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Abstract— Resolved acceleration control is a well-known
strategy used in tracking control of robotic systems where
the desired motion is specified in task-space. Typically, such
controllers are developed for systems which exhibit redundancy
with respect to execution of operational tasks. While redun-
dancy fundamentally adds new capabilities (self-motion and
subtask performance capability), the degree to which secondary
objectives can be faithfully executed cannot be determined in
advance unless the motion is planned and the environment is
known. Therefore, execution of secondary objectives cannot be
guaranteed. In fact, a robot which exhibits redundancy with
respect to operational tasks may have insufficient degrees of
freedom to fulfill more critical objectives such as enforcing
constraints. In this paper, we present a generalized constrained
resolved acceleration control framework to handle execution
of operational tasks and constraints for redundant and non-
redundant task (and constraint) specifications. The approach
is particularly well suited for online control of complex robot
structures such as humanoid robots. The current formulation
considers joint limit and collision constraints. The efficacy of the
proposed algorithm is demonstrated by simulated experiments
of task level upper-body human motion replication on the
Honda humanoid robot.

I. INTRODUCTION

In the past four decades, a great deal of research has
been devoted to understand and formulate robot movement
coordination in task-space, whereby the control action can be
represented at the velocity, acceleration [1], or force/torque
levels [2]. In typical applications involving task-space con-
trol, the robot’s number of degrees of freedom exceeds
what is required to perform the operational tasks. In such
circumstances, the robot is said to exhibit redundancy since
there exist infinite joint motions that produce the specified
task motion.

The occurrence of redundancy with respect to the specified
tasks gives opportunity to achieve other objectives, such
as avoiding obstacles [3], [4], avoiding structural limits
(e.g. joint limits, and self collisions [5]–[7]), minimizing
energy consumption, creating balanced motions, etc. In early
research on redundancy resolution schemes, many of these
objectives (including enforcing kinematic constraints) were
considered as secondary tasks, performed in the null-space
of the higher priority operational tasks [8], [9].

Formulating constraints as a secondary task cannot guar-
antee that constraints will be satisfied if there are insufficient
number of degrees of freedom to satisfy both objectives. In
many cases, satisfying constraints is critical and therefore
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must be given priority over execution of operational tasks. A
suggested solution is to formulate constraints as the highest
priority operation and project the operational tasks onto the
constraint null-space [10]. In principle, this method is more
appropriate since constraints which adhere to the mechanical
limits of the robot or sustain balance are critical for safety.
In practice, several unresolved issues remain, particularly for
the case when the task and constraint spaces are not known
in advance.

As an example, consider a scenario of real-time transfer of
task level motion from human demonstrator to a humanoid
robot [7], [11]–[13]. This scenario involves execution of
an unplanned task motion subject to kinematic and balance
constraints. The transferred motion may result in simulta-
neous self collisions occurring between multiple segment
pairs, or violations of multiple joint limits. Two problems
may arise under such circumstances. First, the null-space
of the constraint Jacobian may not exist, making infeasible
the execution of secondary objectives, including tracking
of the operational tasks. Second, in case of self collision
avoidance, the Cartesian positions corresponding to the min-
imum distances between two colliding body segments are
generally discontinuous, resulting in numerical and algorith-
mic instabilities which require special care. Based on the
above discussion, it is evident that regardless of the order of
priority assigned to enforcing constraints, methods which are
solely based on null-space projections will ultimately fail in
executing secondary objectives if there is no redundancy.

This paper examines the problem of task-space control
in the presence of joint limit and collision constraints and
provides effective solutions to address issues associated with
existing algorithms as described above. In particular, the
proposed approach uses results from our previously reported
constrained inverse kinematics procedure (see [14]), to arrive
at a constrained resolved acceleration control formulation
which is applicable for redundant as well as non-redundant
robotic mechanisms.

The main contributions of the paper are as follows. We
derive a novel kinematically constrained second-order closed
loop inverse kinematics formulation applicable for redundant
and non-redundant task specifications. The transformation
from Cartesian-space to joint-space is handled using a
weighted pseudo-inverse at the velocity and acceleration
level. The weight matrix, also referred to as the constraint
matrix, is constructed based on gradients of collision and
joint limit potential functions which penalize and dampen
motion approaching constraint surfaces. At the velocity level,
the constraint matrix dampens joint velocities and effectively
stops motion when the system approaches the constraint
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manifold. At the acceleration level, the constraint matrix
dampens joint accelerations, forcing the joint velocities to
zero near the constraint manifold. The solutions obtained
from kinematic inversion at the velocity and acceleration
levels are unified using a derivative feedback control mecha-
nism, producing a kinematically constrained resolved accel-
eration control input.

The efficacy of the proposed algorithm is demonstrated
by simulated experiments of task level upper-body human
motion replication on the Honda humanoid robot. The refer-
ence human motions are complex, fast, and exhibit frequent
self collision and joint limit violations when retargeted onto
the robot without provisions for handling the kinematic
constraints. The constraint handling, energetic studies, and
tracking of operational tasks are studied for redundant and
non-redundant task specifications based on the proposed
constrained resolved acceleration controller.

II. BACKGROUND

The equations of motion of a robotic mechanism in joint-
space can be written as:

τ = H (q) q̈ + C (q, q̇) q̇ + τg (q) + JT fe , (1)

where q , q̇, q̈, and τ denote (n × 1) generalized vectors
of joint position, velocity, acceleration and force variables,
respectively. H(q) is an (n × n) joint-space inertia matrix.
C is an (n × n) matrix such that C q̇ is the (n × 1) vector
of Coriolis and centrifugal terms. τg is the (n × 1) vector of
gravity terms. J is a Jacobian matrix, and fe is the external
spatial force acting on the system.

In the absence of an external force acting on the system,
controlling the system described by Eq. 1 can be handled
using a nonlinear model-based compensation with the fol-
lowing structure,

τ = Ĥ (q) α+ Ĉ (q, q̇) q̇ + τ̂g (q) (2)

The vector α represents a resolved acceleration in terms
of joint variables. The notation .̂ denotes estimates of the
components of the dynamic model. Provided the model pa-
rameters in Eq. 2 match those of Eq. 1, α can be conveniently
designed as a reference joint acceleration vector q̈r which
decouples and linearizes the closed loop system:

α = q̈r. (3)

In practice, additional stabilizing terms may be added to
the control law in Equation 2 [15]. The literature on task
level tracking control of robotic systems offers a variety of
techniques for computing α. The underlying mechanism for
such control techniques is referred to as resolved acceleration
control and illustrated in Figure 1. The aim is to design a
control law to ensure tracking of a desired position and/or
desired orientation of a set of task variables specified in
Cartesian-space.

In general, task variables can operate in the full six
dimensional task-space, three for position and three for
orientation. Suppose there are N task variables, each task

variable indexed by k. The spatial velocity vector of the kth
task variable is given by,

vk =
[
ωk ṗk

]T
, (4)

where ωk and ṗk are vectors corresponding to the angular
velocity of the task frame and the linear velocity of the task
position, respectively. The mapping between joint variables
and task variables is obtained by considering the differential
kinematics relating the two spaces,

v = J q̇, (5)
a = J q̈ + J̇ q̇, (6)

where a = v̇, and v and J correspond to the augmented
spatial velocity vector and the augmented task Jacobian
matrix formed by concatenation of the individual tasks:

v =
[
vT
1 · · · vT

k · · · vT
N

]T
, (7)

J =
[
JT

1 · · · JT
k · · · JT

N

]T
. (8)

The augmented desired spatial velocity and acceleration
vectors, denoted by (vd,ad), can be constructed in the same
fashion.

A. Velocity-based control

One way to compute α from Cartesian inputs is by a
first-order trajectory conversion to obtain q̇r followed by
numerical differentiation:

q̇r = J+(vd + K e), (9)

α =
d

dt
(q̇r), (10)

where K is a positive definite gain matrix and the vector
e describes the orientation and position error between the
desired and computed task descriptors [1], [16]:

e =

[
1
2 (n× nd + s× sd + c× cd)

pd − p

]
, (11)

where Rd = [nd sd cd] and R = [n s c] correspond
to the desired and computed unit vector triple representation
of the task frame orientation, respectively.

Equations 9 and 10 may be used in the inverse dynamics
control law of Eq. 2. A joint velocity feedback term is
sometimes added in the velocity based control to provide
stability [15],

τ = Ĥ (q) α+Ĉ (q, q̇) q̇ + τ̂g (q) +Kq,v (q̇r−q̇), (12)

where Kq,v is a positive definite joint-space gain matrix.
While control at the velocity level is simple to implement
and exhibits a large amount of practical robustness due to
error stabilization terms both in task-space as well as joint-
space, the method has three important disadvantages. First,
the required numerical differentiation tends to amplify noise
and can lead to undesirably large accelerations. Further, the
behavior of the task dynamics cannot be easily specified as
compared to that of acceleration-based control. Finally, this
method ignores information about the desired accelerations,
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Fig. 1. Block diagram of the well-known resolved acceleration control system used for tracking control in task-space. The desired position and orientation
of task variables are denoted by the vector pd and the rotation matrix Rd, respectively. The desired spatial velocities and accelerations of the task variables
are denoted by vd and ad, respectively. The vector α represents the joint-space resolved acceleration vector that is commanded to the inverse dynamics
control law.

which may lead to lower tracking performance or the need
for high task-space gains and servo rates.

Nevertheless, the first-order kinematic inversion in Eq. 9
has important characteristics which can be exploited in en-
forcing kinematic constraints [7], [14]. As will be described
in the next section, enforcing constraints at the velocity level
can be used in constrained control at the acceleration level.
This property is an important part of the proposed resolved
acceleration control.

B. Acceleration-based control

An effective method to decouple and linearize the closed
loop system is to form the resolved acceleration control input
α in Eq. 3 using the following relationship,

α = J+(ar −J̇ q̇), (13)

where the matrix J+ denotes the pseudo-inverse of J and

ar = ad + Kv (vd − v) + Kp e , (14)

where Kp and Kv are positive definite diagonal position and
velocity feedback gain matrices, respectively.

III. HANDLING KINEMATIC CONSTRAINTS

The first and second-order closed loop inverse kinematics
procedures described by Eq. 9 and Eq. 13, respectively, are
effective methods to perform trajectory conversion from task-
space to joint-space [16]. To a certain degree, the null space
terms can be designed to perform secondary objectives such
as keeping the robot away from kinematic constraints. In
these methods, the gradients of an objective function are
projected into the null-space of the Jacobian and constraints
are handled as secondary tasks.

In our earlier work, we described an algorithm for solving
the first-order constrained closed loop inverse kinematics
(CCLIK) problem which proved to be an effective and stable
solution for self collision avoidance [7], [14]. The method
used a weighted least squares solution to constrain joints
from violating their limits and to avoid collisions. In this
section, we present an overview of the CCLIK method which
will be used in the derivation of our constrained resolved
acceleration control formulation described in Section III-D.

As described in [7], [14], a singularity robust constrained
closed loop inverse kinematics formulation which produces
constrained joint velocities, q̇c, is given by

q̇c = J+(vd + Kp e), (15)

where J+ denotes the right pseudo-inverse of J weighted
by the positive definite matrix W ,

J+ = W−1JT (JW−1JT )−1. (16)

Furthermore, if J is a square non-singular matrix, and W
is the identity matrix, we can simply replace J+ by the
standard matrix inverse J−1. In Eq. 16, kinematic constraints
can be enforced by construction of an appropriate weight
matrix, W , to penalize and dampen joints whose motion
directs the segments toward the constraint manifold. We con-
struct W as a diagonal matrix whose elements are derived
by considering the gradients of the joint limit and collision
potential functions. The weight matrix W is influenced by
the n × n joint limit weight matrix W JL and the n × n
collision avoidance weight matrix WCOL. In the following
section, we describe the formulation of the joint limit and
collision avoidance matrices.

A. Joint limit constraints

Joint limit avoidance may be achieved by the proper
selection of the diagonal matrix W JL [7], [17]. To construct
W JL, we consider a candidate joint limit potential function,
denoted by h(q), that has higher values when joints near their
limit and tends to infinity at the joint limits. The gradient of
h, denoted as ∇h, represents the joint limit gradient function,
an n × 1 vector whose entries point in the direction of the
fastest rate of increase of h. The gradient associated with the
ith (i = 1 · · ·n) degree of freedom is denoted by,

∇hi =
∂h(q)

∂qi
, (17)

and described as follows [17],

∇hi =
(qi,max − qi,min)

2 (2qi − qi,max − qi,min)

4(qi,max − qi)2 (qi − qi,min)2
,

where qi represents the generalized coordinates of the ith
degree of freedom, and qi,min and qi,max are the lower and
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upper joint limits, respectively. The gradient ∇hi is equal
to zero if the joint is at the middle of its range and goes to
infinity at either limit. As described in [17], we construct the
joint limit weight matrix W JL by an n×n diagonal matrix
with diagonal elements wJLi

. The scalars wJLi
are defined

by

wJLi
=

{
1 + |∇hi| if Δ|∇hi| ≥ 0,
1 if Δ|∇hi| < 0.

(18)

The term Δ|∇hi| represents the change in the magnitude of
the joint limit gradient function. A positive value indicates
the joint is moving toward its limit while a negative value
indicates the joint is moving away from its limit.

B. Collision constraints

Constructing the appropriate collision weight matrix
WCOL is more complex. Consider collision between two
unconnected segments (or segments which do not share a
joint). Let d (d ≥ 0) correspond to the minimum distance
between two segment pairs. Let f(q, d) represent a candidate
collision function that has a maximum value at d = 0 and
decays exponentially toward zero as d increases.

We define the gradient of f , denoted as ∇f , as the
collision gradient function, an n × 1 vector whose entries
point in the direction of the fastest rate of increase of f . The
collision gradient function may be described as,

∇f =
∂f

∂q
=

∂f

∂d

∂d

∂q
. (19)

In case of self collisions, the second term in Eq. 19 may be
computed as follows,

∂d

∂q
=

1

d

[
JT

a (pa − pb) + JT
b (pb − pa)

]T
, (20)

where pa and pb represent position vectors, referred to the
base, of the two collision points, and Ja and Jb are the
associated Jacobian matrices. The coordinates pa and pb

can be obtained using a standard collision detection software
package [18]. In case of collision with the environment, the
Jacobian associated with the environment collision point is
zero. Similar to the joint limit weight function, WCOL may
be constructed by an n × n diagonal matrix with diagonal
elements wCOLi

(i = 1 · · ·n) defined by

wCOLi
=

{
1 + |∇fi| if Δ|∇fi| ≥ 0,
1 if Δ|∇fi| < 0.

(21)

The elements of ∇f represent the degree to which each
degree of freedom influences the distance to collision. It is
appropriate to select a function f such that its gradient is
zero when d is large and infinity when d approaches zero.
One such candidate function is,

f = ρe−αdd−β , (22)

where α and β are parameters to control the rate of decay
and ρ controls the amplitude. The partial derivative of f with
respect to d is

∂f(q)

∂d
= −ρe−αdd−β(β d−1 + α). (23)

It follows that ∇f may be computed from Eqs. 19, 20, and
23.

The term Δ|∇f | in Eq. 21 represents the change in the
magnitude of the collision gradient function. A positive value
indicates the joint motion is causing the collision point to
move toward collision while a negative value indicates the
joint motion is causing the collision point to move away
from collision. When a collision point is moving toward
collision, the associated weight factor, described by the first
condition in Eq. 21, becomes very large causing the joints
affecting the motion of the collision point to slow down.
When two segments are about to collide, the weight factor is
near infinity and the joints contributing to collision virtually
stop. If two segments are moving away from collision, there
is no need to restrict or penalize the motions. In this scenario,
the second condition in Eq. 21 allows the joint to move
freely.

Suppose a total of Nc segment pairs are checked for
self collision. Let j (j = 1 · · ·Nc) be the index of the
jth collision pair, and dj the minimum distance between
the two colliding segments. Let paj

and pbj represent the
coordinates, referred to the base, of the two colliding point
pairs for the jth collision pair. The candidate potential
function for each collision pair is given by,

fj = ρje
−αjdjd

−βj

j . (24)

Its gradient can be computed as before,

∇fj =
∂fj
∂q

=
∂fj
∂dj

∂dj
∂q

. (25)

It follows that the collision weight matrix for each collision
pair, denoted by WCOLj

can be computed as outlined above.
The collision weight matrix is comprised of the contribution
of each collision pair as given by,

WCOL =
1

Nc

Nc∑
j=1

WCOLj . (26)

C. Composite constraint matrix

The next step is to construct a composite constraint weight
matrix W comprised of the joint limit weight matrix W JL

and the collision weight matrix WCOL. While a rigorous
formulation of this integration is warranted and is currently
being examined, we present a simple and effective solution
based on our empirical results. The proposed composite
weight matrix is given by,

W = a W JL + (1− a) WCOL, (27)

where a is a scalar index which can be used to modulate the
contribution of the joint limit weight matrix and the collision
weight matrix. We have found that the following index is
effective for the various motions considered,

a =
1

(Nc + 1)
. (28)
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D. Constrained resolved accelerations

Let αc be a vector corresponding to the constrained
resolved accelerations, which may be folded into the dynamic
equations of motion as in the control law of Eq. 2,

τ = Ĥ (q) αc + Ĉ (q, q̇) q̇ + τ̂g (q) . (29)

We construct αc as follows:

αc = α+Gv(q̇c − q̇), (30)

where q̇c is computed from the first-order constrained kine-
matics inversion of Eqs. 15, and Gv is a diagonal positive
definite joint velocity gain matrix. For systems which exhibit
redundancy, it is advantageous to exploit the redundancy and
include a null-space projection term when computing α, such
that

α = J+(ar −J̇ q̇) +Nζ, (31)

where ζ is an arbitrary vector and N = I−J+J projects ζ
into the null space of J . The closed loop task error dynamics
of the control law given by Eq. 30 is described by,

ë+ Kvė+ Kpe = −JGv(q̇c − q̇). (32)

The left side of Eq. 32 describes the task error dynamics.
The right side characterizes the constraint error dynamics,
i.e. the error in tracking the reference constraint velocities
q̇c. Equation 32 reveals that as long as q̇c − q̇ is non-zero,
the terms on the right side will interfere with the task-space
tracking error dynamics. Provided there are sufficient number
of degrees of freedom to execute the tasks and satisfy the
constraints, the gain Gv can be modulated to force the task-
space tracking error to zero. The larger the gain, the faster
the convergence. However, an excessively large Gv may
introduce instability. The vector ζ may be keenly designed
to further stabilize the self-motion. A natural choice is given
by,

ζ = GvN
(q̇c − q̇), (33)

where GvN
is a diagonal positive definite matrix. We select

GvN
= Gv . Compliance and damping characteristics of

the self-motion may be further improved by designing an
adaptive Gv to have small values when the system is away
from the constraints and large values near the constraints.
This issue will be explored in more detail in the future.

In practice, considering the occurrence of singularities in
the matrix J , the pseudo-inverse is replaced with

J∗ = W−1JT (JW−1JT + λ2 I)−1, (34)

where J∗ denotes the singularity robust right pseudo-inverse
of J regularized by the damping factor λ. Also in Eq. 34, W
represents the constraint weight matrix as given in Eq. 27.

Let us examine the effect of W in the solution of α
in Eq. 31. Recall that in the first-order inverse kinematics
solution described by Eq. 15, the weight matrix W forced
any joint velocity contributing to violation of a kinematic
constraint to zero. In contrast, the use of the constraint
matrix W in Eq. 31 forces the acceleration α contributing to
violation of a kinematic constraint to zero. Therefore, the use

of W in Eq. 31 does not guarantee that a constraint will be
maintained. Nevertheless, this approach effectively dampens
motion as the robot configuration approaches the constraint
manifold, providing additional stability and robustness to the
controller.

Based on the above discussion, α is computed as follows,
depending on availability of redundant degrees of freedom
to perform the original tasks:

α =

{
J+(ar −J̇ q̇) +Nζ if m < n,

J+(ar −J̇ q̇) if m > n.
(35)

where m is the dimension of the primary (operational) tasks
and n is the total number of available degrees of freedom.

Equations 30 and 35 constitute the generalized constrained
resolved acceleration vectors. The solution is feasible even
when there are insufficient degrees of freedom to execute
both the constraints and the operational tasks. In contrast,
approaches that use null space gradient projections to satisfy
secondary objectives break down when the Jacobian of
the primary objective becomes rank deficient due to task
singularities.

IV. SIMULATION RESULTS

The efficacy of the proposed control system was examined
through simulated experiments involving reproduction of
upper-body human motion on the humanoid robot model.
The total upper-body degrees of freedom utilized in the robot
model is n = 11 (three at the torso for orientation, three
rotations at each shoulder, and one rotation at each elbow).
The waist translation is considered as a prescribed motion
and therefore treated as a known degree of freedom in the
inverse kinematics procedure.

The desired task motion to be executed by the robot is
derived from a set of upper-body motions obtained from the
Carnegie Mellon University (CMU) human motion capture
data base [19]. We consider four highly dynamic and com-
plex motions that produce multiple, simultaneous violations
of joint limits and self collisions when the motion, in its raw
form, is transferred to the robot model. The four motions
include a dancing sequence, exercise sequence, reaching
sequence, and boxing sequence.

A set of eight 3D marker positions were extracted from
each of the four aforementioned motions. These marker
positions correspond to the waist joint, two shoulder joints,
two elbow joints, two wrist joints, and the neck joint. Motion
description involving orientation variables (such as hand ori-
entation) was not included and not considered in this study.
The marker positions were low pass filtered, interpolated,
and scaled to the robot dimensions. The resulting motion
corresponds to a set of possible desired task descriptors
which are to be tracked using the proposed constrained
resolved acceleration control framework. We performed sim-
ulated experiments on two possible task description sets, as
described below.

1) Experiment 1: Five degrees of redundancy
The specified task involves two position descriptors for
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the left and right wrist positions. The task dimension
is m = 6, providing five degrees of redundancy.

2) Experiment 2: Overconstrained tasks
The specified task involves seven position descriptors
for the two shoulders, two elbows, two wrists, and
neck. The task dimension is m = 21 1. Since m >
n, this scenario represents an over-constrained task
specification.

In all experiments, the values for the feedback gain param-
eters are: K = 30I , Kp = 300I , Kv = 2

√
Kp, Gv =

GvN
= 30I (I is the identity matrix). For all collision pairs,

the parameters used for the collision avoidance function in
Eq. 24 are: ρj = 1, βj = 2, and αj = 50. The selected
damping factor is λ = 0.1.

Consider a human to robot motion retargeting scenario of
a highly dynamic dancing sequence involving 360 degree
twisting. In Fig. 2, we show a histogram of the number
of constraint violations at different motion periods if the
kinematic constraints are not enforced. Each constraint vi-
olation translates to a reduction of one degree of freedom.
In Experiment 1, eleven degrees of freedom are used to
execute two operational tasks at the wrists (requiring six
degrees of freedom). Therefore, redundancy can only be
established if the constraint violations are less than five.
As shown in the figure, there are periods in the latter half
of the motion where the number of constraint violations
exceeds five. During these periods, the robot does not have
sufficient degrees of freedom to execute both the constraints
and the operational tasks. This simulation illustrates that
even when the operational tasks exhibit significant amount
of redundancy, it is not always possible to determine actual
redundancy (including the constraints) if the motion is not
planned in advance. This is particularly true for complex
robot structures such as humanoids.

To illustrate the effectiveness of the proposed approach in
satisfying constraints in the absence of redundancy, consider
the simulation results in Figure 3. In particular, the plots
show self-collision distance results for the scenario described
in Experiment 2 for the dancing sequence. The figure shows
the minimum distances between thirty segments pairs in the
upper-body after the motion has been dynamically filtered
to avoid self-collisions. The simulated robot snapshots are
approximately aligned with the time-line (frame-number).
The yellow highlighted region in the snapshots indicates
occurrence of self-collisions before filtering. The minimum
distance of collision points between the left hand and right
hand segment is labeled for reference. The minimum dis-
tance profiles indicate a pattern having roughly three peaks
and three valleys. As observed in the snapshots, the peaks
correspond to large separations between segments when the
arms are extended away from the body and there are no
self-collisions. The valleys correspond to periods when the
arms are close to the body, triggering multiple self-collisions.
Note that the minimum distance plots are always positive,

1In all experiments, the waist position is specified as a floating base, and
not considered in the calculation of the task dimension.

Constraint Violations

J i t li it

tio
ns

Joint limit
Collision

Non-Redundant

be
r o

f v
io

la
t

Redundant

N
um

Frame number

Fig. 2. Histogram of constraint violations for the dancing sequence. For
executing two operational tasks (Experiment 1), redundancy is established
only if the number of constraint violations are less than five.

indicating no penetration of the segment pairs.
We also simulated the task tracking error and the total

average power consumption of the proposed resolved accel-
eration control for the four motion sequences. In particular,
we compared the results using constrained resolved acceler-
ation control at the velocity level, versus the results at the
acceleration level.

Figures 4 and 5 illustrate results for the scenario involving
execution of two operational tasks at the left and right
wrists (Experiment 1). Although there are five degrees of
redundancy with respect to the operational tasks, actual
redundancy does not exist during parts of each motion
when constraints are enforced. If there is no redundancy, the
tasks cannot be perfectly tracked, introducing task errors.
Additionally, the damping term in the damped least squares
inverse introduces task error.

Although we expect improved task error performance for
trajectory conversion at the acceleration level, our simulation
of the task error does not reveal a significant difference
between the two methods. One explanation is that we have
used the same damping factor in both cases. Since we
can generally tolerate lower damping factors when perform-
ing trajectory conversion at the acceleration level, we can
observe improved performance by reducing the damping
factor. Also, we believe implementation on a physical robot
will further validate the task tracking benefits of trajectory
conversion at the acceleration level.

Figure 5 shows a comparison of the total average power
for the four motions. The results show a reduction of the
calculated power when trajectory conversion is performed at
the acceleration level. The efficiency is attributed to two fac-
tors. First, the acceleration based approach does not require
numerical differentiation of the constrained joint rates, which
may introduce torque spikes. Second, additional damping
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Fig. 3. CMU dancing sequence: the minimum distances between thirty segment pairs after the motion is dynamically filtered to avoid collisions. The
snapshots are approximately aligned with the time-line (frame-number). The yellow highlighted region indicates occurrence of collisions before filtering.
The minimum distance between the left hand and right hand is labeled.

Task Error (RMSE)

V l it L lVelocity Level
Acceleration Level

cm

Dancing Reaching Boxing Exercise

Fig. 4. Root mean squared task error for Experiment 1.

is introduced by using the constraint matrix W in the
weighted pseudo-inverse solution at the acceleration level.
The resulting accelerations are damped when the motion
reaches a constraint manifold, producing a smoother dynamic
response.

The root mean squared task error and the average power
results for the over-constrained task specification scenario
(Experiment 2) are shown in Figs. 6 and 7, respectively.
In this scenario, the task error involves the tracking error

Total Joint Power

Velocity Level
Acceleration Level

W
at

ts

Dancing Reaching Boxing Exercise

Fig. 5. The calculated absolute average power (over all degrees of freedom)
for Experiment 1.

of the seven upper-body operational tasks. Since the task
motion is over-specified, there is an increase in the task error
as compared to the results of Experiment 1. A comparison
of the task error and total power between velocity level
control and acceleration level control does not show a
significant difference. This is attributed to the absence of
null-space motion which prevents widely varying joint space
solutions to emerge, regardless of whether the control action
is performed at the velocity or the acceleration level. The
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Fig. 6. Root mean squared task error for Experiment 2.
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Fig. 7. The calculated absolute average power (over all degrees of freedom)
for Experiment 2.

slight improvement in the power curves of the acceleration
based control is likely to be attributed to improved numerical
stability.

Interestingly, in comparison with the results of Experiment
1, the total joint power is significantly reduced when the
task motion is over-specified (Experiment 2). Since the
task motion is obtained from a human demonstrator, the
energetics of the resulting retargetted motion onto a human-
like humanoid robot is characterized by a highly efficient
human motion dynamics. In contrast, when the task motion
is under-specified (Experiment 1), the solution of the self-
motion based on kinematic inversion does not minimize the
kinetic energy. To improve the energetics in Experiment
1, the use of a dynamically consistent weight matrix is
warranted.

V. SUMMARY

A generalized constrained resolved acceleration control
algorithm has been proposed. The approach is suitable for
execution of operational tasks in the presence of kinematic

constraints even when a robotic systems does not exhibit
redundancy. Unlike gradient projection methods, satisfaction
of the constraints is guaranteed and is numerically stable.
This problem is particularly suitable for online control of hu-
manoid robot motion, where the possibility of a large number
of kinematic constraint violations exists and is not known if
the motion is not planned in advance. Notable extensions of
the current algorithm are to incorporate dynamic constraints,
such as torque limits and balance constraints (in the case of
bipedal humanoids).
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