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Abstract— Typical tasks of future service robots involve
grasping and manipulating a large variety of objects differing
in size and shape. Generating stable grasps on 3D objects is
considered to be a hard problem, since many parameters such
as hand kinematics, object geometry, material properties and
forces have to be taken into account. This results in a high-
dimensional space of possible grasps that cannot be searched
exhaustively. We believe that the key to find stable grasps in an
efficient manner is to use a special representation of the object
geometry that can be easily analyzed. In this paper, we present
a novel grasp planning method that evaluates local symmetry
properties of objects to generate only candidate grasps that
are likely to be of good quality. We achieve this by computing
the medial axis which represents a 3D object as a union of
balls. We analyze the symmetry information contained in the
medial axis and use a set of heuristics to generate geometrically
and kinematically reasonable candidate grasps. These candidate
grasps are tested for force-closure. We present the algorithm
and show experimental results on various object models using
an anthropomorphic hand of a humanoid robot in simulation.

I. INTRODUCTION AND RELATED WORK

The increasingly aging society will benefit from intelligent
domestic robots that are able to assist human beings in
their homes. The ability to grasp objects is crucial to many
supporting activities a service robot might perform, such as
serving a drink, tidying up or giving water to the flowers, for
example. Human beings perform grasps intuitively on almost
any kind of object. In contrast, grasping is a challenging
problem for robots. Knowledge of hand kinematics, object
geometry, physical and material properties is necessary to
find a good grasp, making the space of possible candidate
grasps intractibly large to search in a brute-force manner.
This is especially the case for modern dexterous robot hands
with an increasing number of degrees of freedom.

A. Grasp Planning

Many approaches for grasp planning have been developed
in the past. Grasp synthesis on the contact level concen-
trates primarily on finding a predefined number of contact
points without considering hand geometry [1]. Some work
on automatic grasp synthesis focusses especially on object
manipulation tasks ([2],[3]). Shimoga [2] presents a survey
on measures for dexterity, equilibrium, stability, dynamic
behavior and algorithms to synthesize grasps with these
properties. Li et al. [4] recorded grasps for basic objects
using motion capturing and used this information to perform
shape matching between the inner surface of the hand and
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novel objects. The resulting candidate grasps were clustered
and pruned depending on the task.

Since simulators such as GraspIt! [5], OpenRAVE [6]
and Simox [7] have become available it is possible to
simulate candidate grasps with robot hand models on object
models, where hand kinematics, hand and object geometries
as well as physical and material properties and environmental
obstacles can be taken into account. In the recent past, many
researchers developed grasp planning methods based on
these simulation environments. Berenson et al. (see [8],[9])
developed a grasp scoring function that considers not only
grasp stability but takes also environmental obstacles and
kinematic reachability into account. In [10] an integrated
grasp and motion planning algorithm is presented where
the task of finding a suitable grasping pose is combined
with searching collision free grasping motions. Ciocarlie
et al. [11] introduced the concept of eigengrasps which
allows for grasp planning in a low-dimensional subspace
of the actual hand configuration space. Goldfeder et al.
[12] used the eigengrasp planner to build a grasp database
containing several hands, a multitude of objects and the
associated grasps. They used Zernike descriptors to exploit
shape similarity between object models to synthesize grasps
for objects by searching for geometrically similar objects in
their database. They extended this approach to novel objects
[13], where partial 3D data of an object are matched and
aligned to known objects in the database to find suitable
grasps.

A number of simulator-based approaches to grasp planning
rely on shape approximation of 3D object models. The basic
idea underlying these approaches is that many objects can be
decomposed into component parts that can be represented by
simplified geometric shapes. Then rules are defined to gene-
rate candidate grasps on these components which allows for
pruning of the search space of possible hand configurations.
This concept is also known as grasping by parts. The first
method in this context was presented by Miller et al. [14]
who used boxes, spheres, cylinders and cones to approximate
the shape of the object. However, the user has to perform the
decomposition of the object into these primitives manually.
Goldfeder et al. [15] presented a method that automatically
approximates an object’s geometry by a tree of superquadrics
and generates candidate grasps on those. Huebner et al. [16]
developed an algorithm that decomposes objects into a set of
minimum volume bounding boxes. While these approaches
significantly reduce the complexity of grasp planning, this
comes at a price. Many grasps a human would intuitive-
ly use might not be found due to poor object geometry
approximation. Especially box decomposition yields only a
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Fig. 1: Our test objects and their medial axes

relatively small number of candidate grasps for an object.
This might be too restrictive for a real robot, as obstacles
in the environment or kinematic constraints of the robot
might turn many grasps infeasible. We believe for these
reasons that it is desirable to carefully evaluate geometric
information of the object to produce only high-potential
candidate grasps, so costly validation of candidate grasps
by collision-checking and testing for force-closure can be
reduced to a minimum and therefore a large number of
good grasps can be efficiently generated. We achieve this
goal by representing the object’s shape by the medial axis,
which allows for efficient generation of geometrically and
kinematically reasonable candidate grasps that have a high
likelihood to be stable.

B. Medial Axis

Three-dimensional shapes can be approximated by ins-
cribing balls of maximal diameter, i.e. balls that touch the
shape boundary at least at two different points. The union of
these balls’ centers is called the medial axis. Together with
the radii of these maximally inscribed balls it is referred
to as the medial axis transform. The medial axis transform
is a complete shape descriptor, i.e. it contains all necessary
information to reconstruct the original object’s shape. The
medial axis was originally introduced by Blum [17] as a
means for biological shape recognition and its computation
and applications have been a fruitful area of research [18]. As
it provides a compact representation of shapes, their features
and connectivity it has been applied in numerous domains
including CAD model simplification [19], tool-path creation
in CAM [20], routing in sensor networks [21] and feature
extraction in geometric design [22]. Yet we are not aware of
any previous attempt to use the medial axis in grasp planning.
In this paper, we show that the medial axis contains high-
level symmetry information of an object that can be easily
exploited to produce big numbers of candidate grasps that are

very likely to be stable. This makes it possible to significantly
reduce costly validation of candidate grasps. Fig. 1 shows
the objects we use for our experiments and their respective
medial axes.

The rest of the paper is organized as follows. In section II,
we explain our grasp planning algorithm in detail. In section
III, we present experimental results using a robot hand model
and various object models in the OpenRAVE [6] simulation
environment. In section IV, we draw conclusions and present
ideas for future research.

II. MEDIAL AXIS GRASP PLANNING

In this section, we describe our grasp planning method in
detail. In the first step, we sample the object’s surface. This
results in a 3D point cloud we use to compute the medial axis
of the object in the second step. Then we analyze the medial
axis by searching for familiar structures in the third step. In
the fourth step, we use the extracted information to generate
candidate grasps which are then tested for force-closure.

A. Sampling the object surface

Before we are able to compute the medial axis, we need
to sample points on the object surface. We adopt and modify
the method from [8] for this purpose. We calculate an axis-
aligned bounding box for the object, sample this bounding
box uniformly and calculate vectors from the sampling points
on the bounding box perpendicular to the surfaces of the
bounding box. We then use these vectors to perform ray
collision on the object. The points where the rays intersect
with the object are a good sampling of the object surface
(Fig. 2a). For objects with openings like cups we additionally
generate rays perpendicular to an imaginary cylinder surface
inside the object to obtain sampling points on the inner
surface of the object. We are aware that more sophisticated
sampling techniques might be necessary for more complex
objects, but as the focus of this paper is not on sampling, we
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Fig. 2: Steps of our algorithm. Sampling of the objects’ surface (a), computation of its medial axis (b), analysis of slices
of the medial axis (c), minimum spanning tree of a slice (d), an object as a collection of minimum spanning trees (e),
computation of approach directions (f), example of a resulting grasp (g). Figures best viewed in colour.

leave the evaluation of more advanced sampling methods to
future work.

B. Computing the medial axis

In this step, we compute the medial axis of the object
based on the surface sampling points we generated. The
robust computation of the medial axis is quite difficult
and still subject to research [18]. Therefore, we use the
Tight Cocone software [23] for this purpose. Tight Cocone
computes an approximation of the medial axis as a set of
points together with a triangulation. Fig. 2b shows an object
with its medial axis inscribed. In the following we refer to
the set of points that approximates the medial axis as M .

C. Analysis of the medial axis

In this step, we analyze the object’s medial axis representa-
tion we generated in the previous step in order to find familiar
structures which can be exploited for generating candidate
grasps. Before we continue with the details of our algorithm,
we introduce the following terminology which will be used
in the remainder of this paper:
• p denotes a plane that contains a projection of a subset

of the medial axis points.
• M(p) denotes the medial axis points projected into a

plane p.
• The medial axis points in a plane p may be grouped

into clusters ci. M(c) denotes the medial axis points
associated to a cluster c. For planes pi that contain only
one cluster, M(c) and M(p) may be used as synonyms.

• Hconv(X) denotes the convex hull of a set of points X .
• B(Hconv(X)) ⊂ X denotes the subset of points xi ∈ X

that lie at the boundary of Hconv(X).
• vol(Hconv(X)) denotes the volume of Hconv(X).
• dmin(X,CoG(X)) denotes the minimum distance of

all points xi ∈ X to the center of gravity (CoG) of a
cluster c.

In the proposed method we will also use methods from graph
theory. In this context we will use the following terms:
• deg(v) is the degree of a vertex v ∈ V of a graph
G = (V,E,w) with a set of vertices V , a set of edges
E and a weight function w.

• A branching vertex is a vertex v ∈ V with deg(v) ≥ 3.
• MST (G) is the minimum spanning tree of a graph G.
MST (c) denotes the minimum spanning tree of the
induced subgraph G′ = (V ′, E′, w′) of G where V ′

contains all medial axis points of the cluster c.

1) Subdividing the medial axis point cloud: As a complete
medial axis is rather difficult to interpret, we subdivide it into
slices and analyze each slice of the medial axis individually.
Therefore, we define a set of equidistant planes pi that are
parallel to a virtual supporting surface beneath the object
and obtain slices M(pi) of M by projecting each point xi ∈
M into its nearest neighbor plane p. A projection plane pi

and the corresponding slice M(pi) of the medial axis are
illustrated in Fig. 2c and Fig. 3a.

(a) (b)

(c)

Fig. 3: Processing a slice of the medial axis: Points of a single
slice (a), MST connecting all points with their respective
nearest neighbours (b), two clusters obtained by pruning an
edge with a distance weight w > dcut from the MST (c).

We interpret the medial axis data in a projection plane p
as a weighted complete graph G = (V,E,w), where the set
of vertices V is given by the medial axis points M(p) and
the weight function w is defined by the pairwise euclidean
distances of the points of the medial axis in the projection
plane p. In order to determine each point’s nearest neighbors
we compute the minimum spanning tree GMST = MST (G)
of this graph and obtain a tree structure of the medial axis
data in each projection plane (see Fig. 3b). If the medial axis
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of the object branches projection planes pi exist where the
points of the medial axis form clusters ci. We detect these
clusters by pruning all edges of the minimum spanning tree
that have a distance weight w exceeding a certain cutoff
threshold dcut (see Fig. 3c). Then each cluster c has its own
MST (c) which is further analyzed.

Fig. 4: Two clusters in a slice of the medial axis with their
MSTs and several features highlighted in colour. Ocher:
Convex hull Hconv(c) of a cluster c. Green: Vertices at
boundary of the convex hull B(Hconv(c)). Red: Branching
vertices of the MST. Blue: Cluster’s center of gravity (CoG).
Figure best viewed in colour.

2) Extracting structural information from the medial axis:
For each cluster c we identify the structure of its medial
axis points M(c) by evaluating its minimum spanning tree
MST (c) and the measures defined above (for an illustration
see Fig. 4). We introduce the following structures:
• Circle: We classify the structure of a cluster c as a circle

if dmin(M(c), CoG(c)) exceeds a threshold dthresh and
there are more than k1 points at the boundary of its
convex hull, i.e. if |B(Hconv(M(c)))| > k1 holds true,
where k1 is a constant (see Fig. 5a).

• Star with ring: In contrast, we classify the structure as
a star with ring if dmin(M(c), CoG(c)) > dthresh but
|B(Hconv(M(c)))| < k2, where k2 is a constant (see
Fig. 5c and Fig. 5d).

• Tree: We distinguish two types of trees. If MST (c)
contains exactly one branching vertex we call c a cluster
with a star (see Fig. 5e and Fig. 5f). If MST (c)
contains exactly two branching vertices we call c a
cluster with a preference direction (see Fig. 5b).

• Symmetry axis element: If |B(Hconv(M(c)))| < k2

and the volume of the convex hull is very small, i.e.
vol(Hconv(M(c))) < k3, we classify the structure as a
symmetry axis element (see Fig. 5g).

We give a short motivation and some example values for
the constants introduced above. In this paper we choose
k1 = 40, k2 = 10, k3 = 0.0001, dthresh = dcut = 5ρ,
where ρ is the sampling resolution for sampling the object’s
surface in the first step of our algorithm. dthresh and dcut

depend on ρ because the density of the medial axis points
roughly equals the surface sampling resolution ρ. The choice
of k2 is motivated by the idea that the structures with plane
symmetries we want to exploit for grasp planning typically
have a limited number of vertices at the boundary of their
convex hull. Structures with more than 10 such vertices
rather indicate the lack of such plane symmetries but instead
suggest the presence of a symmetry axis. Or differently put:
If you keep adding vertices to a convex polygon you will

eventually end up with a circle. The reason for introducing
k3 is noise and discretization errors in the medial axis
approximation. In theory, the presence of a symmetry axis
should be indicated by the presence of single isolated medial
axis points in a slice. In practice however, there will be a set
of medial axis points clustered in a very small area.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5: Structures in slices of the medial axis: Ring (a);
Preference direction (b); Stars with ring (c),(d); Stars (e),(f);
Symmetry axis element (g). Figures best viewed in colour.

Fig. 2d and Fig. 5b show minimum spanning trees
MST (c) with a preference direction. Fig. 2e depicts an
object as a collection of MST (ci) with highlighted bran-
ching and end vertices. Using the structural information
we extracted from the medial axis we are able to generate
promising candidate grasps in the next step.

D. Generating candidate grasps
In this section we present a set of heuristics describing

how promising candidate grasps can be generated based on
the structural information extracted from the medial axis in
the previous step. Before we describe these heuristics, we
explain which parameters we use to describe a candidate
grasp. In [8], Berenson et al. defined a set of parameters
describing a candidate grasp:
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• An approach direction Pd of the hand
• A 3D target point Pt on the surface of the object the

hand is approaching
• A roll angle Pr of the hand about the approach direction
• A vector of joint values Pp defining the preshape of the

hand
For generating candidate grasps, the method described in [8]
samples the object’s surface by casting rays from a bounding
box of the object. Each point where a ray intersects with the
object is used as a target point Pt and the surface normal
at Pt is used as an approach direction Pd. The palm normal
of the hand is orientated towards Pd and moves toward the
object until collision occurs. Then the hand is closed in order
to wrap the fingers around the object. For each approach
direction, a set of different roll angles Pr and preshapes Pp

is tested. We adopt the grasp parameters from [8] but we use
a different policy to generate them. Instead of sampling the
object’s surface, we carefully choose approach directions Pd

and target points Pt based on the structural information we
extracted from the medial axis. In addition to that, we are
able to choose such roll angles Pr and preshapes Pp that
have a high probability to result in a stable grasp when the
hand collides with the object and the fingers wrap around it.

In this context we would like to emphasize the importance
of the hand’s roll angle and preshape. One of the most
basic classes of grasps for human hands are grasps where
the thumb as the first virtual finger opposes the other
fingers which form a second virtual finger. In our opinion
it is therefore a promising strategy to preferably generate
geometrically meaningful candidate grasps where these two
virtual fingers are likely to contact the object at opposing
sides. Accordingly, if not stated otherwise, we suggest to
use a parallel preshape for most of the candidate grasps
we generate in the following and adjust the roll angle of
the hand with respect to the symmetry information from the
medial axis. We would like to state that favoring candidate
grasps with two opposing virtual fingers does not impose
any restriction on the kinematics of the robotic hand to be
used. To the extent of our knowledge, all currently available
robotic hands are capable of moving the thumb to a position
opposed to the other fingers.

In the following we present various heuristics to generate
candidate grasps depending on the structures we detected in
slices and clusters of the medial axis. The general approach
is always to look at several adjacent planes pi and to derive
promising approach directions and roll angles for the hand
from the information in these pi.

1) Clusters with a preference direction: If in a plane p we
have a cluster c with a preference direction, there are exactly
two branching vertices v1, v2. The vectors a1 = v2− v1 and
a2 = v1 − v2 are very promising approach directions Pd.
For a1 we use v1 and for a2 we use v2 as the target point.
If there are neighbor planes to p that contain also clusters
with preference direction we can use the coordinates of
their branching vertices to calculate tilted approach directions
a1,tilted and a2,tilted to make our hand better conform to
the surface of the object (see Fig. 2f, 2g). We also use this

information to chose roll angles Pr that make it probable
that the fingers will be able to wrap around the object.

2) Clusters with a star structure: If a cluster contains a
star structure, we proceed in a similar way but we generate
an approach direction Pd from every spike of the star to its
branching vertex. There are two exceptions to this rule. For
stars with three spikes we check if the star is symmetric with
regard to one of its spikes. In this case, we treat the star as a
structure with a preference direction. The second exception
is for stars with four spikes. If every two opposing spikes
in such a star define an axis of symmetry the profile of the
object in this plane or cluster is likely to be a square for
which we use the angle bisecting vectors of the spikes as
approach directions.

3) Clusters with a symmetry axis element: Clusters with
a symmetry axis element structure indicate that the profile of
the object in this cluster is circular. If we find a cluster of
this type we search in adjacent planes for more clusters with
a symmetry axis element structure and use this information
to generate approach directions perpendicular to the axis
defined by the symmetry axis element structures.

4) Clusters with a circle structure: For clusters with a
circle structure, we search for clusters with a circle structure
in adjacent planes and generate approach directions perpen-
dicular to the symmetry axis defined by the mean coordinates
of the M(ci) in these planes.

5) Treating two clusters together: In general, candidate
grasps can be individually generated for each cluster of a
plane. Yet if there are exactly two clusters that are located
close to each other the process of generating individual
candidate grasps for each cluster will probably produce
many unsuccessful candidate grasps. Therefore, we treat both
clusters together. If both clusters are small in terms of the
volume of their convex hull vol(Hconv(M(ci))) we use
the clusters’ centers of gravity (COG) as target points and
the vectors b1 and −b1 connecting the COGs as approach
directions. If one cluster is significantly smaller than the
other we treat the bigger cluster independently and generate
for the smaller cluster only an approach direction that is
directed from the COG of the smaller cluster towards the
COG of the bigger cluster.

6) Candidate grasps at the top and the bottom of objects:
In order to generate candidate grasps for the top and the
bottom of an object, we distinguish a number of different
cases that take into account the structure of the medial axis
in planes near the top and the bottom of the object. If
there are planes with a star with ring structure, followed
by planes with star, as for the prismatic chocolates box, or
preference direction structure, as for the bread box object, we
generate candidate grasps with roll angles Pr aligned with
the preference direction or the spikes of the star. If there
are circles or symmetry axis element structures, we generate
candidate grasps in such a way that the approach direction
coincides with the symmetry axis and use various different
roll angles. For these candidate grasps it also makes sense
to use a spherical hand preshape if this is supported by the
hand model. If circle structures are present we also check by
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TABLE I: Candidate grasps tested and percentage of force-
closure (FC) grasps found

Our method Method from [8]
Objects Candidates FC Candidates FC

Bread box 632 86.2% 13440 15.5%
Prismatic box 1344 90.7% 8512 36.0%

Salt can 2144 96.9% 7904 45.7%
Detergent 1996 65.9% 12672 26.2%

Spray 1304 55.1% 11200 21.2%
Cup 1428 59.5% 6688 37.0%

Pitcher 1124 47.0% 15504 25.9%
Salad bowl 504 68.5% 13648 4.5%

ray collision if the object has an opening. For open objects
we generate candidate grasps at the rim of the object with
roll angles of the hand that make it probable that at the final
position of the hand the rim is between the thumb and the
other fingers.

7) Size of the object: In our attempt to minimize costly
testing of candidate grasps we also consider the size of the
object with respect to the hand. We use ray collision to
roughly estimate the width of the object geometry perpen-
dicular to our approach direction and compare this value to
the diameter of the biggest ball our hand can stably grasp.
If the structure is too wide for the hand we do not have to
generate a candidate grasp as it will fail.

III. EXPERIMENTS

In this section, we present some experiments for our grasp
planning method. We perform experiments on the set of
typical household objects depicted in Fig. 1. Except for
the spray (Fig. 1e) and the detergent (Fig. 1d) and the cup
(Fig. 1f), where the object model was generated using a 3D
laser scanner ([24],[25]) all object models are handmodelled.
We use the hand model of our humanoid robot ARMAR-III
[26] to evaluate our algorithm in OpenRAVE. Each candidate
grasp is evaluated by moving the hand with its palm facing
the object along the approach direction until collision is
detected. Then the fingers of the hand close until all fingers
have contact with the object or the joint limits are reached
and no finger link can move any more. Then we evaluate
grasp quality by computing the commonly used worst-case
epsilon measure for force-closure, as described by Canny
and Ferrari [27]. For the force-closure computations we use
a friction coefficient of 0.5. For each candidate grasp we
test two different alternatives. The first alternative is the one
described above. For the second alternative we move the
hand after contact with the object a small distance dback away
from the object along the approach direction, before we close
the fingers. This way, we are able to test candidate grasps
where only the finger links have contact with the object.
We choose dback = 2.5cm for all objects. In the special
case of the pitcher’s handle, we choose dback,1 = 7cm and
dback,2 = 8cm to evaluate candidate grasps at the handle.

Some representative force-closure grasps produced by our
algorithm are depicted in Fig. 6. We note that in our opinion

the grasps produced by our method look quite intuitive for
a human being.

Fig. 7 shows a visualization of the force-closure quality
of all candidate grasps generated by our method. The rays
indicate the approach directions of the hand towards the
object. Each sphere indicates the final wrist position of
a candidate grasp. Each blue sphere represents a force-
closure grasp. For these grasps the diameter of the sphere
is proportional to the force-closure score of the respective
grasp, i.e. the biggest spheres represent the grasps with the
highest force-closure rating. Red spheres represent grasps
that do not fulfill the force-closure criterion.

To demonstrate the advantages of our method, we also
compare it to Berenson’s grasp planning algorithm [8] that
uses only minimal knowledge of the object’s geometry. As
described above, Berenson’s algorithm uniformly samples
the object surface and uses the surface normals at the
sampled surface points directly as approach directions for
the hand. For Berenson’s method as wells as for our own,
we choose a surface sampling resolution ρ1 of one ray
per centimeter. In case of the bowl, we choose a sampling
resolution ρ2 of one ray per two centimeters, as the object is
very big. Above that, we evaluate grasps with eight different
roll angles of the hand around the approach direction, i.e.
with roll angles αi where

αi = 0.125πk, k ∈ [0, 7]. (1)

We also test dback,1 = 0cm and dback,2 = 2.5cm for all
candidate grasps as also described above for our proposed
method. The results of the comparison are given in Table I.
We note that while Berenson’s method produces far more
candidate grasps, our algorithm has a significantly higher
likelihood that the generated grasps are force-closure. The
differences in efficiency are especially striking for objects
like the bread box (Fig. 1a) and the salad bowl (Fig. 1h)
which are too big to be grasped from arbitrary directions or
with arbitrary roll angles of the hand. For most other objects
in our experiments the proposed method still outperforms
Berenson’s method by a factor of two or more in terms of
the fraction of force-closure grasps among the generated can-
didate grasps. This is especially interesting because it shows
that our method significantly reduces the computation time
overhead for collision detection and force-closure testing.

IV. DISCUSSION AND CONCLUSION

In this paper we presented a novel grasp planning algo-
rithm based on the medial axis of 3D objects. The only
requirement of this algorithm to be met by a robotic hand
is the capability to oppose the thumb to the other fingers
which is fulfilled by all hand models we know. We performed
experiments on a set of household objects that show that
our method effectively reduces the computational overhead
for costly collision detection and force-closure testing by
generating and evaluating only candidate grasps that - from
a geometric point of view - have a high probability to be
stable. In contrast to related work that uses boxes or su-
perquadrics to approximate an object’s geometry, the medial
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Fig. 6: Some representative force-closure grasps generated by our algorithm

axis representation of an object does not sacrifice potentially
promising candidate grasps to poor geometry approximation.
Instead, we showed that the medial axis provides valuable
structural and symmetry information that can be easily used
to generate big quantitities of force-closure grasps in an
efficient manner. As we derived the heuristics for candidate
grasp generation directly from geometric object properties
our method produces many grasps that, in our opinion,
seem quite intuitive to a human. We also emphasize that we
consider the method presented in this paper as an extendable
framework. If necessary, additional heuristics for candidate
grasp generation can be easily defined.

In our current implementation of the presented method, we
assume that the objects stand on a virtual surface and we use
planes parallel to this virtual surface to subdivide the object’s
medial axis into slices. Yet this is no real limitation to the
approach of medial axis-based grasp planning. Arbitrarily
oriented planes may be used to subdivide the medial axis data
and it might be interesting to investigate the benefits of such
a strategy. A point where further improvement is possible
are the criteria we currently use to classify structures of the
medial axis in the planes. More sophisticated classification
techniques might reduce the number of necessary parameters.
During the experiments we also noticed that it is quite
difficult to find force-closure grasps on structures that are
small compared to the hand like the lid of a bottle. Extracting
further information from the medial axis to calculate promi-

sing distances between palm and target point on the object as
well as a more active consideration of hand kinematics might
solve this issue and further increase the efficiency of our
method. We also plan to combine the proposed approach with
other methods and to evaluate this work on our humanoid
robot ARMAR-III.
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