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Abstract—Human motor control has always acted as an
inspiration in both robotic manipulator design and control.
In this paper, a modeling approach of anthropomorphism in
human arm movements during every-day life tasks is proposed.
The approach is not limited to describing static postures of the
human arm but is able to model posture transitions, in other
words, dynamic arm movements. The method is based on a
novel structure of a Dynamic Bayesian Network (DBN) that
is constructed using motion capture data. The structure and
parameters of the model are learnt from the motion capture
data used for training. Once trained, the proposed model can
generate new anthropomorphic arm motions. These motions
are then used for controlling an anthropomorphic robot arm,
while a measure of anthropomorphism is defined and utilized
for assessing resulted motion profiles.

I. INTRODUCTION

Although arm motor control research has been going on
for almost three decades [1], [2], there is still no clear
mathematical parameterization, describing the vast repertoire
of arm motions. However, human motor control has always
acted as an inspiration for robotic systems design [3] and
control [4], [5]. Robot arms resembling human arms in terms
of kinematic dexterity and dynamically smooth behavior, can
prove very useful in many complex industrial (i.e. welding,
assembly etc.) and non-industrial tasks (i.e. rehabilitation,
human motion assistance, entertainment robots etc.). There-
fore, modeling anthropomorphism in a large repertoire of
arm motions is very critical for both understanding human
motor control principles, and designing control architectures
for advanced robot arms.
For planar human arm motion, it has been confirmed

that the human arm tends to follow a straight line, with
bell-shaped tangential velocity profile [2]. Similar models,
in terms of kinematics, were proposed later [6], while
more complex models in terms of musculo-skeletal control
have also been proposed [7], [8], [9]. However most of
the previous research on arm movement has focused on
planar motions, which limits the applicability of the proposed
models, which can not be used to describe multi-joint arm
movements required for even simple every-day tasks.
During the last decade, more sophisticated motion capture

systems became available, and thus multi-joint coordination
was analyzed. Specifically in the fields of robotics and
computer animation, motion capture systems are nowadays
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used in order to track human movements and build human
motion databases. Then, the motion data are processed to find
posture similarities [10] or define optimal paths for certain
hand positioning [11]. A large number of methodologies
have been proposed for modeling arm movements, such as
Hidden Markov Models (HMMs) and Factorial HMMs [12],
[13]. The definition of motor primitives (i.e. bases that can
form multi-joint arm configurations) was recently introduced
primarily for robot applications [14], while binary trees were
also used for modeling human motion data [15]. Inter-joint
dependencies in static human arm postures were modeled by
the authors in [16]. However, most of the previous methods
proposed could not capture the dynamic features of arm
motions, because they were based on human motion data
conceived as a set of discrete postures. Since modeling an-
thropomorphism in human arm movements strongly depends
on the motion dynamic features, a model that can capture
discrete postures transitions is required.
In this paper, a novel form of a Dynamic Bayesian

Network (DBN) is proposed for the modeling of three-
dimensional (3D) human arm motion, which is able to
capture both discrete arm postures and posture transitions.
Human motion capture data are collected during every-day-
life arm tasks (i.e. reaching and grasping objects in the 3D
space, moving the hand along surfaces etc). Discrete arm
postures, extracted from the motion capture data set, are
first modeled in joint space using a directed graphical model.
Then a dynamic bayesian network is constructed, taking into
account the directed graphical model, in order to describe
discrete posture transition, i.e. dynamic arm motion. The
proposed model can be used to generate new1 anthropomor-
phic arm motions. The generated motion profiles are used
to control an anthropomorphic robot arm, while tested for
anthropomorphism using an appropriately defined criterion.
The rest of the paper is organized as follows: the proposed

methodology is presented in Section II. The experimental
procedure assessing the method efficiency is reported in
Section III, while Section IV concludes the paper.

II. MODELING AND GENERATING ANTHROPOMORPHIC

MOTION

A. Human Arm Motion Data Set

The human upper limb is a quite complex structure, com-
posed of three chained modules, the shoulder girdle, the el-
bow and the wrist. Each module can be modeled as consisting

1Continuous profiles that are not identical to those recorded in the motion
capture data are considered as new motions.
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Fig. 1. The two position trackers are placed on the user’s elbow and wrist
joint, while the tracker reference system is placed on the user’s shoulder.
Rotation axes and positive directions for the 5 modeled degrees of freedom
are shown.

of revolute joints since their translations are negligible com-
pared to rotations. Therefore the human arm can be modeled
as a 7 degrees of freedom (DoFs) mechanism, where 3 DoFs
are located at the shoulder, 2 at the elbow and 2 at the wrist.
In our approach we focus only on the first five DoFs, since,
for simplicity reasons, the wrist is excluded. The 5 DoFs that
will be analyzed are: shoulder abduction-adduction, shoulder
flexion-extension, shoulder external-internal rotation, elbow
flexion-extension and elbow pronation-supination. Let q1, q2,
q3, q4, q5 be the five corresponding joint angles of those
DoFs.

A motion capture system (Isotrak II, Polhemus Inc.) is
used for recording human arm motion. It is equipped with
a reference system, with respect to which, the 3D position
and orientation of two position tracking sensors is provided.
The frequency of the measurements is 30 Hz. The reference
system is placed on the shoulder, while one sensor is placed
on the elbow and the second one on the wrist. The sensors
placement along with the defined joint angles is shown in
Fig. 1.

Let T1 =
[
x1 y1 z1

]T
, T2 =

[
x2 y2 z2

]T
denote the position of the trackers with respect to the tracker
reference system. By solving the inverse kinematic equations
the human joint angles are given by:

q1 = arctan2 (±y1, x1)

q2 = arctan2
(
±√x2

1 + y21 , z1

)

q3 = arctan2 (±B3, B1)

q4 = arctan2
(
±√B2

1 +B2
3 , B2 − L1

)

q5 = arctan2 (M,Λ) + arctan 2
(
1±

√
K2

M2+Λ2 ,
K√

M2+Λ2

)

(1)

where

B1 = x2 cos (q1) cos (q2) + y2 sin (q1) cos (q2)− z2 sin (q2)
B2 = −x2 cos (q1) sin (q2)− y2 sin (q1) sin (q2)− z2 cos (q2)
B3 = −x2 sin (q1) + y2 cos (q1)
K = tan (φ) (cos (q2) cos (q4)− cos (q3) sin (q2) sin (q4))
Λ = sin (q2) sin (q3)
M = cos (q3) cos (q4) sin (q2) + cos (q2) sin (q4)

(2)
where φ the roll angle measured from the position tracker 2
and L1 the length of the upper arm. The length of the upper
arm can be computed from the distance of the first position
tracker from the base reference system, i.e. L1 = ‖T1‖ =√
x2
1 + y21 + z21 . Likewise, the length of the forearm L2 can

be computed from the distance between the two position

trackers, i.e. L2 =

√
(x2 − x1)

2
+ (y2 − y1)

2
+ (z2 − z1)

2.
Finally, one of the multiple solutions of (1) is selected at
each time instance, based on the corresponding human joint
motion ranges and the previous solution selection. For the
complete analysis of the inverse kinematics the reader should
refer to [17].
Using the motion capture system, arm motion during

every-day life tasks2 was measured. Then, using the inverse
kinematics presented above, a data set of P arm postures
each one consisting of 5 joint angles (q1, ... , q5) is available.
For the subsequent analysis P = 10000 arm postures were
used, which corresponds to approximately 5.5 minutes of
motion recording.

B. Modeling Static Arm Postures

Modeling of human arm movement has received increased
attention during the last decades, especially in the field of
robotics [18] and graphics. This is because there is a great
interest in modeling and understanding underlying laws and
motion dependencies among the DoFs of the arm, in order
to incorporate them into robot control schemes. Most of the
previous works in this area focus on the definition of motor
primitives [19], or on objective functions that are minimized
during arm motion. These models lack the ability to describe
dependencies among the DoFs of the arm though. In this
paper, in order to model the dependencies among the DoFs
of the arm during random 3D movements, graphical models
are used.
1) Graphical Models: Graphical models are a combi-

nation of probability theory and graph theory. They pro-
vide a tool for dealing with two characteristics; the uncer-
tainty and the complexity of random variables. Given a set
F =

{
f1 . . . fN

}
of P random variables with joint

probability distribution p (f1, . . . , fN ), a graphical model
attempts to capture the conditional dependency structure
inherent in this distribution, essentially by expressing how
the distribution factors as a product of local functions, (e.g.
conditional probabilities) involving various subsets of F.
Directed graphical models, is a category of graphical models,

2Tasks performed during training involve reach and grasp objects located
in different positions in the arm workspace, wiping a horizontal and vertical
flat surface etc.
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also known as Bayesian Networks. A directed acyclic graph
is a graphical model where there are no graph cycles when
the edge directions are followed. Given a directed graph
G = (V,E), where V is the set of vertices (or nodes)
representing the variables f1, . . . , fN , and E is the set of
directed edges between those vertices, the joint probability
distribution can be written as follows:

p (f1, . . . , fN ) =

N∏
i=1

p (fi |a (fi) ) (3)

where, a (fi) the parents (or direct ancestors) of node fi. If
a (fi) = ∅ (i.e. fi has no parents), then p (fi |∅ ) = p (fi),
and the node i is called the root node.
2) Building the Model: A version of a directed graphical

model is a tree model. It’s restriction is that each node has
only one parent. The optimal tree for a set of variables is
given by the Chow-Liu algorithm [20]. Briefly, the algorithm
constructs the maximum spanning tree of the complete
mutual information graph, in which the vertices correspond
to the variables of the model and the weight of each directed
edge fi → fj is equal to the mutual information I (fi, fj),
given by

I (fi, fj) =
∑
fi,fj

p (fi, fj) log
p (fi, fj)

p (fi) p (fj)
(4)

where p (fi, fj) the joint probability distribution function for
fi, fj , and p (fi), p (fj) the marginal distribution probability
functions for fi, fj respectively. Mutual information is a unit
that measures the mutual dependence of two variables. The
most common unit of measurement of mutual information is
the bit, when logarithms to the base of 2 are used. It must
be noted that the variables

{
f1 . . . fN

}
are considered

discrete in the definition of (4). Details about the algorithm
of the maximum spanning tree construction can be found in
[20].
In our case, the variables {q1, q2, q3, q4, q5} correspond

to the joint angles of the 5 modeled DoFs of the arm.
If these are rounded to the nearest integer, then, with a
maximum rounding error of 0.5 deg, joint variables are
essentially discretized, enabling the simplification of the
directed graphical model training and inference algorithms,
without essential loss of information due to descritization.
Using joint angle data recorded during the training phase, we
can build the tree model. The resulting tree structure is shown
in Fig. 2. This graphical model essentially describes the inter-
joint dependencies of human arm static postures. In order to
construct a model that will describe dynamic arm motions,
a Dynamic Bayesian Network will be constructed, in order
to model the dynamic behavior of the nodes consisting this
static directed graphical model.

C. Modeling Dynamic Arm Motions

In order to model the dynamic behavior of the nodes
appearing in the static model, we define a dynamic bayesian
network that essentially consists of two instances of the static
model, connected to each other through the corresponding

Fig. 2. The directed graphical model (tree) representing nodes (i.e. joint
angles) dependencies. Representation qi → qj means that node qi is
the parent of node qj , where i, j = 1, 2, 3, 4, 5. The mutual information
I (qi, qj) is shown at each directed edge connecting qi to qj . The value of
the mutual information quantifies the information gained if we describe
two variables through their dependency, instead of considering them as
independent. Its value is in bits.

Fig. 3. The dynamic Bayesian Network graph describing the relationship
among the five joint angles of the human arm qti at time t and their previous
values qt−1

i , i = 1, 2, 3, 4, 5. Thick arrows describe dependence, while thin
arrows, connecting the independent random variables ri with the joint angles
qti , correspond to algebraic addition.

nodes. Using this formulation, the dynamic behavior of the
nodes is introduced in the model, while the inter-joint depen-
dencies are modeled through the underlying static graphs.
Moreover, a random variable is also added in the dynamics
of each node, for purposes analyzed below. The complete
dynamic bayesian network is shown in Fig. 3. As it can be
seen, each joint angle qi, i = 1, 2, 3, 4, 5, at time t, can be
dependent either to only its previous value qi (t− 1) or to
its previous value and to the current value of another angle.
Moreover, to each joint angle value, a random variable

ri, i = 1, 2, 3, 4, 5, is added. This is done to avoid stalling
into a narrow region of joint angles for each joint and to
allow a normal joint angle variation within a time instance
(i.e. angular velocity). Therefore, adding a random variable
at the evolution of the joint angles permits the angle to
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vary considerably between successive steps. However, this
should happen between the observed range during training.
Therefore, each random variable ri is drawn from a zero-
mean Gaussian distribution N (0, σi), where the variance σi

for each joint angle is computed using the variance of the
angular velocities observed from the training data.
Having the full form of the dynamic graphical model,

the overall joint probability distribution of the model can
be computed. It must be noted that for each time instance t,
the values of all the joint angles at the previous time instance
t − 1 are considered known. Therefore, the values of each
joint angle at time t are drawn by the following conditional
probability:

p
(
q
(t)
1 , q

(t)
2 , q

(t)
3 , q

(t)
4 , q

(t)
5

∣∣∣q(t−1)
1 , q

(t−1)
2 , q

(t−1)
3 , q

(t−1)
4 , q

(t−1)
5

)

= p1p2p3p4p5
(5)

where
p1 = p

(
q
(t)
1

∣∣∣q(t−1)
1 , q

(t)
3

)
+ p (r1)

p2 = p
(
q
(t)
2

∣∣∣q(t−1)
2 , q

(t)
1

)
+ p (r2)

p3 = p
(
q
(t)
3

∣∣∣q(t−1)
3

)
+ p (r3)

p4 = p
(
q
(t)
4

∣∣∣q(t−1)
4 , q

(t)
3

)
+ p (r4)

p5 = p
(
q
(t)
5

∣∣∣q(t−1)
5 , q

(t)
4

)
+ p (r5)

(6)

where q(t)i , q(t−1)
i denote the values of joint angle qi at time

instances t and t−1 respectively and p (ri) are the probability
distributions of the random variables ri, i = 1, 2, 3, 4, 5,
given by:

p (ri) =
1

σi

√
2π

e
−

r2
i

2σ2

i (7)

From (6) it is obvious that there are some joint angles
that are dependent only on their previous values (i.e. q3),
while others that depend on the current values of others too
(i.e. q1, q2, q4, q5). The dependencies of the current joint
angles to both the past and the other current joint angles are
described by the conditional probability distributions in (6).
However, these functions are based on finite measurements of
joint angles during the human arm motion experiments. More
specifically, a 2-dimensional histogram can be constructed
for probability distributions involving two variables (i.e.
p
(
q
(t)
3

∣∣∣q(t−1)
3

)
). Accordingly, a 3-dimensional histogram

can be constructed for the other angles that are dependent
both on their history and the other angles. A way to conclude
to a continuous representation of those discrete histograms,
is to fit to them continuous functions of probability density.
These functions are selected to be Gaussian Mixture Mod-
els (GMMs) [21]. A GMM is essentially a weighted sum
of Gaussian distribution functions, that can describe quite
efficiently complex and non-smooth probability distribution
functions. In general, for a n-dimensional GMM, the proba-
bility distribution function is given by:

p (Q) =
h∑

k=1

πkN (Mk,Sk) (8)

where h is the number of mixture components and
N (Mk,Sk) is a n-dimensional Gaussian distribution func-
tion with mean matrixMk and covariance matrix Sk respec-
tively. Details about the GMMs and their fitting procedure
(Expectation Maximization (EM)) can be found in [21].
Fitting each one of the conditional probability functions

in (6) with a Gaussian Mixture Model, concludes to a
continuous representation of the probabilities involved in
estimating each joint angle, which essentially serves two
main scopes; firstly, it smoothens the conditional histograms
created using the recorded data, and secondly, it allows for a
more computational effective way of producing values for the
joint angles that is now based on continuous mathematical
formulas instead of discrete and high-dimensionable search-
able tables.

D. Generating Anthropomorphic Motions

Generation of anthropomorphic arm motions using the
previously defined model is based on performing statistical
inference for the unknown nodes of the model. In our case,
we can decide an initial configuration of the arm, and calcu-
late the next values for all the joint angles, using the fitted
GMM distributions for the conditional probability functions
that govern the model (see (6)). The initial values should be
drawn within the range of recorded motion for each joint
angle, however this is not a hard constraint, since the model
can easily converge to human-like configurations based on
the inherently described anthropomorphic kinematics.
Therefore, if the initial configuration of the arm is decided

to be q0 =
[
q
(t−1)
1 q

(t−1)
2 q

(t−1)
3 q

(t−1)
4 q

(t−1)
5

]T
,

then sequentially, using the GMM distributions func-
tions fitted to the conditional probability functions p3,
p1, p2, p4 and p5, the next joint angles qt =[
q
(t)
1 q

(t)
2 q

(t)
3 q

(t)
4 q

(t)
5

]T
can be computed. It must

be noted that the independent random variables ri, i =
1, 2, 3, 4, 5 are added at each joint angle after the GMM
function computation, since they are considered independent
of the joint angles and their history.

III. RESULTS

A. Generated vs Human Arm Movements

Using the model proposed in this work and the method
analyzed in Section II.D, a continuous anthropomorphic
arm motion is generated in joint space. Let qG =[
qG1 qG2 qG3 qG4 qG5

]
be a η × 5 matrix in-

cluding the η-point trajectory of each joint i, where qGi

is a κ-dimensional vector of the trajectory of joint i, i =
1, 2, 3, 4, 5, η, κ ∈ R. In order to compare this model-
generated motion with the corresponding executed by a
human, and to assess its anthropomorphic characteristics,
a human should perform the same task. For this reason,
a 7 DoF anthropomorphic manipulator (PA-10, Mitsubishi
Heavy Industries) is used in an appropriately designed setup
analyzed below. Details on the modeling of the robot arm
can be found in [22].
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Fig. 4. The experimental protocol used for moving the human arm along a
predefined path in the arm operational space. The position tracking system
is used for monitoring human arm motion in the joint space. The human
hand is attached on the robot end-effector at the wrist, so the subject should
move only the elbow and the shoulder for following the robot motion.

In order to make the human perform the same motion
in the operational space, the setup depicted in Fig. 4 is
used. The human is standing opposite to a robot arm while
his/her hand is firmly attached to the robot end-effector, at
a point just before the wrist. Therefore, the human is able
to follow the robot trajectory in the 3D space, appropriately
configuring only the elbow and shoulder joints. The position
tracking sensors used during the model training are used
again on the human’s arm in order to record the performed
motion. Using these measurements, the human arm trajectory
in the joint space is then computed. Regarding the path
imposed by the robot arm, it is computed through the
generated motion profiles in joint space, after being reformed
to the robot operational space using forward kinematics of
a model of the human arm. In other words, having the
generated motion in joint space, the human arm trajectory
in the 3D space is computed through human arm forward
kinematics. Then, in order for the robot arm to move it’s end-
effector (and consequently the human hand) along this path,
the trajectory is first transformed to the robot base reference
system, and then through robot inverse kinematics, the path
in the robot joint space is computed. An inverse dynamic
controller is finally used at the robot arm to track the desired
trajectory.
In Fig. 5 the generated and the human arm trajectories

in joint space for each joint are shown. It appears that
the two profiles of motion are very similar, not only in
the kinematic but also in the dynamic level, essentially
confirming the anthropomorphic characteristics of the model-
generated motion.

B. Quantifying Anthropomorphism

The anthropomorphism in the generated motion can be
also proved by the statistical resemblance between the robot
and the human arm motion. One of the criteria that were used
in the past to identify and quantify inherent relationships
between two or more variables is the Mutual Information
(MI) index [23]. The mutual information definition between
two sets of variables was given in Section II in (4). However,
in this case, since we want to discuss the joint probability
distribution of the two sets (i.e. the generated and the human

Fig. 5. Generated versus human performed motion in the joint space for
the same path in the operation 3D space.

TABLE I

INDIVIDUAL AND JOINT ENTROPIES OF THE MODEL-GENERATED AND

THE HUMAN ARM MOTION SETS ALONG WITH RESULTED VALUES OF

THE MUTUAL INFORMATION (MI) INDEX.

i H
(
qGi

)
H

(
qHi

)
H

(
qGi

, qHi

)
I
(
qGi

, qHi

)

1 5.44 5.38 7.26 3.56
2 4.91 5.04 7.43 2.51
3 6.19 6.19 6.19 6.19
4 5.96 6.03 7.99 4.00
5 4.95 4.96 7.27 2.64

motion), the MI will be defined in a form including the
individual and joint entropies of the two sets. Therefore, it
is equivalently defined by:

I (qGi
, qHi

) = H (qGi
) +H (qHi

)−H (qGi
, qHi

) (9)

where qGi, qHi represent the set of values for the model-
generated and the human joint angles observed during the
previously analyzed experiment, where i = 1, 2, 3, 4, 5 cor-
responds to the 5 joint angles, while H (qGi

), H (qHi
) are

the Shannon entropies of the two sets and H (qGi
, qHi

) is
the joint entropy of the two sets. The individual and joint
entropies along with the resulted MI values for the model-
generated and the human angle sets, are reported in Table
I. From the values computed, it appears that the generated
motion has strong inherent resemblance with the motion
the human arm performed, therefore can be considered
anthropomorphic.

IV. DISCUSSION AND CONCLUSIONS

The human arm mechanics, its dexterity, and its vast
repertoire of motion still remain a great inspiration for
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robot design and control. For this reason, a mathematical
formulation of the inherent characteristics that the motion
of the human arm possesses, is of great interest, since it
can be used for controlling robots in performing tasks in an
anthropomorphic way. Most of the previous studies in this
field could capture and mimic static human arm postures,
but were unable to generate new motions that would be
anthropomorphic too. In this paper, we propose a method
modeling anthropomorphism in human arm motions, in such
way, that it can generate new motion patterns that would obey
to anthropomorphic characteristics. The method is based on
the fact that not only static arm postures are modeled, but
also the transitions between those postures, i.e. the dynamic
effects of the human arm motion. A dynamic Bayesian
network was used, that proved able to encapsulate human
motion characteristics. The method was tested in generating
anthropomorphic motion for controlling a robot arm, while a
measure of anthropomorphism in arm motion was introduced
and utilized for assessing the resulted motion. The results
showed that the method can be used for generating anthropo-
morphic motions that can be eventually used for controlling
robots.
Other methods for capturing dynamic characteristics of

arm motion could have been used, e.g. Factorial HMMs [12],
[13]. However these models abstract the modeled data as
stochastic representations. In the contrary, the DBN used in
this work, is not a stochastic representation but it represents
each variable of the physical system with a distinct node.
Unlike with HMMs, the proposed model was not used for
extracting patterns of motion that are combined in order to
reconstruct or generate new movements. It was efficiently
used to model inter-joint dependencies in an analytic way
and generate new arm motions based on the anthropomorphic
characteristics “embodied” in the model through training.
It must be noted that the method was tested for voluntary

and unconstrained arm motions. Therefore the interaction of
the arm with the environment, by exerting forces to objects
or lifting objects, is not included in the study. This would
require the study of the adaptations taking place in kinematic
level for adjusting to planned or unforeseen change of the
arm dynamics. However, this is out of the scope of this
paper, where only unconstrained motions are being studied.
In terms of using this methodology for controlling robot
arm though, the interaction with the environment and the
change in dynamics could be easily accommodated by using
the appropriate control schemes, while having as reference
trajectories the ones generated by the proposed method.
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