
  

  

Abstract— This paper addresses the inherent complexity in 
coordinating learned behavioral strategies of multiple agents 
working towards a common goal. Because of the interactions 
among the agents, a primary challenge of policy learning is 
escalating computational complexity with increasing number of 
agents and the size of the task space (including action choices 
and world states). We employ an approach that incorporates 
social constructs based on analogs from biological systems of 
high functioning mammals in order to constrain state-action 
choices in reinforcement learning.  Additionally, we use state-
space abstraction and a hierarchical learning structure to 
improve learning efficiency. Theoretical results bound the 
reduction in computational complexity due to state abstraction, 
hierarchical learning, and socially-constrained action selection 
in learning problems that can be described as decentralized 
Markov decision processes.  Simulation results show that these 
theoretical bounds hold and that satisficing multi-agent 
coordination policies emerge, which reduce  task completion 
time, computational cost, and memory resources compared to 
learning with no social knowledge. 

I. INTRODUCTION 
here is ample evidence in the natural world that 
mammals learn to solve complex problems arising in 
domains of interest to both mammals and teams of 

robots, namely cooperative hunting/tracking, foraging, and 
patrolling of territories.   These classes of problems can be 
described mathematically as some variant of a decentralized 
Markov decision process (Dec-MDP), which are proven to 
have non-deterministic exponential (NEXP) complexity  
[1,,2]. Considering the role of social intelligence in 
sophisticated problem-solving behaviors observed within 
these domains leads to fundamentally new approaches to 
deriving intelligent multi-agent systems (MAS) for complex 
tasks, while managing computational complexity. 

In this paper, we focus on decentralized cooperative  
systems of heterogeneous agents with full observability 
working towards a common goal. To solve the Dec-MDP, 
we take the reinforcement learning (RL) approach [3] in 
which a group of agents interact with their environment 
through trial-and-error learning to maximize a performance 
measure in the long run based on reward or punishment 
received from the environment.  
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Many attempts have been made to address complexity 
challenges that derive from a large state/action space, limited 
bandwidth or lack of communication between agents, 
uncertainties, and limited perception [4-9]. The hierarchical 
learning structure of [5] incorporates a task decomposition 
approach in which the overall value function of a core MDP 
is decomposed into value functions based on individual 
subtasks. While task decomposition allows learning to focus 
on a subtask and ignore other parts of the state space, the 
system designer must manually identify subgoals and define 
subtasks that achieve these subgoals. Ghavamzadeh et al. [6] 
present another hierarchical reinforcement learning (HRL) 
framework for cooperative multi-agent tasks in which the 
levels of hierarchy include cooperative subtasks, and the 
coordination among agents in these subtasks significantly 
improves performance. Again, prior knowledge of the task 
structure and inter-agent communication is required. In [7-9] 
social conventions and roles are used to restrict the action 
choices of agents prior to action selection for large scale 
problems. A simple social convention can rely on the state or 
a unique ordering of agents and actions. For example, the 
traffic law to state who has the right-of–way is a useful 
convention to prevent conflicts and accidents.  

Given challenges arising from complexity, we draw from 
observations that high functioning mammals solve complex 
problems cooperatively and efficiently. For example, both 
Bottlenose dolphins and chimpanzees form shifting and 
nested alliances, the former during collaborative fishing and 
the latter in hunting and territorial patrols [10, 11].  Alliances 
are based on social factors, such as kinship, dominance 
hierarchy and previous history [10, 11]. In both species, a 
first-order coalition almost invariably includes two to three 
individuals that can form a higher-order, larger team of 4 to 
14 individuals that varies in stability, size and relatedness. 
Such team forming makes task differentiation and collective 
learning more efficient, especially when individuals have 
complementary skills.  

Another theme from biological systems is that often a 
satisficing solution - a mathematical concept denoting an 
acceptable, albeit suboptimal solution - is adopted based on 
the rational that a feasible solution to a complex task is 
better than no solution when cost of obtaining information or 
of the learning process itself is high [12]. Although many 
underlying abilities required for complex problem solving in 
intelligent mammals appear to be innate, it is clear that 
learning is required and that social intelligence and 
satisficing play an important role in improving learning 
efficiency in decision making. For example, Tai 
chimpanzees take on several roles in a sophisticated strategy 
when hunting Colobus monkeys [11]. Prey in the canopy are 
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selected by the hunting party from the ground. The driver 
chimp climbs the occupied tree and begins pursuit, moving 
the prey forward. Other chimpanzees move along the 
ground, anticipating the prey’s heading.  Blockers move into 
the canopy at strategic points, deterring the prey from 
moving in those directions and funneling the prey towards a 
trap.  The ambusher must anticipate the direction and speed 
of the prey and must determine which tree to climb at what 
time to intercept the prey.  The ambusher either catches the 
prey, turns the prey back toward other team members, or 
forces the prey to the lower canopy, where the chimpanzees 
are faster than the prey.  Each role is learned over time, with 
the most difficult, ambusher role taking up to 20 years to 
master.  Thus, older, experienced male chimpanzees take the 
ambusher role, and role specialization is consistent with 
male dominance hierarchy, age, and experience.  

Field and laboratory research has also shown that 
primates are endowed with cognitive abilities for tracking 
social information, such as recognizing individuals, 
identifying kin, assessing the qualities of prospective allies, 
and knowing the nature of third-party relationships, such as 
rank relationships [13], all of which contribute to efficient 
hunting, foraging, and patrolling strategies.   

Drawing on themes from [10-13], this paper makes two 
key contributions to decentralized multi-agent learning that 
diverge from traditional task allocation algorithms. First, we 
leverage key social constructs in RL to solve decentralized 
MAS problems efficiently. Second, we use an abstract state 
space representation and hierarchical learning structure to 
reduce complexity. Social information makes policy 
searching more tractable, and abstract state representation 
reduces the state-action space, thereby reducing the number 
of state-action pairs that are considered, as well as memory 
resources. Taken together, these components provide 
satisficing solutions to otherwise intractable MAS learning 
problems. 

The paper is organized as follows. Section II summarizes 
Dec-MDP and RL complexity. Section III describes socially 
augmented Q-learning and derives theoretical results placing 
bounds on the reduction in complexity achievable through 
state abstraction, hierarchical learning, and social 
knowledge. Section IV presents empirical results 
demonstrating complexity reduction in a multi-agent 
foraging task.  

II. DEC-MDP COMPLEXITY & REINFORCEMENT LEARNING 
A Markov decision process (MDP) is a mathematical 

framework for solving sequential decision-making problems 
in stochastic domains.  A Dec-MDP of a multi-agent system 
is formally defined as a 4-tuple { }, , , { }i iS A P R . S is a set 

of states s S∈ ;{ }iA is a finite action set available to agent i 

with i ia A∈ ; ( ' | , , )i iP s s a a−  is a table representing the 
probability of transitioning from state s to state 's due to 
action ia taken by agent i and  ia−  denoting the actions 
taken by all other agents but i; and iR  is the reward function 
for agent i. Figure 1 shows a general state-action transition 

diagram.  The black dots represent actions taken by an agent, 
and squares indicate the next possible states that are also 
affected by other agents’ actions. Dashed nodes will be 
explained in section III. 

 
Fig. 1   General state-action transition diagram 

 
Computing the optimal solution for a general Dec-MDP is 

proven intractably hard in [1, 14]. A complexity analysis of 
a Dec-MDP is given in this section for multiple 
heterogeneous agents collaboratively foraging through goal 
oriented behaviors.  Before considering the MAS, we start 
with single agent foraging where the agent collects one of n 
scattered entities at each episode k in a finite horizon with 
transition probability=1. At each episode k, an agent has n-k 
action choices (tasks to select from), and the size of the 
state-action table (a measure of complexity) is 
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The decision version of eq. 1 is similar to the well-known 
Travelling Salesman Problem [15]. It is NP-complete, and 
the worst-case run time for an algorithm to solve problems 
in this class increases exponentially with n.  Extending from 
single agent foraging to a centralized MAS with m agents, 
the complexity remains O(n!): 
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The reason behind this result is that, in centralized 
systems, a single agent (supervisor) makes decisions for all 
agents, who act as remote slaves, or every agent thinks alike. 

Moving up the complexity scale, Bernstein [1] and 
Goldman [14] prove that the finite-horizon Dec-MDP of m-
agents with indirect communication is NEXP-complete. 
Without loss of generality, we introduce the following 
notation as a measure of complexity of the Dec-MDP.  Let 

[ ]t iϕ be the number of actions that can be taken by agent i at 
episode t, [ ]tk iχ be the number of possible resulting states 
that can be encountered by agent i caused by its own kth 
action and other agents’ unknown actions, and n[i] be the 

number of episodes by agent i, with
1

[ ]
m

i
n i n

=
=∑ for m agents. 

Using this notation, a complexity metric based on the size of 
the state-action table in a general Dec-MDP is defined as  

[ ][ ] 1

0 1
( , ) [ ]

t in i

i tk
t k

s a i
ϕ

χ
−

= =
= ∑ ∑ .                    (3) 
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Complexity in Dec-MDPs increases dramatically due to 
asynchronous action choices from other agents and the 
number of possible states. We show in section III how state 
abstraction, hierarchical learning, and social knowledge 
together can reduce computational complexity by many 
orders of magnitude. 

Q-learning is a reinforcement learning algorithm based on 
the updating of the state-action value Q at the end of a 
sequence of time steps as shown in eq. 4 [16]. The best 
found policy is then recorded in *π : 

 

  1 1'
( , ) (1 ) ( , ) [ max{ ( ', ')}]t t t t ta

Q s a Q s a r Q s aα α γ− −= − + +  

),(maxarg* asQ
a

=π                   (4) 

s is the current state at time step t, a is the action taken at 
state s, r is the reward received from the environment 

(0,1]α ∈ is the learning rate, and [0,1]γ ∈ is the discount 
factor. The convergence of single agent (or centralized) Q-
learning has been proven in [17, 18] with conditions of 
action-value pairs visited indefinitely often and tα satisfying 

0
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  In addition to asynchronous learning with simplicity and 
speed, Q-learning is an anytime algorithm, which means the 
algorithm can be interrupted at any time and will return the 
best policy found thus far. This feature makes Q-learning a 
rational choice in applications where there is a constraint on 
computation cost.  However, it is well known that when 
single agent (or centralized) Q-learning is applied to MAS, 
convergence properties are not guaranteed [19, 20].  For 
decentralized MAS, [21] proposes a distributed Q-learning 
algorithm by solving a local RL problem that updates an 
optimistic agent’s policy by neglecting punishment caused 
by non-cooperative behaviors from other agents. They prove 
that this algorithm will converge to the unique optimal 
solution in a deterministic cooperative MAS. However, 
when multiple optimal joint actions exist, neither 
convergence nor bounds are guaranteed. 

III. SOCIALLY AUGMENTED HIERARCHICAL Q-LEARNING 
Our reinforcement learning approach to solving Dec-

MDPs uses social constructs, state abstraction, and 
hierarchical learning to reduce complexity and to achieve a 
satisficing solution to problems whose solution is otherwise 
intractable.  

A. Incorporating Social Hierarchy Constructs 
Based on social intelligence in biological domains 

reviewed in section I, we propose a social structure 
representation illustrated in Fig. 2 that codes social hierarchy 
for use in multi-agent RL. It consists of three levels from the 
bottom up: Physical level, Association level and Task Force 
level.  The Physical level can have several parallel physical 
feature hierarchies based on mobility, sensor resolution and 
other individual capabilities, with robots ranked in each 
category.  The Association level includes two major 

components - a role hierarchy and relational matrices. 
Within the role hierarchy, agents are associated and ranked 
in various role types, based on information from the physical 
level, and relational matrices define social relationships, 
such as affiliation and kinship. Thus, for example, agents 
ranked higher on mobility and sensor resolution may be 
ranked higher for a specific role based on a weighted sum; 
and stable, first-order coalitions of a few individuals may be 
coded within relational matrices.  The Task Force level 
emerges based on information from the lower Association 
level for specific tasks. For instance, in foraging, the agents 
are scored and drafted based on their ranking in various roles 
along with their relationship to other agents. Compared to 
static organization, the Task Force level is where dynamics 
and flexibility are involved in multi-agent team structuring 
for different missions. 

 

 
Fig. 2. Proposed hierarchical social structure representation 
 

The potential benefits of using a social structure to 
represent social knowledge in a multi-agent cooperative task 
include performance-based team configuration, conflict 
resolution, and complexity reduction in teaming and tasking 
through hierarchical and social relationships [22].  

B. Abstract Representation of State Space 
To improve tractability, we build an abstract state 

representation so each agent can learn its role in a 
hierarchical learning framework in advance of task selection 
and task execution [23, 24].  Taking a foraging task as an 
example, a team of heterogeneous robots learn to collaborate 
in sweeping, collecting and depositing scattered entities to a 
home location to reduce task completion time. Robots of 
type P2 can pick up two objects or less at once; and robot 
type S_P1 can pick up a single object only, but can also 
emerge as a sweeper S when needed to cluster objects, i.e., 
move one object next to another object so a P2 robot can 
pick them up simultaneously. The abstract state for each 
agent i includes the number of each type of entity, e.g., 
number of single objects g and clusters c; the number of 
each type of robot n(P2) and n(S_P1), and a boolean variable 
μi indicating whether there is a higher ranking robot in the 
team of agent i: 

 

=S {g, c, n(P2), n(S_P1), μi}            (6) 
 

Abstracting from individual entities and robots to the 
count of entities and robots is a natural reflection of how the 
mammalian brain codes and tracks information at the lowest 
representational level necessary to complete a task. 
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Although abstraction may reduce the likelihood of finding a 
traditional optimal solution, e.g., minimum time or distance 
traveled, the size of the state space is significantly reduced 
compared with a state representation that retains additional 
characteristics, such as location of objects in the 
environment. Moreover, learned policies generalize more 
readily to similar problems.  For example, if a P2 robot 
exists in the team, a S_P1 robot is likely to emerge as a 
sweeper whether there are 10, 20, 50, or 100 single entities 
on the field, as it is more effective for the sweeper to sweep 
objects into clusters for the P2 robot to collect than to pick 
up single objects. Agents select their roles dynamically 
during learning based on the Boltzmann distribution of the 
role values (section III.C). 

A generous upper bound on the size of the state space for 
the abstract state defined by eq. 6 and m agents and n entities 
is ( 1) ( 1) ( 1) ( 1) 2m m n d d+ × + × − + × + × where d is the 
number of clusters at t = 0.  To derive a bound in terms of m 
and n, let N = n + 1, then ( 1) ( 1) ( )( 1)n d d N d d− + × + = − + . 
Since 2 2 24 4 ( 2 ) 0 ,N Nd d N d− + = − ≥  it follows that

2( ) /4,N d d N− ≤ and 2( )( 1) /4 .N d d N N d− + ≤ + −  Since d∀ , 
2( )( 1) / 4N d d N N− + < + , an upper bound for the size of the 

abstract state space is
2

2 ( 1)2( 1) 1
4

nm n
⎡ ⎤++ + +⎢ ⎥
⎣ ⎦

.  For the 

centralized multi-agent system without state abstraction, eq. 
2 shows ( !)O n complexity; with 5m =  and 50n = as an 
example, a reduction from 3e64 to 50490 through state 
abstraction is achieved. 

C. Socially Augmented Hierarchical Q-learning 
Learning in a large state space can be done cost-effectively 

through both in-depth and lateral development of a 
hierarchy, which, in general, is an ordered set or an acyclic 
graph consisting of nodes and branches of their subordinates. 
During state space exploration, by selecting one branch in 
the hierarchy we reduce the computational complexity by 
ignoring other branches and their sub-branches. Figure 3 
illustrates this hierarchical learning structure for foraging. 

 

 
Fig. 3. Hierarchical learning structure for foraging example 

 
As seen in Fig. 3, the first layer of learning includes a role 

selection node branching out to various related behaviors, 
followed by a learning layer for path planning. Within path 
planning, the action space is constrained to the selected role, 
which reduces the number of action choices and space for 
exploration downstream. For example, once a robot selects a 
sweeper role, it has a limited action set for learning high 
level policies of which entities to sweep. After these entities 
are identified, a lower level in the hierarchy is associated 

with assumed lower level behaviors, such as navigating to 
the entities and actuating the sweeping action.  This layer 
can be either a learned or fixed closed-loop policy for 
navigation. 

For decentralized RL, we adapt the idea of Distributed Q-
learning [21], which places less importance on penalties 
received due to other agents’ bad action choices, causing 
exploration to converge to the optimal equilibrium for 
coordination. The update equation is given by 

 

( , )    if 0
( , )

( , )            otherwise

i i

i i

i i

Q s a
Q s a

Q s a

α+ Δ Δ ≥⎧⎪= ⎨
⎪⎩

        (7) 

    

 

where
'

max{ ( ', ')} ( , )
i

i i i ia
r Q s a Q s aγΔ = + − . This algorithm 

is guaranteed to converge when there is a single optimal 
equilibrium; however, if multiple equilibria exist, guaranteed 
convergence is lost. To deal with this issue, we add a 
temporal term 

iaη in the action selection equation to select 
the most recent behaviors yielding maximum Q value:  

 

* arg max{ ( , ) }
i

i

i i a
a

Q s a wπ η= +            (8) 

iaη  is the trial index of the action taken, and w  is a weight, 

set to some small value to control 
iawη  so it will not 

overtake ( , )i iQ s a .  
iaη is a temporal indicator in the trial-

and-error learning to store the index of the most recent trial 
in which an action is taken.  It is equivalent to imposing a 
social convention for agents to choose the latest action set 
with the maximum Q value, yielding a coordinated action 
choice in the presence of multiple optimal solutions. For 
example, a vignette of two robots picking objects to clear the 
field is shown in Fig. 4. Assuming they are ranked the same 
and the two objects are the same distance from each robot, 
there are two sets of optimal joint actions: robot 1 picks 
object 1 and robot 2 picks object 2; or robot 1 picks object 2 
and robot 2 picks object 1. Assuming a decentralized system 
with no direct communication between robots, to each robot, 
picking either object 1 or object 2 yields the same 
equilibrium Q value after many trials based on eq. 7. 
Without 

iaη  in eq. 8, the “best” action each robot chooses 
can be mismatched by chance (e.g., both robots pick object 
1), and therefore the optimal joint action is not guaranteed. 
With 

iaη  in eq. 8, a social convention is imposed for each 
robot to choose the best action taken tagged with the largest 
trial index, which prevents mismatch and yields the best 
coordinated joint actions. 
 
 

 
Fig. 4. Vignette of two robots picking two objects 
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The learning algorithm is summarized in TABLE I.  Social 
knowledge makes an individual agent’s role selection 
dependent on their standing in the role vector of the social 
structure. For example, if a robot is ranked higher in the 
sweeper role than the picker role, it is more likely that a 
sweeper role will be chosen based on a selected distribution, 
e.g., Boltzmann distribution.  Second, social knowledge 
reduces complexity and resolves conflict based on 
perception by filtering out tasks that a higher ranking robot 
is working on or is expected to work on. The second vignette 
in the accompanying video illustrates this case: a lower 
ranking robot detects a higher ranking robot in its proximity 
approaching the same object, ends its current action 
promptly, and chooses the next action, improving the overall 
performance by saving otherwise wasted time.  From the 
previous complexity analysis, if we assume the number of 
superior agents of agent i is [ ]th i at episode t, then the 
reduced state-action space size can be calculated as 

[ ] [ ][ ] 1

0 1

( , ) ' [ ]
t ti h in i

i tk
t k

s a i
ϕ

χ
−−

= =

= ∑ ∑            (9) 

where { }' [ ]tk iχ  is a subset of { }[ ]tk iχ , a result of [ ]th i  
subtrees being pruned from the state space as illustrated by 
the removed branches  (dashed nodes) in Fig. 1. To calculate 
theoretical bounds on reduction, we have  for  agent  i, 

[ ] [ ] [ ][ ] 1 [ ] 1 [ ] 1

0 1 0 1 0

[ ] [ ] ' [ ] [ ] [ ]
t t ti i h in i n i n i

tk tk t t
t k t k t

i i i h i i
ϕ ϕ

δ χ χ
−− − −

= = = = =
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⎜ ⎟= − ≤ Χ
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(10) 

where [ ] max{ [ ]}t tk
k

i iχΧ = .  The physical interpretation of 

[ ]t iΧ is the maximum number of possible resulting states 
under each action of agent i at episode t.  Across m agents, 
the maximum total state-action space reduction is  

( )
[ ] 1

max max max max
1 1 0 1

[ ] [ ] [ ] [ ]
n im m m

t t
i i t i

i h i i H n i nHδ
−

= = = =

⎛ ⎞
⎜ ⎟≤ Χ ≤ Χ = Χ
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⎝ ⎠
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where  max
,

max{ [ ]}t
t i

H h i=  and max
,

max{ [ ]}t
t i

iΧ = Χ . Similarly 

a lower bound is provided by  

min min
1

[ ]
m

i

i nHδ
=

≥ Χ∑                     (12) 

 

where min
,

min{ [ ]}t
t i

H h i= , min
, ,

min{ [ ]} min{min{ [ ]}}t tk
t i t i k

i iχΧ = Χ =  

Finally, social knowledge encourages gregarious behavior 
during path planning by forming loose leader-follower 
relationships based on role vector, affiliation and kinship 
matrices. It has been shown in sociobiology that gregarious 
mammals have elaborate social links that are useful in 
foraging, defending themselves, and raising their young 
[25]. In MAS, gregarious behavior can emerge over time 
from learning based on higher rewards received from greater 
compatibility and a reduced state space when a loosely 
formed sub-team works together in a sub-area of the 
environment.  

IV. SIMULATION EXPERIMENTS 
To evaluate its effectiveness, we apply socially 

augmented, hierarchical reinforcement learning with state 
abstraction to robot foraging. We compare the performance 
and computational complexity of our approach against 
baseline experiments in which traditional hierarchical Q-
learning, also with state abstraction, is performed without 
social knowledge, while keeping all other parameters (field 
configuration, learning rate and number of Monte Carlo 
experiments) the same.  The goal of both decentralized 
learning algorithms is to search for the action sequence of 
each robot that yields the lowest overall team completion 
time in removing all objects from the field. To further 
demonstrate the learned policy, we use a physically realistic 
Webots simulator [26] shown in Fig. 5 and in the 
accompanying video. We do not include centralized Q-
learning without state abstraction in the empirical results 
because the centralized solution cannot be found in 
reasonable time for the number of entities and agents in the 
simulation.  We assume agents obtain information about 
entities and other agents through observation, an indirect 
form of communication.  No other communication, 
including two-way communication, is assumed. 

 
TABLE I 

SOCIALLY AUGMENTED Q-LEARNING ALGORITHM 

Algorithm: ( ) ( , )r
i iQ s a and ( ) ( , )p

i iQ s a is the state-action Q value of role 
selection and path planning for agent i, r is the reward received, 

(0,1]α ∈  is the learning rate, [0,1]r ∈ is the discount factor and τ is 
the temperature in Boltzmann distribution. 
Initialize: 
    Initialize agent i  state at time step t=0. 
    For all s S∈ , i ia A∈ , let role ( ) ( , ) 0r

i iQ s a = , path ( ) ( , ) 0p
i iQ s a =  

    Initialize learning rate 0.99α = and discount factor 0.9γ =  
    Define social structure by agent i’s rank and relationship. 
While current object state ts != completion state Ts  
     Role Selection: 
            Choose role ia at state s based on the probability by  Boltzmann    
            distribution,          

                     
( ) ( )( , )/ ( , )/Pr{ } /
r rQ s a Q s bi ii i

i
bi

a e eτ τ= ∑  

            Receive reward r dependent on the state and social role vector  
            in the association level. Update ( ) ( , )r

i iQ s a : 
                     ( ) ( ) ( )

'
( , ) (1 ) ( , ) [ max{ ( ', ')}]r r r

i i i i i ia
Q s a Q s a r Q s aα α γ= − + +  

            Record current best known role policy, 
                   ( )* ( )arg max{ ( , )}

i

r r
ii i

a
Q s aπ =  

  Path Planning: 
           Filter out objects that a higher ranking robots are  working on. 
           Based on role policy ( )*rπ , choose path ia (object) at state s  
           Receive reward r based on relative object location and  leader- 
           follower relationship.  
           Update ( ) ( , )p

i iQ s a : ( ) ( )

'
max{ ( ', ')} ( , )

i

p p
i i i ia

r Q s a Q s aγΔ = + −  

         ( ) ( , )p
i iQ s a α+ Δ   if 0Δ ≥  

              
 

           Record current best known path policy, 
            ( )* ( )arg max{ ( , ) }

i
i

p p
i ai i

a
Q s a wπ η= +        

End   

        ( ) ( , )p
i iQ s a            else 

        ( ) ( , )p
i iQ s a =
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Fig. 5.  Multi-robot foraging simulation in Webots: The team is composed 
of two types of robots: Type I (Robot 1 and 2) can pick up 1-2 objects at a 
time; Type 2 (Robot 3 and 4) can either sweep or pick up 1 object. Social 
affiliation is indicated by team colors (Blue/Red or Yellow/Red). 

 

For each team condition (number of entities and number 
of agents), 200 Monte Carlo experiments are conducted 
where n entities are randomly placed. For every experiment  
of randomly placed entities, each learning episode starts with 
an agent choosing an action and ends after a reward (non-
positive value) is received based on the time it takes to finish 
the action. A trial ends when all agents run out of action 
choices, i.e., when all objects are removed from the field. 
Team performance for each experiment is measured after 
10,000 learning trials, although only the first 5,000 trials are 
shown in accompanying graphs. 

We evaluate a series of scenarios involving (1) two 
heterogeneous robots (one S_P1 and one P2) collecting 20 
random entities, (2) five heterogeneous robots (two S_P1s 
and three P2s) collecting 20 random entities, and (3) five 
robots (two S_P1s and three P2s) collecting 50 random 
entities. As shown in the hierarchical learning structure in 
Fig. 3, at the role selection level, S_P1 robots can select 
either the picker role or sweeper role.  At the path planning 
level, based on the role selected, robots choose actions such 
as which entity to pick (e.g., closest to home, closest to 
myself, or closest to my group leader) or which two single 
entities to sweep together (e.g., closest two to home, closest 
two to myself). These actions aim to produce generalized 
policies for completing the task, rather than policies specific 
to the initial condition of randomly-placed entities. Further 
lower level behaviors are assumed, such as a pick action that 
includes a temporally-abstracted action of navigating to the 
entity, gripping, navigating to home, and releasing. 

Figure 6 compares the average team completion time over 
200 experiments for both socially augmented Q-learning and 
ordinary Q-learning. The results show that teams using 
social knowledge during learning consistently perform better 
than teams without social knowledge. Note that socially 
augmented Q-learning, in general, does not explore as many 
action choices as traditional Q-learning because of 
preferences regarding roles, conflict avoidance in choosing 
tasks, or path planning based on social knowledge. Figure 7 
shows convergence of the minimum value function over all 
agents as an overall team completion time trendline, 
comprised of a five period moving average as a function of 
trial number, with the ~90% convergence point marked by a 
red diamond. As seen in Fig. 7, socially augmented Q-

learning consistently converges faster than the traditional 
algorithm due to reduced exploration.  

Socially augmented Q-learning is also evaluated and 
compared to ordinary Q-learning based on the number of 
distinct states visited. Figure 8 shows the mean number of 
distinct states visited averaged over 200 Monte Carlo 
experiments as a function of trial number for each of the five 
robot scenarios. As seen in Fig. 8, the number of the distinct 
states visited in socially augmented Q-learning is well below 
non-social Q-learning, despite the fact that its state space 
representation has an extra state variable [ ]t iμ to indicate 
whether there is a higher ranking agent at episode t.   

As seen in eq. 9, social knowledge reduces the number of 
action choices during path planning in the amount of [ ]th i at 
episode t alone and causes a cumulative reduction in state-
action space complexity. For the 50-entity and 5-robot 
simulation with ascending ranks (one through five), the 
maximal number of higher ranking agents is max 4H =  and

min 1H = . Also, the maximal number of possible resulting 
states under any agent i’s actions is max 5 5 25Χ = × = and 

min 1Χ = , i.e., this is how many possible abstract state pairs 
{g, c} four other agents can generate assuming each one 
takes one or no action in changing the number of single 
entities g and the number of clusters c.  Therefore, eq. 11 
and 12 give an upper bound 50 4 25 5000× × =  and lower 
bound 50 1 1 50× × = , respectively, on the state-action space 
reduction. Since it is often the case that each agent’s rank 
descends by one, a tighter upper bound may be obtained 
using the average [ ]h i  over the team. In this case, the upper 
bound would be, 50 2 25 2500× × = , which is consistent with 
the reduction shown in Fig. 8. Note that this reduction is on 
top of the reduction due to state abstraction. 

V. CONCLUSION AND FUTURE WORK 
In this paper we have explored socially augmented, 
hierarchical Q-learning with state abstraction to reduce 
complexity and improve the learning efficiency in solving a 
Dec-MDP. Social knowledge is embedded in the learning 
process to improve space searching efficiency. State 
abstraction and hierarchical learning are employed to make 
the problem domain more tractable. 

Avenues of future work include extending the learning 
framework to a decentralized partially observable Markov 
decision process (Dec-POMDP) in which agents do not have 
full access to the world state due to incomplete or noisy 
sensory information.  
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