The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

Integrating Geometric Constraints into Reactive Leg Motion Generation

Fumio Kanehiro, Mitsuharu Morisawa, Wael Suleiman, Kenji Kaneko and Eiichi Yoshida

Abstract— This paper proposes a reactive leg motion gen-
eration method which integrates geometric constraints into its
generation process. In order to react given instructions instan-
taneously or to keep balance against external disturbances,
feasible steps must be generated automatically in real-time
for safety. In many cases this feasibility has been realized by
using predefined steps or admissible stepping regions. However,
these predefinitions are often too conservative or valid only in
limited situations. The proposed method considers geometric
constraints in addition to joint limits during its generation
process and it can utilize the ability of the robot to a maximum
extent. It can generate feasible walking pattern in real-time by
modifying the swing leg motion and the next landing position
at each control cycle. The proposed method is validated by
experiments using a humanoid robot HRP-2.

I. INTRODUCTION

Motion patterns have to respect not only constraints to
achieve given tasks but also constraints such as joint an-
gle/velocity limits and self-collision avoidance to be feasi-
ble. Especially when patterns are generated online to react
given instructions instantaneously or to keep balance against
external disturbances, feasible patterns must be generated
within a short control period automatically. In order to
generate feasible walking patterns online, a few predefined
footprints or small landing regions have been often used.
However, these step limitations are valid only in limited
situations and often limit the robot’s ability. Therefore, this
paper proposes a feasible leg motion generation method
which integrates geometric constraints into its generation
process and utilize the robot’s ability at maximum. Even
when ill-placed footprints like shown in Fig.1(left) are given,
the proposed method generates a feasible motion shown in
Fig.1(right).

Motion planning methods to generate feasible motions
have been well studied to generate motions for manipulators.
Since humanoid robots have bodies which consists of several
manipulators, we can use similar techniques but we need
to consider issues peculiar to humanoid robots such as
collisions between legs. Several online pattern generators
which can generate safe patterns have been already proposed.

When a task is given as a set of constraints for some
parts of the robot body such as an end-effector, joint angles
which respect those constraints can be computed by solving
inverse kinematics. [1] and [2] propose methods to add linear
equality constraints to avoid self-collision which are defined
based on distances between parts of the robot body. But

The authors are with Intelligent Systems Research Institute, National
Institute of Advanced Industrial Science and Technology(AIST),
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568
Japan {ffkanehiro, m.morisawa, wael.suleiman,
k.kaneko, e.yoshidal}@aist.go.ijp

978-1-4244-6676-4/10/$25.00 ©2010 IEEE

Fig. 1. Example postures generated without(left) and with(right) consid-
ering geometric constraints

those equality constraints are too strict and may narrow
solution space. Constraints based on distances should be
described as inequality constraints.

[3] proposes a pattern generator which can stop walk-
ing safely when self-collisions are expected. This method
uses a fast pattern generator[4] and checks self-collision
very rapidly by tracking the minimum distances between
shapes approximated by convex hulls using V-Clip[5]. If
self-collision is expected in a newly generated pattern, a
prepared pattern to stop walking is connected to the current
pattern. This method can stop the robot safely but we want
to continue the motion without stopping.

Some footstep planners such as [6] are using discrete
footprints to grow search trees. Usually the number of
those footprints is rather small and it limits the robot’s
walking ability. [7] propose a method to investigate a feasible
stepping region offline and move the next landing position
inside of the region if it is specified outside. Since the shape
of this region depends on various conditions, for instance the
waist height, the shape can be used only in limited situations.

This paper proposes a feasible leg motion generation
method which can be used online. To make it possible to
use ’online’, the method must be able to generate appropriate
leg motions within a control period even if the next landing
position is changed every control cycle. In order to generate
feasible motions, the proposed method considers geometric
constraints in its pattern generation process. More precisely,
geometric constraints are described as linear equality and
inequality constraints and joint angles are computed under

4069

Joystick, Footprints planner

Sequence of Footprints

/

COG and ZMP
pattern generator

Swing leg
pattern generator

COG position

Swing leg position

I Constraint Solver |

Overall structure of walking pattern generator

Walking pattern generator

Fig. 2.

those constraints by a constraint solver. And the method also
provides a swing leg trajectory generator which considers
feet placements to avoid the constraint solver falling in
local minima. Moreover, a stiffness varying constraint and
a landing position modification function is used to broaden
the solution space.

This paper is organized as follows. In Section II the overall
structure of the pattern generator is shown. In Section III the
constraint solver to find feasible joint velocities is explained.
In Section IV a swing leg trajectory generator is introduced to
avoid the constraint solver falling in local minima. In Section
V, landing positions are modified to improve the possibilities
of feasible motions being obtained. We validate the proposed
method by experiments in Section VI and summarize and
conclude the paper in Section VII.

II. STRUCTURE OF PATTERN GENERATOR

Fig.2 shows the overall structure of the walking pattern
generator.

The pattern generator takes a sequence of footprints as
an input. These footprints are generated by operating input
devices such as joysticks, footstep planners such as [6] or
the pattern generator itself to keep balance against external
disturbances. Those footprints are passed to a COG(Center
Of Gravity) pattern generator and a swing leg trajectory
generator. The COG pattern generator is a core of the
walking pattern generator and we are using the algorithm
which can generate a COG trajectory and a ZMP(Zero
Moment Point)[8] trajectory simultaneously and accept im-
mediate modifications of footprints[9]. A constraint solver
takes a COG position and a swing leg position as input
and computes joint angles which realize those positions(In
this work the waist position is constrained instead of COG
position. The waist position is computed by adding a constant
vector to the COG position. The constant vector is the offset
vector between the waist and COG in the initial posture.).
Usually, a conventional inverse kinematics solver is used
as this constraint solver and it is one of the reasons for
infeasible pattern being generated. Another reason is that
usually a swing leg trajectory generator connects footprints

Fig. 3. Collision avoidance: Faverjon and Tournassoud’s method

by straight lines in the horizontal plane. This trajectory
may cause cross-legged situations. Therefore, we generates
feasible patterns by combining a constraint solver which
considers geometric constraints and a swing leg trajectory
generator which considers feet placements.

III. CONSTRAINT SOLVER

The constraint solver described in this section is special-
ized to the leg motion generation, but its framework is same
with the method we proposed in [10] and can be used to
generate other motions.

Joint angles which respect a waist position/orientation
and a swing foot position/orientation can be computed by
using joint velocities g obtained by solving the following
optimization problem.

min [|g]|*
q

subject to Jwaistd = Twaist @

Jfootq = :bfoot

where Jqis¢ and Jy,0¢ are Jacobian matrices of the waist
and the swing foot with respect to the support foot respec-
tively. Tyaise and &y, are velocities of 6 x 1 required
to reach reference position/orientation of the waist and the
swing foot respectively.

By adding geometric constraints to this problem, feasible
joint velocities are computed and by updating joint angles
using the joint velocities at each control cycle, feasible
patterns are generated.

A. Constraint for collision avoidance

In order to avoid self-collision, velocity damper proposed
by Faverjon et al. is used. velocity damper is a constraint
based on a distance between two objects and defined as
follows[11].

d>— fﬁ

di - ds

where d is the minimum distance between two objects. & is a

positive coefficient to adjust the convergence speed. d; and d

are distances where velocity damper is activated and the min-

imum distance maintained between objects respectively(see

Fig.3). This constraint prevents objects from coming closer

too fast and as the result distance between them never be
smaller than d;.

if d<d;)

4070

Eq.(2) can be rewritten using g as follows.

d—d
- Jpz)q > _§d1 — dss
where p; and po are the closest points on objects and n =
(p1 — p2)/||/p1 — p2|| is a normal vector. Note that in order
to get continuous velocities using this constraint, p; and p2
have to move continuously on surfaces of objects. In other
words, objects must be strictly convex objects.

nT(Jpl

3)

B. Constraint for joint angle/velocity

A constraint to respect joint angle and velocity limits with
continuous joint velocities can be also defined using velocity
damper as follows.

) 2 4y > (@), forj € {Lown} @

where 7 is the number of joints. ¢7*** (g;) are

determined as follows.

*Min

(gj) and 4;

(¢ —4;) —as
, L~ = ifqgt —q <g
;" (q5) = S — G —h=9)
q;r otherwise
((]j - QJ> — s
. e~ LT e g < g
q;nzn(qj) _ v % — 0 4 —4q; >4q; (©6)
q; otherwise

where ¢; and ¢; are physical limits of joint angles, ¢
and q; are joint velocity limits, &, ¢; and g5 are parameters
which corresponds to £, d; and d; in Eq.(2) respectively.

C. Stiffness varying constraint

Even though humanoid robots are highly redundant sys-
tem, the number of residual degrees of freedom is not so
large if trajectories of some parts of the robot body are
specified by a pattern generator. In the case of walking
pattern generation, it is not possible to avoid collisions
between legs if trajectories of the waist and feet are specified.
However in the case of walking pattern generation, the swing
leg need not to track the specified trajectory strictly while
it is in the air. We can relax constraints by rewriting the
optimization problem(1) as follows.

ming’ W
q
SUbjeCt to jwm’st:] = djwaist (7)

jfoot(} = :i:foot
where (71, W, jwm-st and jfoot are given by

gI:[qT eT}T7
I 0
W_[O We}’ (8)

jwaist = [Jwaist Swaist] ’
jfoot = [Jfoot Sfoot]

e is a new variable which contains errors of relaxed
constraints. Its dimension n. is the number of relaxed

t=2.6 3.8 5.0[s]
right foot left foot
0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
— 0.1 .
s [SG— — T
>
-0.2 : ‘ : : : ‘
02 0 02 04 06 08 1 12 14 1.6

X[m]

Fig. 4. Foot trajectories and postures generated by our conventional pattern
generator. There are collisions between feet.

constraints. W, is a diagonal weighting matrix of n. X n.
which adjust stiffness of relaxed constraints. If we choose
large value, the constraint becomes hard and if we do small, it
becomes soft. In the case of the swing leg position constraint,
the swing leg can deviate from the reference trajectory while
it is in the air but it has to come back on it until the landing
time. So the stiffness is set to large in the beginning and the
end of single support phase to keep the landing position, and
to small in the middle to avoid collisions. Sy aist and Syoos
are selection matrices of 6 X n. to pick up constraints which
are relaxed.

Another way to realize collision avoidance between legs
would be to use a prioritization scheme. It is expected
that the swing leg can avoid collision by putting a higher
priority to a collision avoidance task and a lower one to
a swing leg motion task. Although a problem solver for
prioritized equality and inequality tasks already exists[12],
its computational cost is high since it needs to solve one QP
problem at each priority level. Since lower computational
cost is preferable for the reactive motion generation, we
choose the proposed method.

D. Example: Cross-legged walking

In order to confirm that feasible patterns can be generated
using the proposed method, a walking pattern is generated
from footprints that causes collisions between feet. The
constraint solver is implemented using uQuadProg[13], the
modified function of QuadProg++[14] and the target robot
is HRP-2[15].

Fig.4 shows a walking pattern generated without using
the proposed method. The upper row shows postures of the
robot at the moments when the swing leg passes side of the
support leg. The lower row shows footprints and trajectories
of feet. Since the lateral distances between footprints are set

4071

t=2.6
0.2
— 0.1 R
s g E 1]
-0.2 — ==
0.2 0 02 04 06 08 1 1.2 14 1.6

X[m]

Fig. 5. Foot trajectories and postures generated using the constraint solver
which considers geometric constraints. The swing leg is pushed outside to
avoid collision.

to small and our conventional swing leg trajectory generator
tries to connect footprints by straight lines, feet collide. (Feet
trajectories shown in Fig.4 are not straight. Because foot
rotations such as heel contact and toe takeoff changes its
shape slightly.)

In order to compute distances for Eq.(2), geometries of the
robot are required. As mentioned above, those geometries
must be strictly convex to obtain continuous joint velocities.
Therefore, we can not use triangle meshes which describe
geometries of HRP-2. We need to approximate them by
strictly convex shapes such as spheres or STP-BV[16]. We
proposed a collision avoidance method which can use trian-
gle meshes as geometries[17], but it is not suitable for online
pattern generation since it requires to solve many constraints.
Therefore, we use spheres to approximate geometries. We
approximate shank links by three spheres for each and foot
links by two spheres. We didn’t approximate thigh links since
there is no collision between them due to large space realized
by cantilever structure of hip joints and joint limits.

The proposed method is used to generate 12 leg joints
motions. A swing leg position in the horizontal plane is
constrained by stiffness varying constraints. As the result,
the dimension of (} is 14. e, Syaist and Sy are given by

10
01 |.
0

The stiffness values in W, are set to 10° in the beginning
and the end of single support phases and to 102 in the
middle. These values are chosen empirically so that the
displacement of the swing leg becomes negligible at the
landing position and it doesn’t become too large even in the
middle of the single support phase. 12 equality constraints

e
€= |: * :|7 Swaist = 0, Sfoot:
€y

=
S n ==

s
wn

1
—

angular velocity
max angular velocity

time[s]

Fig. 6. Ratios of knee joint velocities against those limits during cross-
legged walking. Velocities never exceed limits.

right heel - left toe left heel - right toe security distance
/

S & L
- N W

distance[m]

(]

]
—
[
w

4 5 6 7 8 9
time([s]

Fig. 7. Distances between feet while walking. Distances are always bigger
than the security distance. Vertical lines shows moments when snapshots in
Fig.5 were taken.

are used for the waist position/orientation and feet posi-
tion/orientation(including two stiffness varying constraints).
24 inequality constraints are used for joint angle/velocity
limits. 8 inequality constraints are used for self-collision
avoidance(8 is the maximum number and it changes accord-
ing to distances.). A leg motion is generated under these 44
constraints.

The upper row of Fig.5 show postures which correspond
to postures in the upper row of Fig.4. The lower row shows
generated feet trajectories and we can see the swing leg is
pushed outside to avoid collisions.

Fig.6 shows ratios of knee joint velocities against those
limits. Vertical dotted lines indicates boundaries between
single support and double support phases. In the latter half
of the single support phase, large joint velocities are required
to stretch knees but they are limited under those limits.

Fig.7 shows distances between spheres which approximate
feet geometries. Vertical lines shows moments when snap-
shots in Fig.5 were taken. In this case we chose 0.03[m],
0.2[m] and 1.5[m/s] for ds,d; and £ in Eq.(3) respectively
and can confirm distances are always larger than 0.03[m].

IV. SWING LEG TRAJECTORY GENERATION

The proposed method in the previous section is a local
method which finds joint velocities only using local(current)
information. In order to generate feasible patterns using
this method, it is required that input footprints are well
designed and a feasible motion can be obtained by applying
comparatively small changes. For instance, if smaller lateral
distances between feet are used in the previous example
to cross legs more deeply, the proposed method will fail.
Because the swing leg will try to pass the wrong side(outside)
of the support leg and it won’t be able to reach the landing

4072

Next landing position

Support le
Forbidden goal
area
outside
NG
start start NG
Swing leg
Fig. 8. Two candidates of a swing leg trajectory. The shortest path

which doesn’t cross with the outside vector is used to generate a swing
leg trajectory.

position due to collisions with the support leg. This is an
essential issue of local methods.

In the case of walking pattern generation, we can use the
next landing position as future information. If a swing leg
trajectory generator can provide a collision-free trajectory,
the constraint solver will not fall in such kind of local
minima. Of course, such a collision-free swing leg trajectory
can be planned using global planning methods such as
RRT[18]. However, these methods are too heavy to compute
leg motion at each control cycle. Therefore the swing leg
trajectory generator only considers collisions between feet
and we assume that residual collisions are avoided by the
constraint solver.

Fig.8(left) shows two candidates of the swing leg trajec-
tory. If the swing leg tries to pass outside of the support
leg, collisions between legs will prevent the swing leg from
reaching the landing position. Therefore the trajectory which
does not cross with a half line which starts from the center
of the support leg and directs outside is selected. A region
where the center of the swing leg should not pass is computed
as Minkowski sum of the support leg polygon and a polygon
which moved to the origin after inverting the swing leg
polygon. Using this Minkowski sum, two shortest paths from
the current position to the landing position are computed and
then the appropriate one is chosen.

If the swing leg track the chosen path, its velocity becomes
discontinuous when it passes corners and when shape of the
shortest path changes due to the next landing position mod-
ification. In order to prevent these discontinuous cases, the
swing leg trajectory is generated by the following algorithm.

Algorithm 1 calcSwingLegPosition(path, t,remain, T, v, @)
12 if tremain > toffset then

target «Divide(path, At/ (tremain — toffset))

3 HoffArbib(t,f fset, target, z, v, a)

4: else

5: target <Divide(path, 1.0)

6

7

»

HoffArbib(t,cimain, target, x, v, a)
: end if

Arguments path and t,emqin are the chosen path and
remaining time of the single support phase respectively.
z,v and a are current position, velocity and acceleration of

(a) /g‘“" (b)

™

start

2:\

(© @

original goal
g % g

modified goal

Fig. 9. Examples of swing leg trajectories. (a),(b) and (c) are cases landing
positions are not changed. (d) is a case it is changed.

the swing leg. The function Divide(path, ratio) computes
a position which divide path internally by ratio. At is
a control period. Using this algorithm, target moves on
the shortest path with a constant speed while the next
landing position is not changed and reaches the landing
position t, fse; €arlier than the landing time. The swing leg
pursues target with time delay ¢, se¢ using the minimum
jerk trajectory generation method proposed by Hoff and
Arbib[19] shown in algorithm(2). In algorithm(2), x,v and
a are current position, velocity and acceleration respectively.
goal and t,.¢pqin are the goal position and remaining time to
reach the goal respectively. Using this method, the swing leg
moves with continuous acceleration even if the next landing
position is changed at each control cycle.

Algorithm 2 HoffArbib(t,cmain, goal, x, v, a)
I G« _ga/tTemain_36v/t72“em,m'n+60(90al_$>/t§emain
2: a <« a+ aAt
3: v — v+ alt
4: x — x + vAt

Fig.9 shows examples of the shortest paths and generated
swing leg trajectories. Gray boxes are regions where the
swing leg should not pass and half lines show outside
direction. Cross marks indicate landing positions. Thick solid
lines and dotted lines are the shortest paths and swing leg
trajectories respectively. Example(a), (b) and (c) are cases
landing positions are not changed. Example(d) is a case the
landing position is changed. Generated swing leg trajectories
intrude forbidden regions slightly and it means that collisions
may happen. We admit these intrusions assuming these
collision will be solved by the constraint solver.

V. LANDING POSITION MODIFICATION

So far we assumed that landing positions are always
possible under geometric constraints. In reality, however,
some of them are impossible to reach. In order to make it
possible to generate feasible patterns from these footprints,

4073

we add the landing position modification function to our
method. Both of the swing leg trajectory generator and the
constraint solver adjust the next landing position at each
control cycle.

A. Modification by swing leg trajectory generator

If footprints are generated without considering foot shapes
and there might be overlaps between footprints. Therefore,
overlap between feet at the next landing position is checked
before computing the swing leg reference position using the
method described in Section IV. If it is expected, the overlap
is eliminated by the minimum translation of the next landing
position. Overlaps between feet are detected by checking
whether the origin is in Minkowski sum of the support leg
polygon and the inverted swing leg polygon or not. If the
origin is in it, the minimum translation to solve the overlap
is a vector from the origin to the point on the boundary of
the Minkowski sum which is closest to the origin. The next
landing position is updated using this vector.

B. Modification by constraint solver

Even if there is no overlap between footprints, some of
landing positions are unreachable due to collisions between
legs or other limits. When the next landing position is
unreachable, some of reference positions generated by the
swing leg trajectory generator are also unreachable. When an
unreachable reference position is given while a constraint for
the swing leg position is relaxed using Eq.(9), the computed
position has displacement from the reference position. The
amount of the displacement is obtained as components of
e in Eq.(9). The next landing position [p, p,|7 is updated
using these components as follows.

(10)
(an

where At is a control period. Repeating this procedure at
each control cycle, the next landing position is moved to the
reachable area.

Pz ‘= Pz — e;cAt
Dy i= Py — eyAL

C. Examples

1) Deeply cross-legged walking: Fig.10 shows an exam-
ple of the landing position modification. The upper row
shows footprints and feet trajectories. Dotted lines show tra-
jectories generated by our conventional swing leg trajectory
generator and solid lines do trajectories generated by new
swing leg trajectory generator. When conventional one is
used, the right foot tries to pass left side of the left leg in the
second step. As the result, the right leg is stopped to avoid
collisions and the pattern generation fails. When new one is
used, it passes right side and the pattern generation continues.
Rectangles drawn by dotted lines shows given footprints
and the others are realized footprints. The second and third
steps are placed outside of the support leg and these landing
positions are not reachable, they are moved inside. The lower
row of Fig.10 shows snapshots of the second step. Black
rectangles drawn on the floor are given landing positions. In
the beginning it is placed left side of the left foot. The right

conventional swing leg trajectory generator right foot ------—

left foot --------
: : right foot
new swing leg trajectory generator left foot
0.2
0.1 |
E o]
>~ -0.1 | b
-0.2 - B
-03 b
02 0 02 04 06 08 1 1.2 14 1.6

X[m]

t=295

3.00

3.05 3.10[s]

Fig. 10. Example of the next landing position modification. The second
and third landing positions are modified since they are not reachable.

1 overlap
~Yl

A s A\
X \
B \

Fig. 11. Original(left) and modified(right) footprints of a wide step
turning motion. Overlaps in the first and second steps are eliminated by
the minimum translations.

leg tries to reach there but it is not possible because knees
come closer. As the result, the landing position is moved
right until the foot can reach the modified position.

2) Wide step turning: Fig.11 shows footprints of a wide
step turning motion shown in Fig.l. This motion opens
the left leg 55[deg] in the first step, close the right leg
55[deg] and align the left leg parallel. Fig.1 shows its second
step. Fig.11(left) shows given footprints. There are overlaps
in the first step and the second step. Fig.11(right) shows
realized footprints and we can confirm those overlaps are
solved.(There are gaps between feet because we are keeping
3[cm] margin between feet).

The upper row of Fig.12 shows the waist height during
generating this motion and the lower row does distances
between two pairs of spheres attached to knees. To generate
this motion, we add a soft constraint for the waist height.
€, Syaist and Syoo are given by

. 0 0 O 1 0 O
z 0 0 O 01 0
€= |€Ey|, S’waist = 0o o0 1} Sfoot— 00 0
e
z 0 0
(12)

A weight for e, is set to 1.0.

4074

i
Q9

0.68
0.66
0.64

0.25
0.15
0.05

0

distance[m] waist height[m]

0 1 2 3 4 5 6
time|s]

Fig. 12. Waist height and distances between two pairs of spheres attached
to knees while turning. The waist is pushed up to avoid collisions between
knees.

3.2[s]

t=0.7 1.2 1.7 22 2.7

Fig. 14. Snapshots of experiments: wide step turning

During the latter half of the single support phase of the
second step, distances between knees becomes small. The
waist is pushed up by stretching knees in order to avoid
collision between knees. We can see the waist height is
also changed during the first step even though distances
are big enough. This is because specified swing leg height
is realized not only by bending the swing leg, but also
stretching the support leg to minimize the objective function
in the optimization problem(7).

VI. EXPERIMENTS

In order to confirm feasible patterns are generated, we
tested patterns generated from footprints shown in Fig.4 and
Fig.11 on the real robot HRP-2. To generate these patterns, e
in Eq.(12), the swing leg trajectory generator which considers
feet placement and a landing position modification function
are used. Fig.13 and Fig.14 show snapshots of experiments.
The robot can walk stably using these patterns.

In the case of HRP-2, the control period At is 5[ms]
and a balance controller and some other processing must
be executed within the period in addition to the walking
pattern generator. Therefore we can use 3[ms] at maximum
to generate patterns. In order to keep real-time constraint,
the worst case time must be smaller than 3[ms].

Fig.15 shows computational time to generate a cross-
legged walking motion shown in Fig.13. It takes 0.3[ms]
on an average and 0.7[ms] at maximum. The optimization
problem(7) has 15 parameters and 44 constraints. The
computational time is enough short even though the pro-
cessor on HRP-2 is not so powerful, Pentium III 1.26[GHz].
We can apply our method to more redundant systems or add
more constraints.

S 2
FNIE-N

S
%)
T
.

=]

Computational
time[ms]

(=]
[
[S]
w
. I
wn
(=)}
2
=]

time[s]

Fig. 15. Computational time to generate cross-legged walking. It is enough
short to generate patterns online.

ZMP by COG PG —— final ZMP ——
0.12 T o o
E 0.08 ‘ ¥
E 0.04
N 0
-0.04
0 1 2 3 4 5 6 7 8
time|s]
Fig. 16. ZMP trajectory generated by COG pattern generator and final

ZMP trajectory. ZMP error is around 2[cm] and enough small.

Dynamic balance is an indispensable constraint for hu-
manoid robots. But it is not considered in the proposed
method. Because we assume that modifications to respect
geometric constraints don’t have so big effect on ZMP. Fig.16
shows lateral elements of ZMP trajectories for “Cross-legged
walking”. The thick line shows ZMP generated by the COG
pattern generator and the thin one does ZMP computed by
applying generated joint trajectories to the multi-body model.
Differences between these two trajectories are around 2[cm]
and it includes errors between the single mass point model
and the multi-body model. We can say that the proposed
method doesn’t have big effect on ZMP at least in this case.

However, in the case of “Deeply cross-legged walking”,
the landing position are changed just before landing and
modifications like this cause large ZMP fluctuation[20].
Fig.17 shows an ideal ZMP trajectory and a trajectory gener-
ated by the COG pattern generator. Since landing positions
for the second and third steps are modified, unacceptable
ZMP fluctuations are generated. To solve this issue, we have
to improve both of the COG pattern generator and the landing
position modification algorithm. This is one of our future
works.

VII. SUMMARY AND FUTURE WORKS

This paper proposed a reactive leg motion generation
method which considers geometric constraints to generate
feasible motions. This method consists of the constraint
solver and the swing leg trajectory generator. The constraint
solver describes geometric constraints as linear equality and
inequality constraints and find joint velocities which respect
all the given constraints by solving the optimization problem.
The swing leg trajectory generator considers foot placements
and gives better reference trajectory to the constraint solver.
Moreover, we added a stiffness varying constraint and a
landing position modification function to improve the possi-
bilities of feasible solutions being obtained.

4075

2.0 2.5 3.0 3.5
Fig. 13.

g _ideal ZMP — ZMP by COG PG —
Toar i J oo
& — L ; i i —
s 0 : T v \: ¥ :
N-04 1 ¥ ¥ : ¥ s 1

0.8 ' i — = '

time[s]

Fig. 17. ZMP trajectory generated by COG pattern generator and ideal ZMP
trajectory. Big fluctuations are caused by landing position modifications just
before landing.

Since given footprints may be modified, the robot may
reach an unexpected position. To solve this issue, the walking
pattern generator need to inform the modified footprints
to the footstep planner and the foot step planner update
footprints as needed.

The proposed method can not guarantee that a feasible
pattern is always generated. For instance, since both feet
are fixed during the double support phase and the residual
number of freedom becomes small, the solution space might
be empty in some cases. To solve this issue, we need to relax
some of hard constraints to obtain feasible motions. For ex-
ample, it is possible to enlarge the solution space by relaxing
a constraint for rotation of the waist link around a vertical
axis (Readers can see the example in the accompanied video
segment.). This is one of our future works.

ACKNOWLEDGMENTS

This work has been partly supported by JST-CNRS Strate-
gic Japanese-French Cooperative Program “Robot motion
planning and execution through online information structur-
ing in real-world environment”. The work by W. Suleiman
was supported by a Grant-in-Aid for Scientific Research from
the Japan Society for the Promotion of Science (JSPS).

REFERENCES

[1] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Real-Time
Collision Avoidance with Whole Body Motion Control for Humanoid
Robots,” in Proc. of International Conference on Intelligent Robots
and Systems, 2007, pp. 2053-2058.

[2] O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, and
A. Kheddar, “Real-Time (Self)-Collision Avoidance Task on a HRP-2
Humanoid Robot,” in Proc. of the 2008 IEEE International Conference
on Robotics & Automation, 2008, pp. 3200-3205.

[3] J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and
H. Inoue, “Self-Collision Detection and Prevention for Humanoid
Robots,” in Proc. of the 2002 IEEE International Conference on
Robotics & Automation, 2002, pp. 2265-2270.

4.0

[4]

[5

—_

[6

—

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

4076

4.5 5.0

Snapshots of experiments: cross-legged walking

K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and H. Inoue,
“Online Generation of Humanoid Walking Motion based on a Fast
Generation Method of Motion Pattern that Follows Desired ZMP,”
in Proc. of the IEEE/RSJ International Conference on Intelligent
Robotics and Systems (IROS’02), 2002, pp. 2684-2689.

M.Mirtich, “VClip: Fast and robust polyhedral collision detection,”
ACM Transactions on Graphics, vol. 17, no. 3, pp. 177-208, 1998.
J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue, “Online
Footstep Planning for Humanoid Robots,” in Proc. of the 2003 IEEE
International Conference on Robotics & Automation, 2003, pp. 932—
937.

N. Perrin, O. Stasse, F. Lamiraux, P. Evrard, and A. Kheddar, “On
the Problem of Online Footsteps Correction for Humanoid Robots,”
in Proc. 27th Annual Conference of Robotics Society of Japan, 2009,
pp- RSJI2009AC301-04.

M. Vukobratovi¢ and B.Borovac, “Zero-moment point —thirty five years
of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1,
pp. 157-173, 2004.

M.Morisawa, K.Harada, S.Kajita, K.Kaneko, F.Kanehiro, K.Fujiwara,
S.Nakaoka, and H.Hirukawa, “A Biped Pattern Generation Allowing
Immediate Modification of Foot Placement in Real-time,” in Proc. of
the IEEE-RAS International Conference on Humanoid Robots, 2006,
pp- 581-586.

F. Kanehiro, W. Suleiman, K. Miura, M. Morisawa, and E. Yoshida,
“Feasible Pattern Generation Method for Humanoid Robots,” in Proc.
of the IEEE-RAS International Conference on Humanoid Robots, 2009,
pp. 542-548.

B. Faverjon and P. Tournassoud, “A Local Based Approach for
Path Planning of Manipulators With a High Number of Degrees of
Freedom,” in Proc. of IEEE International Conference on Robotics and
Automation, 1987, pp. 1152-1159.

O. Kanoun, F. Lamiraux, F. Kanehiro, E. Yoshida, J.-P. Laumond, and
P-B. Wieber, “Prioritizing Linear Equality and Inequality Systems:
Application to Local Motion Planning for Redundant Robot,” in Proc.
of the 2009 IEEE International Conference on Robotics & Automation,
2009, pp. 2939-2944.

“uQuadProg,” http://www.lis.deis.unical.it/
faro/uQuadProg/uQuadProg.php.

D. Goldfarb and A. Idnani, “A numerically stable dual method for
solving strictly convex quadratic programs,” Mathematical Program-
ming, vol. 27, pp. 1-33, 1983.

K. Kaneko, F. Kanehiro, S. Kajita, M. Hirata, K. Akachi, and
T. Isozumi, “Humanoid Robot HRP-2,” in Proc. of the 2004 IEEE
International Conference on Robotics & Automation, 2004, pp. 1083—
1090.

M. Benallegue, A. Escande, S. Miossec, and A. Kheddar, “Fast ct
Proximity Queries using Support Mapping of Sphere-Torus-Patches
Bounding Volumes,” in IEEE International Conference on Robotics
and Automation (ICRA), Kobe, Japan, 12-17 May 2009, pp. 483-488.
F. Kanehiro, F. Lamiraux, O. Kanoun, E. Yoshida, and J.-P. Laumond,
“A Local Collision Avoidance Method for Non-strictly Convex Poly-
hedra,” in Proceedings of Robotics: Science and Systems IV, Zurich,
Switzerland, June 2008.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.
98-11, 1998.

B. Hoff and M. A. Arbib, “Models of Trajectory Formation and
Temporal Interaction of Reach and Grasp,” Journal of Motor Behavior,
vol. 25, no. 3, pp. 175-192, 1993.

M. Morisawa, K. Harada, S. Kajita, K. Kaneko, J. Sola, E. Yoshida,
N. Mansard, K. Yokoi, and J.-P. Laumond, “Reactive Stepping to Pre-
vent Falling for Humanoids,” in Proc. of the IEEE-RAS International
Conference on Humanoid Robots, 2009, pp. 528-534.

fur-

