0.001 0.001 0.062 0.001

BL 0.100 0.100 0.000 0.798 0.001 0.001

BR 0.001 0.001 0.996 0.000 0.001 0.001

SL 0.001 0.001 0.117 0.001 0.000 0.880

SR 0.001 0.001 0.001 0.001 0.996 0.000

unrecognized motion, as well as motion segments contain-

ing no motion (demonstrator standing around, etc.). Some

increased noise is observed in the off-line trained model,

due to the presence of invalid and unrecognized motions

in the training set. The results show that the incremental

training and the off-line training achieve nearly identical

results, validating the incremental approach.

The incremental training approach was also analyzed

for timing performance. Without any code optimization, a

training cycle required on average 1.5 seconds to execute,

making the approach promising for on-line processing. In

general, when using full model training, the training time

will be a function of the number of states in the model (i.e.,

the number of motion primitives).

V. DISCUSSION

The proposed approach enables incremental learning of

the motion primitive sequencing, while also taking into

account a probabilistic model of the lower level motion

primitives. Compared to deterministic methods [17], the pro-

posed approach generates transition probabilities based both

on the observed sequence of primitives, and the certainty that

the primitives have been correctly recognized, whereas the

deterministic method considers only the observed sequence

of primitives and assumes perfect recognition. Therefore, it is

expected that the probabilistic approach will be less sensitive

to errors in recognition, particularly when similar motions

are being executed or when there is a lot of noise in the

motion measurement data, as would be typical with more

complex movements or when there are similarities between

motion primitives. This would be particularly helpful when

generating movement on a humanoid robot, as incorrectly

learned sequencing rules could result in invalid motions

which cannot be performed on the robot.

While the current approach allows for incremental train-

ing, the training procedure still considers all the states, thus

making the computational costs of the training procedure

a function of the number of states. The proposed training

procedure does allow for only partial updates to the full state

transition table, based on the states which are visited during

the partial training sequences being considered, but the states

to be updated are identified during the training procedure

itself, by initially considering the entire state space. One

potential approach for reducing the computation time would

be to first identify the states likely to be affected, and then

to perform the training only on the identified state subspace.

A drawback of the incremental training procedure com-

pared to off-line training is that, since data is being consid-

ered sequentially, only a subset of all the possible training

data is being used for training the higher order model. In

the proposed approach, low level nodes are first learned

through on-line observation, high level training data is only

generated after the low level nodes have been learned. It

typically requires 6 - 8 observations of a primitive before

the primitive is abstracted. Therefore, it is possible that the

incremental procedure learns only a subset of the possible

motion primitive sequencing transitions, especially if tran-

sitions shown in the early part of the demonstration are

not subsequently repeated. This problem could be partially

addressed by initializing the system with common motion

primitives, so that motion primitives can be recognized

immediately and training data generated.

In the experiments conducted thus far, only a single

demonstrator has been used for motion teaching. Since the

demonstrator data is first converted to joint angle data via

a kinematic model, there is a convenient way to normalize

data from multiple demonstrators into a coherent data set,

simply by parameterizing the kinematic model according

to each demonstrator, such as the link lengths and height.

However, if object movement or relative positions between

an object and the demonstrator are also to be included,

this normalization approach may not be suitable, and al-

ternate techniques may need to be considered. In addition,

for movements incorporating object handling, it may be

desirable to generalize movement primitives by including

parametrization. This can be incorporated into the proposed

framework through the use of parametric hidden Markov

models [29]. When considering multiple users, there is no

guarantee that different demonstrators would perform the

same motion primitive in the same way, it is still possible that

demonstrations from different demonstrators would result in

different motion primitives due to individual variability. This

question will be addressed in future work.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel approach for learning the

sequencing rules of motion primitives during on-line contin-

uous demonstration via stochastic modeling. Motion prim-

itives are modeled as Hidden Markov models and learned

incrementally during on-line observation. The higher level
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order between motion primitives is also modeled as a Hidden

Markov model, where each hidden state in the higher order

model corresponds to a motion primitive. An approach for

incremental training of the higher order model was proposed

and verified on a human motion database.

In future work, we will investigate the behavior of motion

primitive learning in the presence of multiple demonstrators.

We will also investigate the use of the higher order model

for improving the segmentation results and for predicting

human motion. We will also apply and validate the proposed

approach with other types of human motion, including task

and goal based motion such as interaction with the environ-

ment.
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