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Abstract

We present a new method to generate biped walking

patterns for biped robots on uneven terrains. Our for-

mulation uses a universal stability criterion that checks

whether the resultant of the gravity wrench and the in-

ertia wrench of a robot lies in the convex cone of the

wrenches resulting from contacts between the robot and

the environment. We present an algorithm to compute

the feasible acceleration of the robot’s CoM (center of

mass) and use that algorithm to generate biped walking

patterns. Our approach is more general and applica-

ble to uneven terrains as compared with prior methods

based on the ZMP (zero-moment point) criterion. We

highlight its applications on some benchmarks.

1. Introduction

Biped walking is a key problem in the design of

humanoid robots. One of the most successful stability

criteria for walking robots is the ZMP criterion, which

determines if the ZMP is inside the support polygon of

the feet of a robot [1]. An in-depth review of the ZMP

can be found in [2]. Based on the ZMP criterion, many

methods to generate walking patterns have been pro-

posed, such as [3]–[8]. However, the original ZMP cri-

terion is primarily limited to cases where a robot walks

on a horizontal flat terrain with sufficiently large fric-

tion. Several attempts have been made to extend these

methods to handle terrains with slopes or stairs [9]–

[12], but their applications have been limited.

Main results: We present a walking pattern gener-
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ator for a biped robot to follow given foot placements

on an arbitrary terrain, based on a general stability cri-

terion [13] and an efficient way to verify it [14]. We de-

velop algorithms to compute stable CoM positions with

respect to foot placements and a trajectory such that the

CoM moves from the initial position to the goal. The re-

sulting generator tends to produce good trajectories for

a robot to stably walk over several complex terrains.

The rest of this paper is organized as follows. Sec-

tion 2 summarizes prior work. Section 3 is an overview

of our generator. Section 4 formulates the general sta-

bility criterion. Sections 5 and 6 explain the details of

our generator. Section 7 reports the simulation results.

Section 8 concludes with possible future directions.

2. Related Work

The ZMP criterion is frequently used in generating

walking patterns for biped robots. Some methods gen-

erate the body motion according to a pre-determined

ZMP trajectory [3], [4]. Another set of methods uti-

lize the ZMP criterion to verify the stability of a robot

following a planned body trajectory [5]–[8]. Some re-

searchers extended the ZMP criterion to more general

cases, where robot’s hands come into contact with the

environment as well [9], [10] or a robot walks on rough

terrains [11] or slopes and stairs [12].

In order to overcome the limitations, a general sta-

bility criterion has been suggested instead of the ZMP

criterion, which determines if the gravity [15] or the re-

sultant of the gravity and the inertia wrench [13], [16]

lies in the convex cone of feasible wrenches from con-

tacts between a robot and its environment. Hauser et

al. [17] used the static stability criterion [15] in de-

signing a motion planner for legged robots walking on

rough terrains. However, there is relatively little work

on walking pattern generation based on a general dy-

namic stability criterion [13], [16]. One main reason is

that verifying the dynamic stability of a biped robot is

much more complex than the static stability or the ZMP.
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Algorithm 1. Generate the walking pattern for a task

Input: initial and goal configurations of a robot; a se-

quence of foot placements on the ground.

Output: trajectories of the CoM and all joints such that

the robot walks to the goal along foot placements.

1: Adjust the robot (a typical motion is to squat down)

2: repeat

3: Compute the position of the CoM supported by

only one foot such that the other foot can lift up

and shift to its next placement

4: Move the CoM from the current position to the

position computed above, while both feet still re-

main on the ground; calculate the joint angles on

both legs using inverse kinematics

5: Shift the swing leg to its next placement, while

holding the CoM to its current position

6: until both feet reach their final placements

7: Adjust the robot to the goal configuration

3. Overview

Given foot placements on the ground that can be

pre-determined by footstep planning algorithms [18]–

[20], our objective is to compute a stable CoM trajec-

tory and joint angles of each leg such that the robot

walks, following those foot placements.

In this paper, we consider a biped robot walking

on uneven terrains, on which the robot’s feet may have

different orientations at every step and the normals at

contacts on both feet are not parallel. In such cases,

maintaining the robot’s stability is much more difficult

than on a flat horizontal terrain. To do this, we adopt

an intermittent walking strategy; that is, the CoM of the

robot stays in a certain position when a leg swings and

it moves when both feet remain on the ground. Un-

like walking on a flat horizontal terrain, where the CoM

usually moves along with the swing leg without pause,

alternately moving the CoM and a foot may limit the

walking speed and scope of a robot. However, this fa-

cilitates the maintenance of the robot’s stability on un-

even terrains. Before the swing foot lifts up, we require

the CoM to reach a certain position, in which the robot

can maintain its stability with the support of only the

other foot. When the CoM changes, both feet provide

maximum support such that a stable trajectory of the

CoM can be more easily computed. The walking circle

is described in Algorithm 1.

4. Wrenches and Stability

In this section, we introduce a general stability cri-

terion in terms of wrenches applied to a robot.
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Fig. 1. View of biped walking in wrench space. The fric-

tion cone Fi, the gravity force Mggg, and the linear inertia force

Mp̈pp0 in robot space are transformed into the convex cone Wi,

the gravity wrench wwwG, and the linear inertia wrench wwwL in

wrench space, respectively. The Minkowski sum of Wi for all

contacts generates a convex cone Wc, which comprises all fea-

sible wrenches that can be applied to the robot from contacts.

As the position ppp0 of the CoM moves from ppp1
0 to ppp2

0, −wwwG

moves from −www1
G to −www2

G. We keep −wwwG +wwwL ∈ Wc in the

interior of Wc such that there is enough stability margin to con-

tain the angular inertia wrench wwwA, i.e., −wwwG+wwwL+wwwA ∈Wc.

4.1. Wrenches (Forces and Moments)

Fig. 1 shows a biped robot. All contacts between

the robot and the environment are assumed to be hard

point contacts with friction. The bottom of each foot is

flat, so that the contact normal is perpendicular to the

foot. If a foot makes a planar contact with the environ-

ment, the planar contact can be treated as a few point

contacts on its boundary. Let Σ0 be the global coordi-

nate frame whose z-axis is vertical. We decompose the

wrenches exerted on the robot into four categories.

4.1.1. Contact wrench. The resultant wrench from all

contacts with respect to the frame Σ0 can be written as

wwwC =
m

∑
i=1

[

III3×3

rrri⊗

]

fff i (1)

where rrri denotes the position vector of a contact point

between the robot and the environment in the frame Σ0,

fff i is the contact force, and III3×3 is the 3× 3 identity

matrix. To avoid slip at contact, fff i must comply with

the Coulomb friction constraint, which limits fff i into a

convex cone Fi specified by

Fi = { fff i ∈R
3| ‖ (III3×3 − nnninnn

T
i ) fff i ‖≤ µnnnT

i fff i} (2)

where nnni is the unit normal at contact and µ is the

Coulomb friction coefficient. Let Wi be the set of

wrenches that can be generated by forces at contact i

satisfying (2); i.e., Wi = {
[

fff T
i (rrri ⊗ fff i)

T
]T

| fff i ∈ Fi}.

Let Wc = ∑m
i=1 Wi, which consists of all wwwC given by (1)
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with fff i ∈ Fi, i = 1,2, . . . ,m and is the set of all feasible

resultant wrenches from contacts. It turns out that both

Wi and Wc are convex cones.

4.1.2. Gravity wrench. The gravity and the resulting

moment with respect to the origin of Σ0 are given by

wwwG =

[

III3×3

ppp0⊗

]

Mggg (3)

where ppp0 is the position of the CoM in Σ0, M is the total

mass of the robot, and ggg =
[

0 0 −g
]T

. The wrench

wwwG is related only to the position ppp0 of the CoM.

4.1.3. Linear inertia wrench. It is the wrench gener-

ated by the inertia force applied to the CoM:

wwwL =

[

III3×3

ppp0⊗

]

Mp̈pp0 (4)

where p̈pp0 is the acceleration of the CoM. The wrench

wwwL depends on ppp0 and p̈pp0. For a given ppp0, the direction

of wwwL is determined by the direction of p̈pp0, while their

magnitudes are proportional to each other.

4.1.4. Angular inertia wrench. According to [13],

the angular inertia wrench can be computed by

wwwA =

[

000

L̇LL

]

(5)

where LLL is the angular momentum of the robot with re-

spect to the CoM [13]:

LLL =
N

∑
j=1

{m j(ppp j − ppp0)⊗ ṗpp j + III jωωω j} (6)

where m j, ppp j, III j, and ωωω j are the mass, position, inertia

tensor, and angular velocity of the j-th link of the robot,

respectively.

4.2. Stability criterion

A robot is statically stable if its gravity wrench

can be counter-balanced by some contact forces; i.e.,

there exists wwwC ∈ Wc such that wwwC +wwwG = 000, or equiv-

alently −wwwG ∈Wc. The dynamic stability also takes the

inertia wrenches wwwL and wwwA into account and requires

wwwC +wwwG −wwwL −wwwA = 000 for some wwwC ∈ Wc, which is

equivalent to −wwwG +wwwL +wwwA ∈ Wc. Normally, we re-

quire −wwwG or −wwwG +wwwL +wwwA to be inside the interior

of Wc such that there is some safety margin.

The formulation of Wc by (1) and (2) considers the

contact normal nnni and the friction coefficient µ in gen-

eral, unlike the ZMP criterion which assumes all contact

normals to be vertical and the friction coefficient to be

sufficient. Hence, the stability criterion based on Wc is

generally applicable.

5. Statically Stable CoM Position

Here, given the contact positions of one single foot

on the ground, we determine the position of the CoM

such that the robot achieves static stability in that posi-

tion or −wwwG ∈Wc. Here Wc is generated with respect to

the single supporting foot. We assume that the CoM is

at a constant height h. Then ppp0 can be written as

ppp0 = p̄pp0 +ρ(cosθbbb1 + sinθbbb2) (7)

where p̄pp0 is an arbitrary point in the horizontal plane at

height h, and bbb1 and bbb2 are two unit orthogonal vectors

that span the plane, and ρ ≥ 0 and θ ∈ [0,2π) are two

scalar variables. We simply choose p̄pp0 =
[

0 0 h
]T

,

bbb1 =
[

1 0 0
]T

, and bbb2 =
[

0 1 0
]T

, and discretize

θ as θk = 2kπ/K, k = 0,2, . . . ,K − 1; thus the prob-

lem is reduced to determining the domain of ρ such that

−wwwG ∈Wc. Substituting (7) into (3) yields

wwwG =

[

III3×3

p̄pp0⊗

]

Mggg+ρ

[

000

(cosθkbbb1 + sinθkbbb2)⊗Mggg

]

= w̄wwG +ρwwwk.

The above equation means that −wwwG lies on the ray

originating from −w̄wwG in the direction −wwwk. The inter-

sections of the boundary of Wc with the ray give the

lower and upper bounds of ρ , denoted by ρL
k and ρU

k ,

such that −wwwG ∈ Wc. Substituting ρL
k and ρU

k together

with θk into (7) leads to two points, between which any

point gives a statically stable position of the CoM. By

doing this for all k = 0,1, . . . ,K − 1, we obtain a set

of points and observe: 1) the statically stable domain

of the CoM is the convex hull of these points and 2) the

shape of the domain or the x- and y-coordinates of these

points are independent of the height h.

We choose the CoM position with respect to the

single supporting foot in Algorithm 1 (line 3) at the

center of the computed stable domain. Hence, the robot

can possess a large stability margin.

6. Dynamically Stable CoM Trajectory

Let ppp1
0 and ppp2

0 be the current and next positions of

the CoM computed by the above means with respect to

two adjacent foot placements. Now we introduce an al-

gorithm to generate a trajectory of the CoM from ppp1
0 to

ppp2
0, which satisfies the dynamic stability criterion. Ac-

cording to the adopted walking strategy, the velocity of

the CoM at ppp1
0 and ppp2

0 is zero and both feet keep touch-

ing the ground while the CoM moves from ppp1
0 towards

ppp2
0. Thus, Wc here is generated with respect to two feet,

different from that in Section 5.
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In computing the trajectory of the CoM, we first

omit wwwA. Then the dynamic stability criterion is sim-

plified to −wwwG + wwwL ∈ Wc. Let aaa and λ be the di-

rection and magnitude of p̈pp0, i.e., p̈pp0 = λ aaa, where

‖ aaa ‖= 1 and λ ≥ 0. From (4), for given ppp0 and p̈pp0,

wwwL = λ
[

III3×3
ppp0⊗

]

Maaa = λ w̄wwL, where w̄wwL =
[

III3×3
ppp0⊗

]

Maaa. This

implies that −wwwG + wwwL = −wwwG + λ w̄wwL is a point on

the ray originating from −wwwG in the direction w̄wwL for

any λ ≥ 0. The robot can accelerate in the direction aaa

only if the ray intersects Wc. An efficient way to deter-

mine if a ray intersects a convex cone can be found at

http://gamma.cs.unc.edu/RobotWalk/.

Since the CoM has no initial velocity and is re-

quired to move from ppp1
0 to ppp2

0, we choose aaa = (ppp2
0 −

ppp1
0)/ ‖ ppp2

0 − ppp1
0 ‖. To determine an appropriate mag-

nitude of acceleration, we need to compute the clos-

est and farthest intersection points of Wc with the above

ray, which represent the minimum and maximum mag-

nitudes of feasible acceleration in that direction, namely

λmin and λmax. Then the acceleration magnitude can be

calculated by λ = (1−k)λmin+kλmax, where 0≤ k ≤ 1.

Here we choose a smaller k to ensure that −wwwG+wwwL lies

deeply in the interior of Wc and leave a larger stability

margin so that −wwwG +wwwL +wwwA ∈ Wc eventually. Once

the acceleration, including both aaa and λ , is determined,

the status of the robot’s CoM is updated by

ṗpp0(t +T ) = ṗpp0(t)+ p̈pp0(t)T (8)

ppp0(t +T) = ppp0(t)+ ṗpp0(t)T + p̈pp0(t)T
2/2 (9)

where T is the time step.

From the new status of the CoM and the positions

of the feet, the new joint angles as well as the posi-

tions ppp j and the angular velocities ωωω j of the links of

the robot’s legs can be calculated using inverse kine-

matics. Thus, we can obtain the angular inertia wrench

wwwA and verify the entire dynamic stability criterion

−wwwG +wwwL +wwwA ∈ Wc. The update is valid if this cri-

terion is satisfied. If not so, we choose a smaller k to

reduce the acceleration of the CoM so that the inertia

wrenches wwwL and wwwA can be smaller. By doing this, we

attain the walking pattern for one time step.

We also need to determine the timing to decelerate

the robot such that the CoM can stop at the desired po-

sition ppp2
0. To do this, we try to decrease ṗpp0 to zero from

the newly updated position ppp0 and compare the final

position ppp0 of the CoM with ppp2
0. If ṗpp0 can be reduced

to zero and the final ppp0 does not exceed ppp2
0, then we

can continue to accelerate the robot and update its sta-

tus as above; otherwise, if the final ppp0 exceeds ppp2
0, from

then on we keep decelerating the robot until it reaches

ppp2
0. To reduce ṗpp0 and decelerate the robot, we perform

the above acceleration computation along the direction
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Fig. 2. Parameters of the simulated robot.

−aaa, which is opposite to ṗpp0. By this means, we obtain

the walking pattern for one step. Then, repeating this

process for all foot placements will generate a complete

walking pattern for the robot.

7. Simulations

7.1. Simulation Setup

We conduct simulations in Webots. The simulated

robot is about 1.75 m high and its CoM is at the hip and

0.84 m high when the robot stands upright. Fig. 2 ex-

hibits the detailed parameters of the robot. The friction

coefficient between the robot’s feet and the ground is

taken to be 0.5.

First, we let the robot walk over two sets of con-

nected slopes with different inclination angles. The pa-

rameters of the slopes are listed in Table 1. Next, we

have the robot walk over 12 different cylinders (Fig. 4),

which are placed on the ground along a circle with a

sweep angle of 60◦. Table 2 displays their parameters.

The upper surfaces of the cylinders are slopes and face

along the (inward or outward) normal or the (forward or

backward) tangent of the circle.

TABLE 1. PARAMETERS OF SLOPES

First slope set

Inclination angles 20◦ −10◦ 10◦ −15◦ −5◦

Slope lengths (mm) 350 400 400 350 334

Second slope set

Inclination angles 15◦ −10◦ 20◦ −15◦ −10◦

Slope lengths (mm) 450 400 400 400 462

7.2. Simulation Results

On the two slope sets, we keep the height of the

robot’s CoM at 0.72 m and 0.75 m, respectively. Fig.

3(a) and (b) shows the CoM trajectories generated by
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TABLE 2. PARAMETERS OF CYLINDERS

Cylinders on the right side

Inclination angles 5◦ 10◦ 20◦ 5◦ 15◦ 5◦

Central heights (mm) 50 150 250 300 200 100

Cylinders on the left side

Inclination angles 15◦ 10◦ 10◦ 10◦ 20◦ 5◦

Central heights (mm) 100 200 300 250 150 50

Fig. 4. Snapshots of the simulated walk over cylinders.

our approach and the ones recorded in the simula-

tion. The robot walking over the slopes is displayed

in the accompanying video, which can be found at

http://gamma.cs.unc.edu/RobotWalk/.

For the cylinder case, we allow the height of the

robot’s CoM to vary according to the heights of cylin-

ders. The robot walking is exhibited with snapshots in

Fig. 4 and the accompanying video on the above web-

site. The CoM trajectory is plotted in Fig. 3(c). Finally

the robot walks over the cylinders and turns 60◦.

7.3. Discussion

In Fig. 3 it is observed that the CoM in the simu-

lation (solid line) does not exactly follows the planned

trajectory (dashed line). The reason is that we treat the

CoM as a fixed point at the hip of the robot in planning

its trajectory, while the leg swing can actually cause

the CoM to deviate from that position. As shown in

Fig. 3(a) and (b), the solid line starts to deviate from

the dashed line where the dashed line becomes horizon-

tal. That is the moment when one leg starts to swing.

The deviation is relatively larger in the frontal plane, so

that the difference in the y-coordinate of the CoM trajec-

tory is more evident. Nevertheless, during the planning

stage, we require the CoM to reach a position where

−wwwG is deeply inside Wc such that the robot achieves

a large stability margin. Hence, after every deviation

occurs, the robot can recover from it and continue to

follow the planned trajectory. Furthermore, if the step

length is not large, the deviation could be very small, as

in the test of walking on cylinders (Fig. 3(c)).

8. Conclusion and Future Work

Based on a general stability criterion [13] and an ef-

ficient algorithm to verify it [14], we present a new ap-

proach to generating stable walking patterns for biped

robots on uneven terrains. Its usefulness is demon-

strated with simulations, where a humanoid robot walks

over terrains with varying slopes. We would like to

carry out more experiments on uneven or rough terrains

to test our walking pattern generator. Further investiga-

tion may also consider the integration of this walking

pattern generator with efficient collision detection and

fast motion planning algorithms to build a complete sys-

tem for biped locomotion in complex environments.
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Fig. 3. The trajectories of the CoM on the (a) first slope set, (b) second slope set, and (c) cylinders. The dashed line represents the

trajectory of the CoM generated by our method, while the solid line represents the one recorded in the simulation.
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