
The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5679

directly [4]–[7]. These are formulated as computing the

gradient of an image dissimilarity measure; one obvious

choice is the squared error over the field of view. An issue

that appears not to be completely solved at the moment is

formulating sufficient conditions for convergence, especially

because the gradient directions depend on the unknown

distance to the objects.

Contribution: In this paper, we present proportional-

derivative control laws that solve the visual servoing problem

for a second-order system controlled in force/torque and

demonstrate the pose stabilization results on an indoor heli-

copter testbed. We do not rely on velocity or inertial sensors;

we only assume to know the current visual observations

and a goal image taken at the desired pose (Fig. 2). The

computation essentially consists of a tensor multiplication

that involves the goal image and the current observations

(Fig. 3). This paper is the ideal continuation of [14], where

we restricted ourselves to purely rotational motion.

With respect to related work in engineering on feature-free

visual servoing, we offer the following contributions:

• We consider a second-order system: the control inputs

are torque/force rather than velocities; this requires esti-

mating velocity from vision to create suitable damping

laws.

• We prove the stability of purely visual control laws

independent of (or robust to changes in) the distance

profile, given that the environment satisfies certain con-

ditions; previous work did propose laws assuming con-

stant distance, but did not prove convergence (e.g., [6])

or proved it assuming the availability of point fea-

tures (e.g., [15]).

The paper is organized as follows. Section II introduces

some preliminaries about the model. Section III–V show, in

the order of complexity: 1) control laws for the first-order

system, controlled in velocity, 2) damping control laws that

stabilize the velocities to zero, and 3) proportional-derivative

control of the second-order system. Section VI discusses the

computational structure of the proportional-derivative control

law and several of its favorable numerical features that allow

an efficient implementation. Section VII shows numerical

tests using simulated visual input of a fruit fly and discusses

the bio-plausibility of the control law. Section VIII presents

experiments on an indoor helicopter testbed.

II. PRELIMINARIES

We consider the general 6-degree-of-freedom (6-DOF)

pose stabilization problem using the output from a gener-

alized vision sensor. In the section, we will introduce the

model of the system dynamics, describe the model of the

vision sensor, and formalize the visual control problem.

A. Dynamic model

We consider the fully actuated rigid body motion on

the special Euclidean group SE(3). A pose in SE(3) can

be described by the body position p ∈ R
3 and the body

attitude r, represented as a 3 × 3 rotation matrix, or, more

formally, an element in the special orthogonal group SO(3).

For many traditional visual servoing applications where

the velocities can be controlled directly, it suffices to consider

the system kinematics (also referred to as the first-order

system): {
ṙ = r (ω)

∧
,

ṗ = rv,
(1)

where ω ∈ R
3 is the angular velocity and v ∈ R

3 is the

linear velocity, both expressed in the body frame. The “hat

map” (·)
∧

maps a vector x ∈ R
3 to a skew-symmetric

matrix x∧ ∈ R
3×3 such that (x∧)y = x×y, with “×” being

the ordinary cross product in R
3 [16]. Control in velocity will

be discussed primarily in Section III only.

In other applications, such as stabilizing aerial vehicles,

where the control inputs are torques and forces, the full

dynamics (also referred to as the second-order system) need

to be considered:





ṙ = r (ω)
∧
,

Iω̇ = (Iω) × ω + τ ,

ṗ = rv,

mv̇ = mv × ω + f ,

(2)

where I ∈ R
3×3 is the moment of inertia; m ∈ R is the

body mass; τ ∈ R
3 is the control torque; f ∈ R

3 is the

control force. Most of this paper will address the issue of

controlling such systems. Although this model does not fully

capture the dynamics of some platforms such as a helicopter

(underactuated, as will be discussed in Section VIII), it

provides a good approximation at least near the equilibrium

(i.e., at hovering).

B. Sensor model

We assume to have available only the output of a vision

sensor. With good generality, we model the vision sensor as

a device that at each time t returns a series of values y(si, t),
each corresponding to the observed luminance from a pixel i
in the direction si ∈ S

2. Here S
2 ⊂ R

3 denotes the unit

sphere. There are two important aspects of such a model:

• Sensor output: The model gives raw luminance as the

output. As a comparison, traditional visual servoing

literature often assumes to know the positions of fiducial

points on the image plane (except in, e.g., [4]–[7]). The

formulation also works if an instantaneous point-wise

filter, such as contrast normalization, is applied to the

raw luminance.

• Sensor geometry: Using the directions si ∈ S
2 to model

the disposition of “pixels” on the sensor makes the

model equally apt for a normal perspective camera, a

catadioptric camera, or the compound eye of a fruit fly

(see Fig. 1).

In deriving the theory, we make a number of simplifying

assumptions: 1) We are able to sample the entire visual

field from “a continuum of pixels”, i.e., we know y(s, t)
for all s ∈ S

2; 2) We can observe both y(t) and ẏ(t);
3) We ignore the effect of occlusions. Note that, however,

in the simulations we do incorporate non-ideal factors such

5680

as blurring, sensor dynamics, and occlusions, some of which

appear in the experiments as well. We will also discuss how

to approximate/discretize the control law when the visual

field is discrete later in Section VI.

Given a certain environment, the visual observation y(s, t)
will change with the pose of the agent. In general, however, it

is not possible to give a closed-form expression of y(s, t) as

a function of the pose, because it depends, in a complicated

way, on the “nearness” µ(s, t), defined as the inverse of the

distance to the object in direction s. Fortunately, we will only

need the relation between ẏ(s, t) and µ(s, t), which is given

by the optic flow equation:

ẏ(s, t) = µ(s)∇sy(s, t)
∗v + (s×∇sy(s, t))

∗ω, (3)

or more compactly, dropping s and t, and defining the

operator S as: Sy , s×∇sy,

ẏ = µ (∇y)
∗
v + (Sy)

∗
ω. (4)

The two terms in ẏ describe the contributions to change in

luminance by translational velocity v and rotational veloc-

ity ω, respectively. This is not a new result and has appeared,

often in a disguised form with different notation, in many

other papers. Here we have adopted the convention that ∇y,

when evaluated at a specific s ∈ S
2, is an element of R

3;

i.e., we think of it as an “arrow attached to the sphere S
2”.

C. Control problem

We assume that the agent knows a “goal” image g(s) taken

at the goal pose qg = (rg,pg). The problem we wish to solve

can be stated as follows:

Problem 1 (Visual pose stabilization): Given the goal im-

age g, design a stabilizing control law for τ and f , depending

only on y, ẏ, g, such that q → qg and (ω,v) → 0.

Without loss of generality, we will assume that (rg,pg) =
(Id, 0), the identity element of SE(3).

III. VISUAL CONTROL IN VELOCITY

We first consider the problem of controlling the first-

order system (1), assuming that we can impose ω and

v directly. Motivated by a control law constructed from

gradient descent, we obtain a stabilizing control law that does

not rely on knowledge of the structure of the environment

(i.e., the nearness µ(s)). Not only will the result be useful for

controlling the first-order system (1) per se, it will also be

important in constructing a stabilizing control law for the full

second-order system (2), as will be discussed in Section V.

A. Control with the knowledge of distance

A natural way to define a stabilizing control law is to use

the gradient of the quadratic cost function J defined in the

space of images:

J(q) =
1

2

ˆ

s∈S2

(y(s) − g(s))2dS. (5)

This integration is taken over the entire visual sphere S
2,

with S as the unique rotation-invariant measure on S
2. We

will use a shorthand notation to denote this integration:

〈f〉 ,

ˆ

s∈S2

f(s) dS.

Using this notation, equation (5) can be written compactly

as

J(q) = 1

2

〈
(y − g)2

〉
. (6)

Here, the cost function J is expressed as a function of q

because y varies with q. Again, note that J is computed

directly from the luminance, not from the error in the

positions of point features.

However, simply applying the (negative) gradient as the

control input may fail to drive the pose q to qg: as

an extreme case, an environment with uniform luminance

(y(s) = const.) will make q unobservable from the visual

input y alone. Therefore, some additional condition on the

environment is expected for the gradient control law to work,

which is stated formally in the following proposition.

Proposition 1 (Exact gradient): The gradient control law
{

ω = 〈(Sy)(g − y)〉 ,

v = 〈µ(∇y)(g − y)〉
(7)

locally stabilizes the first-order system (1) asymptotically if

the 6 × 6 “contrast matrix”

C(q) =

[
〈SySy∗〉 〈µSy∇y∗〉
〈µ∇ySy∗〉

〈
µ2∇y∇y∗

〉
]

is strictly positive definite at q = qg . Note again we have

used the convention that both Sy and ∇y (evaluated at a

specific s) are vectors in R
3.

Proof: (Sketch only, see [17] for detail) We first note

that we have to deal with quantities living on manifolds.

Therefore there is some additional difficulty with respect

to Euclidean spaces. For example, the gradient is not “a

vector in R
n”, and the Hessian is not “a matrix in R

n×n”.

Our first step is a change of coordinates for the attitude.

There are many choices of Euclidean coordinates for SO(3),
including Euler angles, quaternions, etc. Here we choose the

exponential coordinates ϕ ∈ R
3 due to its compact written

form:

ϕ = Log(r)∨, r = Exp(ϕ∧),

where Log and Exp are the matrix logarithm and exponential,

and (·)
∨

is the inverse of the hat map (·)∧. Note in particular

that (r = Id) ⇔ (ϕ = 0). Under such a representation, the

kinematics (1) can be rewritten as

{
ϕ̇ = ω,

ṗ = Exp(ϕ∧)v.
(8)

Note that both ω and v depend on y, which is a function

of ϕ and p. To prove local stability, it suffices to investigate

the linearization of the system (8) around the equilibrium

(ϕ,p) = (0, 0):

ξ̇ = −C(qg)ξ, ξ =

[
ϕ

p

]
, (9)

5681

where C is the “contrast matrix”. Therefore, the system is

locally asymptotically stable if C(qg) > 0.

The above condition on the contrast matrix imposes re-

quirements on the visual appearance (reflected in the visual

input y) and structure (reflected in the nearness profile µ)

of the environment. If the condition fails to hold (i.e., the

matrix C loses rank), there exists a certain “direction” in

SE(3) such that the visual observation will not change when

moving along this direction infinitesimally near the goal qg .

In other words, the environment possesses some kind of

spatial invariance that makes Problem 1 impossible to solve

with visual input.

Alternatively, we note that the contrast matrix C is in fact

the Hessian of J , expressed in the exponential coordinates ϕ

and p. The Hessian of J being strictly positive definite at qg

ensures that qg is an isolated minimum of J(q). This means

that q = qg is the only (local) solution of the equation

y(s) = g(s), which is equivalent to qg being observable

from the visual input y.

B. Control without the knowledge of distance

One drawback of the above control law (7) is that v

depends on the unknown nearness profile µ(s). A possible

solution would be to estimate µ by solving a structure from

motion problem (e.g., [18]–[20]). Our approach, instead, will

show that it is possible to use a control law that does not

depend on µ, if we are only concerned with local stability

near qg . Since this control law does not contain µ, it is only

an approximation of the exact gradient direction, and requires

a different condition other than that in Proposition 1 to hold

in order to guarantee local stability:

Proposition 2 (Approximate gradient): The approximate

gradient control law
{

ω = 〈(Sy)(g − y)〉 ,

v = α 〈(∇y)(g − y)〉
(10)

locally stabilizes the first-order system asymptotically, if

there exists α > 0 such that the 6 × 6 “modified contrast

matrix”

C̃(q, α) ,

[
〈SySy∗〉

〈(
α
2

+ µ
2

)
Sy∇y∗

〉
〈(

α
2

+ µ
2

)
∇ySy∗

〉
α 〈µ∇y∇y∗〉

]

is strictly positive definite at q = qg . Note that α is a constant

scalar and does not depend on the directions s as opposed

to µ(s) in (7).

Proof: (Sketch only, see [17] for detail) The proof of

stability is similar to the previous one. The linearization of

the system (8) is: ξ̇ = −Fξ, where

F =

[
〈SgSg∗〉 α 〈∇gSg∗〉
〈µ∇gSg∗〉 α 〈µ∇g∇g∗〉

]
. (11)

Note that, at q = qg , the modified contrast matrix C̃ is the

symmetric part of F : C̃(qg, α) = 1

2
(F + F ∗). If C̃ > 0,

stability can be immediately concluded from the Lyapunov

function V = ‖ξ‖
2
.

Remark 1: Under at least some special cases, the positive

definiteness of C̃(q, α) is equivalent to the positive defi-

niteness of C(q). For example, when the environment is

spherical (µ(s) = µ > 0), if we let α = µ in C̃(q, α),
then C̃ = C. This is expected because knowledge of the

nearness µ becomes unimportant for a spherical environment.

Remark 2: In the proof, although rotation and translation

became decoupled after linearizing the system kinematics

near the equilibrium, the problem of pose stabilization still

needs to take into account the coupling between the two,

since the current image y still depends on both r and p.

IV. VISUAL VELOCITY DAMPING

Our ultimate goal is to construct a proportional-derivative

controller, which is necessary to achieve asymptotic stability

of the second-order system (2). The result from the pre-

vious section can be viewed as the proportional part (i.e.

“proportional” to the error in pose). In this section, we

switch the focus to designing the derivative part in order

to introduce artificial damping to the rigid body dynamics.

Equivalently, this means choosing force and torque such that

the velocities are driven to 0. Traditionally, the derivative part

is constructed to be proportional to the velocities estimated

from sensory input, here being y and ẏ. We will first briefly

recall the more traditional approach of estimating from the

optic flow via least-squares, but will soon switch to a simpler

solution using bilinear forms.

A. Velocity estimation using least squares

The sensory input that encodes information on the ve-

locities is the temporal change of luminance ẏ. Recall the

relationship between ẏ and ω, v in (4) and note that ẏ is

linear in ω, v, respectively. In the pure rotation (v = 0) or

pure translation (ω = 0) case, a straightforward solution is

to estimate the velocities directly using least squares:

Lemma 1: The least-squares estimates of the velocities are

ω̂LS = 〈(Sy)(Sy)∗〉
−1

〈(Sy)ẏ〉 (v = 0),

v̂LS = 〈(µ∇y)(µ∇y)∗〉
−1

〈(µ∇y)ẏ〉 (ω = 0).
Although the above only holds for separate motions and

will not be our final solution, they provide intuition for the

bilinear velocity estimation introduced in the next.

B. Velocity estimation using bilinear forms

For control purposes, it is likely that we do not need

to estimate the velocities perfectly, since the feedback loop

can usually tolerate some uncertainties. We now attempt to

simplify the above velocity estimates, hoping to make the

computation more bio-plausible. First, we will remove the

matrix inverse from the least-squares estimates. Second, mo-

tivated by the previous section, we will drop the (unknown)

nearness µ(s). This gives the following velocity estimates

that are bilinear (denoted as “BL”) forms of y and ẏ, namely,

linear in y and ẏ separately:

ω̂BL , 〈(Sy) ẏ〉 , v̂BL , 〈(∇y) ẏ〉 . (12)

5682

Surprisingly, as we will see, despite such significant simpli-

fication, they do not prevent us from obtaining a stabilizing

damping control law. One insight is that the resulting approx-

imate velocity estimates are “good enough” because they will

remain “close enough” (or more precisely, within 90 deg)

from the true velocities (in the case of separate motions):

Proposition 3: In the case of separate motions, the bilin-

ear velocity estimates are related to the true velocities as

ω∗ω̂BL ≥ 0, v∗v̂BL ≥ 0.

Proof: For pure rotation, ẏ = (Sy)
∗
ω, and ω∗ω̂BL =

ω∗ 〈(Sy) ẏ〉 = ω∗
〈
(Sy) (Sy)

∗
〉
ω ≥ 0.

Similarly, for pure translation, ẏ = µ (∇y)
∗
v, and

v∗v̂BL = v∗ 〈(∇y) ẏ〉 = v∗ 〈µ∇y∇y∗〉v ≥ 0.

Omitting the matrix inverse makes the velocity estimator

arbitrarily inaccurate in scale, without more constraints on

the environment. In fact, suppose that ω̂BL = ω in a certain

environment y. For another environment that is twice as

bright: y′ = 2y, the resulting ω̂BL will be off by a factor of

4. Nevertheless, we will show that ω̂BL and v̂BL are useful

for control purposes, since the unknown gain factor plays

less role in system stability.

C. Velocity damping using bilinear velocity estimates

We will now prove the main result of this section: the

control law constructed from the bilinear estimates will

regulate the velocities to 0. This is actually not immediate,

because the we have been treating rotational and translational

motions separately, whereas the dynamics of ω and v interact

in practice. The condition for this to hold is again related

to the modified contrast matrix. This is not too surprising

because we have dropped the nearness µ(s) from the least-

squares estimates like in the previous section.

Proposition 4 (Visual damping): Assume that C̃(q, α) >
0. Then the control law

{
τ = − kd ω̂BL = − kd 〈(Sy)ẏ〉 ,

f = − αkd v̂BL = − αkd 〈(∇y)ẏ〉 ,

with kd > 0, globally stabilizes ω,v to 0.

Proof: (Sketch only, see [17] for detail) The proof

follows from a standard Lyapunov argument by using the

kinetic energy as the Lyapunov function.

Note that the velocity control law in the previous section

also shares the same particularly simple computational form,

being bilinear in y and (g − y). We will further discuss its

consequences in later sections.

V. VISUAL CONTROL IN FORCE/TORQUE

By combining the results from the previous two sections,

we now state the main theoretical result of this paper, namely

the visual proportional-derivative (PD) control of the full

rigid-body dynamics, with force f and torque τ as the con-

trol inputs. Aside from the condition on the modified contrast

matrix C̃, the only additional requirement to ensure stability

is that the damping factor (i.e., kd) is “large enough”.

Proposition 5 (Proportional-derivative control): Assume

that the modified contrast matrix C̃(q, α) is positive definite

at q = qg . Then the control law
{

τ = I 〈(Sy)(g − y)〉 − kdI 〈(Sy) ẏ〉 ,

f = αm 〈(∇y) (g − y)〉 − αmkd 〈(∇y) ẏ〉 ,
(13)

guarantees local asymptotic stability of the second-order

system (2) near q = qg for large enough kd.

Proof: (Sketch only, see [17] for detail) Linearize the

system (2) near q = qg . The stability can be shown by a

standard Lyapunov argument using the following Lyapunov

function:

V = ξ∗C̃ξ +
1

2
z∗z + k−1

d ξ∗z,

where ξ = [ϕ∗ p∗]
∗

and z = [ω∗ v∗]
∗
.

Aside from various extra gain factors, the above control law

is a direct combination of the control laws in velocity (“pro-

portional” part) and the velocity damping laws (“derivative”

part) from Proposition 2 and 4, respectively.

VI. COMPUTATIONAL STRUCTURE

So far we have been assuming a spatially continuous

visual sensor to derive the theoretical results. However, since

physical visual sensors (cameras, fly’s compound eye) have

only a finite number of photodetectors, the PD control law

needs to be discretized before being implemented. This will

also give insights on the computational structure of the

control law, especially its localness (which implies sparsity)

in computation.

Recall that the directions of pixels are denoted as si ∈ S
2,

and define the discretized visual input as gi , g(si) and

yi , y(si). Now g and y are vectors in R
n, where n is

the total number of pixels. We also need to discretize the

differential operators S and ∇ to approximate the result of

differentiation at each pixel locations for an arbitrary input

image y. In an informal notation, we look for tensors A and

B that act on discretized images and satisfy:

Discretize [Sy] ≈ Ay, Discretize [∇y] ≈ By.

Arithmetically, both A and B can be thought as n× n× 3
arrays: in the above equations, they act on vectors in R

n and

return n×3 matrices. We will use the notation Aijk to denote

the entries of a tensor A, and a missing subscript to imply the

collection of all the entries in the corresponding dimension

(like the operation “:” on array indices in MATLAB/Octave).

For example, Aij represents a vector in R
3.

One choice of approximation is to apply spatial smoothing

before differentiation, akin to the Sobel operator used in

computer vision for edge detection. The difference is that

here the approximated differentiation does not assume a

uniformly sampled visual field, and can be applied to an

arbitrary disposition of pixels. Under this approximation, the

tensors A and B can be obtained as (up to normalization

factors, see [17] for detail):

Aij = −q′(αij) · (si × sj)/ sin(αij),

Bij = −q′(αij) · (I − sis
∗

i)sj/ sin(αij), (14)

5683

5684

(joint) rotation and translation error. Despite the fact that

the environment has few distinctive features, the control law

provides a reasonable region of attraction, since it does not

rely on feature extraction.

VIII. EXPERIMENTS

To demonstrate the engineering value of the bilinear

control law, we have also implemented the control law

on an indoor helicopter testbed. The helicopter is rebuilt

from the E-flite Blade CX2 coaxial indoor helicopter by

adding an onboard wireless camera as the vision sensor

(Fig. 5). All the control commands computed by the PC are

sent to the radio controller via its trainer port after being

converted to PPM format by a customized microcontroller.

The wireless camera placed on the helicopter is able to

provide 640×480 images at a maximum frame rate of 30 fps.

Due to computational constraints, we choose to subsample

the relayed camera images at 220×166. To compensate for

lighting variations, the images are passed though a Sobel

edge-detection filter followed by thresholding and Gaussian

smoothing (σ = 15 px) before being used to compute the

control law. The control laws are computed using the discrete

tensors (14). The majority of the computation is performed

on an Intel Core2 Duo 2.40 GHz machine. The total delay

of the entire control procedure is estimated to be 78 ms.

(a) Customized helicopter
with wireless cameras

Elevation

Throttle

Aileron

Rudder

(b) Illustration of the control
inputs

Fig. 5. (a) Helicopter used in the experiments, custom-built from E-
flite Blade CX2. One wireless camera in encased in the tail boom. (b)
Illustration of the control inputs: throttle uthr, rudder urud, aileron uail, and
elevation uele.

The helicopter has 4 control inputs: throttle, rudder,

aileron, and elevation. Since the pitch of the rotor blades

is fixed, the throttle command uthr controls the thrust by

changing the speeds of the upper and lower rotors collec-

tively. Yaw control is realized by tuning the differential speed

between the two counter-rotating rotors via the rudder com-

mand urud. Lateral movements are controlled by the aileron

and elevation commands uail and uele, which determine the

cyclic pitch of the lower rotor blades by driving a 2-DOF

swashplate. One limitation of our helicopter system is that

it is underactuated, because it has 6 DOFs with only 4

control inputs. This is evident in that the helicopter must,

for example, pitch forward in order to initiate forward flight.

In principle, a different model rather than (2) needs to be

adopted to take into account the underactuated dynamics.

However, when the helicopter is near hover, a simplified

fully actuated model with 4 control inputs proves to give a

reasonable approximation in practice, since the uncontrolled

pitching and rolling are relatively small. By using Euler

angles (pitch θ, roll ψ, and yaw φ) as the local coordinates

for rotation near rg = Id, the linearized simplified model

can be expressed as:

Izφ̈ = urud + brud,

mp̈ =



uail

uele

uthr


 +




0
0

bthr + fgravity


 .

We have also included the hardware trim/bias in throttle

and rudder, namely bthr and brud. In practice, these can

often depend on various unknown factors such the remaining

battery capacity, battery placement, and motor temperature.

Moreover, the change in throttle trim will also affect other

channels (rudder, aileron, elevation) because the lateral thrust

is provided via the main rotors.

Compared to simulations, the testbed now introduces sev-

eral technical challenges due to various non-idealities: 1) lim-

ited field of view, 2) underactuated dynamics, 3) delay in the

control loop, 4) non-Gaussian sensor noise due to wireless

interference, and 5) time-varying hardware uncertainties.

Automatic bias compensation: The first problem in op-

erating such a helicopter is compensating the biases that

make the helicopter drift away when one applies nominal

inputs. Bias compensation is usually a long trial-and-error

manual operation that must be often repeated. However,

we discovered that the bilinear velocity estimates ω̂BL and

v̂BL defined in (12) were so reliable that they provided an

opportunity to perform simple and effective automatic bias

compensation. For example, if ω̂BL,z > 0, we know, even

if the magnitude is unknown, that the helicopter is rotating

to the left, and we can compensate by decreasing the rudder

command. In formulas, we set

uthr(t) ∝

ˆ t

0

η(τ)v̂BL,z(τ) dτ, urud(t) ∝

ˆ t

0

η(τ)ω̂BL,z(τ) dτ.

In these expressions, η(τ) = e−γτ is a decay factor used

to suppress undesirable oscillations due to noise. As can be

seen from Fig. 6b, the oscillations in rudder compensation

(shown in Fig. 6a) disappear after a decay factor is used.

Visual pose stabilization: An attached video1 shows a

demo of visual pose stabilization. Currently, we keep the

throttle manually controlled for safety purpose, but leave the

remaining three channels automatically controlled. Fig. 7a

and 7b show the goal image and a typical current image;

both the unprocessed one as seen from the camera and

the processed one after Sobel edge detection and Gaussian

smoothing are shown. Because we do not know the ground

truth of the current pose, the only useful indicator is the

cost function J defined in (6), whose change over time is

plotted in Fig. 7c. The oscillations in J and the fact that J
is close to 0 during the first ∼ 30 s of the trial indicate

that the helicopter is being stabilized around the goal. It

is worth noting that the stabilization is only proved to be

local. Several methods can be used to mitigate the problem of

limited region of attraction, such as using an omnidirectional

1A high-quality one is also available at: http://purl.org/hanshuo/2010/pd_
pose_stabilization

5685

5686

