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Abstract—Humans perform a wide range of skillful and
dexterous motion by adjusting the dynamic characteristics of
their musculoskeletal system during motion. This capability is
based on the non-linear characteristics of the muscles and the
motor control architecture that can control motion and exerted
force independently. Mechanical impedance (i.e. stiffness, vis-
cosity and inertia) constitutes the most solid characteristic for
describing the dynamic behavior of human movements. This
paper presents a method for estimating upper limb impedance
characteristics in the three-dimensional (3D) space, covering a
wide range of the arm workspace. While subjects maintained
postures, a seven-degrees-of-freedom (7-DoFs) robot arm was
used to produce small displacements of subjects’ hands along
the three Cartesian axes. The end-point dynamic behavior
was modeled using a linear second-order system and the
impedance characteristics in the 3D space were identified using
the measured forces and motion profiles. Experimental results
were confirmed with two subjects.

I. INTRODUCTION

Applications of robots that are in full contact interaction
with humans has received increased attention during the
last decades. Since the late 80’s, there has been a substan-
tial amount of interest in measuring human arm end-point
two-dimensional (2D) stiffness characteristics, with the arm
vertically supported and constrained to movement within a
horizontal plane. In [1], a perturbation method to measure
hand stiffness was developed, by using a manipulandum to
displace the subject’s hand during maintenance of a given
posture. Stiffness values were represented both numerically
and graphically as ellipses and it was shown that the end-
point dynamic characteristics were mainly composed of
spring-like elements. A similar technique was used in [2]
and [3]. In [4] and [5] the perturbation method was extended
to include measurement of dynamic components such as
viscosity and inertia, as well as stiffness.
However, all previous studies focused only on arm mo-

tion at the horizontal plane. This essentially restricts the
generalization of the results and the use of the respective
conclusions. A recent study [6] attempted to identify end-
point impedance characteristics in the three-dimensional
(3D) space by using a non-parametric method. However,
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stochastic methods are not able to provide insight of the neu-
romuscular systems and its interaction with the environment.
Therefore, a systematic method for studying the dynamic
characteristics of the arm in the 3D space is required. Such a
method can provide significant information of the impedance
of the upper limb across a larger part of the available
workspace, and illustrate how the already analyzed properties
of the arm impedance in the horizontal plane can generalize
(if possible) to the 3D space.

In this paper, a systematic method for characterizing the
arm impedance in the 3D space is presented. A seven-
degrees-of-freedom (7-DoFs) robot manipulator equipped
with a six-axis force-torque sensor at its end-effector, is used
in order to impose motion and measure interaction forces
with a subject’s hand. The subject’s hand is appropriately
attached at the robot’s end-effector. The manipulator imposes
small displacements at the subject’s hand, along the three
axes, starting at various points in the 3D space throughout
the arm workspace. The displacements follow specifically
programmed trajectories with varying speed, in order to
study the dynamic behavior of the subject’s arm. A simpli-
fied linear model for hand impedance is used and inertia,
viscosity and stiffness characteristics are computed from
the available measurements of motion and force. Moreover,
using a magnetic position tracking system, the upper limb
joint angles are also recorded. The resulted characteristics
are graphically represented using ellipsoids and therefore
the dynamic behavior of the arm in 3D space is directly
assessed.

II. MATERIALS AND METHODS

The goal of this study was to develop a method for
measuring the dynamic characteristics of the human arm
end-point in the 3D space. These properties were analyzed
in multiple points in the 3D space sufficiently covering the
arm workspace. The method followed is based on the motion
perturbation during maintained posture of the arm [1], but
extended through two main features; the motion perturbation
was not with constant velocity but dynamic, i.e. had varying
velocity profile. In addition, the arm was perturbed with
motion in the 3D space and not only on the horizontal plane.
Using these two new characteristics, full 3D arm impedance
characteristics could be identified and not 2D values of arm
stiffness only as in previous works ( [1], [7], [5]). Finally,
a graphical representation of arm impedance in space was
introduced.
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Fig. 1. The experimental setup: A 7-DoF robot arm, equipped with a
force-torque sensor at it’s end-effector generates motion perturbations to the
human arm, through the tube-handle system shown. The user has his forearm
inserted in the tube, secured with transversal straps, while he is constantly
holding the handle at the end of the tube. The tube is firmly connected with
the force-torque sensor. Position tracker sensors are placed at the shoulder
and the wrist of the user, while the reference system is attached on the
shoulder of the user. XR, YR, ZR are the robot reference frame axes.
XH, YH , ZH are the human (or position tracker) reference frame axes.
XF, YF, ZF are the force-torque sensor reference frame axes. The user’s
torso is firmly supported at a flat surface to prevent body movements during
the experiment.

A. Apparatus

Subjects were seated with their trunk restrained to the chair
through harness belt. The subjects gripped an appropriately
designed handle, mounted on the robot end-effector, with
their dominant arm. The handle was inside a tube, in which
the subject’s forearm was inserted. The subjects’ forearm was
supported inside the tube through elastic straps transversely
inserted into the tube. The tube was appropriately designed
so that it restrained wrist motion (wrist flexion-extension
and radial-ulnar deviation). The subjects were instructed to
always hold the handle firmly. The handle-tube along with
the subjects’ hand is graphically depicted in Fig. 1. The tube-
handle system was mounted on a 7-DoF robot manipulator
(PA-10, Mitsubishi Heavy Industries). Further information
for hardware characteristics, kinematics and dynamics can
be found in [8]. Between the tube-handle mounting and the
robot end-effector, a 6-axis force-torque sensor (JR3 Inc.)
was included for measuring human-robot interaction forces
in the three axes of space. The subjects were seated so that
most of their arm workspace was accessible from the robot
workspace.
A magnetic position tracking system (Isotrak II, Polhemus

Inc) was used for measuring the human arm configuration.
The position tracking system was equipped with a base
reference system, with respect to which, the 3D-position and
orientation of two small position sensors is given in real-
time. The position sensors were firmly attached at the elbow
(at the olecranon) and the wrist (at the styloid process of
radius) of the subject, while the reference system was placed
on the subjects’ shoulder as shown in Fig. 1. The axes of the
robot arm and position tracking system were properly aligned
during a calibration procedure, using online measurements of
both systems. Let XR, YR, ZR be the robot reference axes
vectors, and let XH, YH, ZH be the human references axes
vectors (i.e. the position tracking system base). Then, the

Fig. 2. Starting points, S(i), i = 1, 2, . . . , 6, and corresponding target
points, P (i)

n , n = 1, 2, . . . , 16, for end-point perturbation in the 3D arm
workspace.

relationship between them, as shown in Fig. 1, is defined by
[
XR YR ZR

]
=

[ −YH ZH −XH

]
(1)

B. Procedures and Tasks

Two subjects participated at the experiments. Each subject
was asked to firmly hold the handle while looking towards
the robot arm, as shown in Fig. 1. The robot arm end-
effector was initially positioned at six starting 3D points
(S(i), i = 1, 2, . . . , 6), inside the human arm workspace.
More specifically, the starting points belonged to a sphere
of radius 20 cm and center a point chosen as the center
of studied arm workspace. Starting for each point S(i),
the robot end-effector was moved to 16 surrounding points
P

(i)
n , n = 1, 2, . . . , 16, that belonged to a sphere with center
the point S(i) and radius equal to 3 cm. All the points and
motion paths are depicted in Fig. 2.
The robot end-effector initiated the motion from each point

S(i), i = 1, 2, . . . , 6, to each point P (i)
n , n = 1, 2, . . . , 16,

lasting for 3 seconds (center-out phase). After arriving at
point P (i)

n , the robot stayed there for 2 seconds (relax phase
1), and then returned to the starting point S(i) following a
constant velocity line path taking 2 seconds (return phase).
Finally the robot end-effector stayed there for 2 seconds
(relax phase 2), before initiating motion for the next P (i)

n

point. The subjects were instructed to try to maintain their
hand initial position S(i) only during the center-out phase,
i.e. trying to restrain to robot center-out motion. During all
the other phases (relax phase 1 and 2, and return phase) the
subjects were instructed to relax and passively follow robot
induced motion.
The perturbed motion coming from the robot end-effector

motion during the center-out phase was specifically designed
as dynamic. Three kinds of trajectories along each axis were
designed; polynomial (3rd order), trapezoidal and sinusoidal.
The polynomial trajectory was designed so that the motion at
each axis was described by a 3rd order polynomial, with zero
initial and final velocity, resulting to smooth initiation and
termination of robot motion. The trapezoidal trajectory was
defined with a trapezoidal profile for velocity at each axis
of motion, i.e. constant velocity throughout the motion (i.e.

3104



the center-out phase), except from the first and last 10% of
the motion allowing for proper acceleration and deceleration.
During the latter periods, the velocity was linearly changing.
The sinusoidal trajectory was designed so that the robot
end-effector was performing two full-periods of sinusoidal
oscillations around the initial point S(i) along each axis of
motion. The amplitude of the sinusoidal motion was equal
to the distance between the initial point S(i) and the target
point P (i)

n , while the duration of sinusoidal motion was six
seconds, succeeded by a 3 seconds resting period.
Therefore, the 3D position of the robot end-effector was

defined by the different kinds of trajectories. Regarding the
orientation, the robot end-effector was controlled to have all
orientation angles (roll, pitch and yaw) equal to zero. This
essentially guaranteed that the tube-handle system would
keep a constant orientation with respect to the subject, which
was identical to the initial one, as shown in Fig. 13. Having
the desired pose of the robot end-effector, the appropriate
robot joint angles were computed using the pseudo-inverse
Jacobian method [9]. For details on this procedure, the reader
can refer to [8]. All the robot trajectories were designed
and computed offline. Having computed the desired robot
trajectories in joint space, the robot could be commanded
to track those trajectories using its high-performance servo
controller, with a maximum tracking error in joint space that
did not exceed 0.02 deg. Finally, the force-torque sensor
was mounted on the robot end-effector, while its axes were
aligned to those of the robot, as shown in Fig. 1.
Each of the two subjects (2 males of 25 and 26 years

old) completed the experimental session including the 16
surrounding target P (i)

n , n = 1, 2, . . . , 16 for each of the
6 starting points S(i), i = 1, 2, . . . , 6 inside their arm
workspace. The recording of the data started as soon as the
robot end-effector initiated motion from each of the points
S(i), i = 1, 2, . . . , 6 to its surrounding targets P

(i)
n , n =

1, 2, . . . , 16. For example, if t = 0 is when the robot initiated
motion from point S(1) to each one of its 16 surrounding
targets P (1)

1 , P (2)
1 , . . ., P (16)

1 , then the experiment stops after
16 motions from S(1) to each P

(1)
n , n = 1, 2, . . . , 16 and

back to S(1), lasting eventually t = 9 ∗ 16 = 144sec. Then
the robot was moved to the next initial point (i.e. S(2)) and
the next session was started as soon as the subject confirmed
that he was ready after resting his arm. All experimental
procedures were conducted under a protocol approved by the
National Technical University of Athens Institutional Review
Board.

C. Data Processing

As described above, data were sampled at the frequency
of 500 Hz and stored for offline analysis. Data include
robot arm joint angles, force-torque sensors measurements
including forces along the XF, YF, ZF axes (as shown
in Fig. 1), and position and orientation of the two posi-
tion tracker sensors placed on the human arm. Regarding
the robot end-effector position, it was computed using the

3The tube longitudinal axis was always perpendicular to the coronal plane.

forward kinematics equations of the robot, from the recorded
joint angles. Details on the kinematics can be found in [8]. As
for the human end-point position, this was monitored through
the second position tracker, with respect to the tracker base
reference system 〈XH,YH,ZH〉.
Regarding force measurements, the initial force values for

each axis were subtracted from all the acquired measure-
ments. This was done at the initiation of each individual
motion, so to ensure that all measurements offsets due to
sensor calibration, or misalignments, and human arm weight
gravitational forces were not affecting the force measure-
ments. Since the motion from the starting points S(i) was
limited in terms of distance covered and velocity, while
the human arm configuration changes were also small, the
gravitation forces were considered constant.
1) Modeling arm impedance: Since the displacement of

the subject’s hand from the starting point (maintained pos-
ture) was small, the hand impedance model can be expressed
in the end-point level when the human arm is under a stable
posture, by the following equation:

MeẌ+BeẊ+Ke (X−Xu) = F (2)

where Me, Be, Ke ∈ R
3×3 represented the hand inertia,

viscosity and stiffness matrices respectively, X ∈ R
3 and F

∈ R
3 represented the end-point position and force vectors

with respect to the human reference system 〈XH,YH,ZH〉,
while Xu represented the virtual equilibrium position of
the stiffness component. Eq. (2) was used for modeling
local end-point impedance, since within small displacements
linearity could be assumed ( [1], [6], [10]). Finally Coriolis
terms are discarded as second order effects in the lineariza-
tion.
2) Identification of arm impedance: Since the experi-

ments were of maintaining arm posture, the force vector
F in (2) was equal in magnitude and of opposite direction
of the force vector measured by the force-torque sensor.
Moreover, the end-point position vector X was available
(both from the robot end-effector position and the position
tracker measurements as noted above). Therefore, eq. (2)
was transformed to an identifiable form, with respect to the
impedance matrices Me, Be, Ke, as shown below:

Yπ = F (3)

where π ∈ R
27 was the parameter vector to be identified,

given by

π =
[
M

T
ex

B
T
ex

K
T
ex

M
T
ey

B
T
ey

K
T
ey

M
T
ez

B
T
ez

K
T
ez

]T (4)

where
Me =

[
Mex

Mey
Mez

]T
Be =

[
Bex

Bey
Bez

]T
Ke =

[
Kex

Key
Kez

]T
.

(5)

Y in eq. (3) was a (3× 27) matrix defined by

Y =

⎡
⎣ L

T
01×9 01×9

01×9 L
T

01×9

01×9 01×9 L
T

⎤
⎦ (6)
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where L ∈ R
9 was defined by

L =
[
Ẍ

T
Ẋ

T (X−Xu)
T

]T
, (7)

and 01×9 was a zero matrix of size (1×9), and Ẋ, Ẍ vectors
representing end-point velocity and acceleration. Using eq.
(3) for m measurements of the end-point position and force
collected during the experiments, the parameter vector π was
computed by the least-squares method represented by the
following:

π = Y
†
aFa (8)

where Y
†
a was the left pseuso-inverse matrix of Ya, while

the matrix Ya ∈ R
3m×27 and the vector Fa ∈ R

3m

were formed by concatenating m instances of Y and F

respectively, according to eq. (3), corresponding to the m

measurement points during the experiments. I.e.

Ya =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L
T
1 01×9 01×9

01×9 L
T
1 01×9

01×9 01×9 L
T
1

...
...

...
L
T
m 01×9 01×9

01×9 L
T
m 01×9

01×9 01×9 L
T
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Fa =

⎡
⎢⎣

F1

...
Fm

⎤
⎥⎦

(9)
where Li, Fi were instances of L, F for each data point i,
i = 1, 2, . . . ,m, according to eq. (7) and (6). Therefore, us-
ing the experimental measurements, the impedance matrices
Me, Be, Ke in Cartesian space were identified.
3) Impedance analysis: The impedance matricesMe,Be,

Ke were separated into a symmetric and an antisymmetric
component. Generally, if Z ∈ R

3×3 was an impedance
matrix, it was separated into a symmetric Z

(s) and an
antisymmetric Z(a) component, i.e.

Z =

⎡
⎣ Zxx Zxy Zxz

Zyx Zyy Zyz

Zzx Zzy Zzz

⎤
⎦ = Z

(s) + Z
(a) (10)

where
Z
(s) = 1

2

(
Z+ Z

T
)

Z
(a) = 1

2

(
Z− Z

T
) (11)

If f (x, y, z) is a differentiable, nonlinear function of the
position of the arm end-point, where x, y, z the position of
the end-point in the 3D space, it is possible to express the
hand impedance as a differential operator that relates small
variations of force (dFx, dFy , dFz) with small displacements
(dx, dy, dz), i.e.

dFx =
(
∂Fx

∂x

)
dx+

(
∂Fx

∂y

)
dy +

(
∂Fx

∂z

)
dz =

Zxxdx+ Zxydy + Zxzdz

dFy =
(

∂Fy

∂x

)
dx+

(
∂Fy

∂y

)
dy +

(
∂Fy

∂z

)
dz =

Zyxdx+ Zyydy + Zyzdz

dFz =
(
∂Fz

∂x

)
dx+

(
∂Fz

∂y

)
dy +

(
∂Fz

∂z

)
dz =

Zzxdx+ Zzydy + Zzzdz

(12)

The above equation is only correct for small displacements.

Therefore, the physical meaning of the symmetric
impedance component is that the force field f (x, y, z) is
conservative. The antisymmetric component essentially rep-
resents the curl of the force field and was generated mainly
by the hand [1]. It’s contribution to the overall impedance is
described in the Results section.
4) Impedance representation: An ellipsoid (see Fig. 3)

centered at the origin is represented by the following equa-
tion:

a11x
2+a22y

2+a33z
2+2a12xy+2a13xz+2a23yz = 1 (13)

where a11, a22, a33, a12, a13, a23 elements of a symmetric
matrix A ∈ R

3×3, i.e.

A =

⎡
⎣ a11 a12 a13

a12 a22 a23
a13 a23 a33

⎤
⎦ (14)

The principal axes of the ellipsoid x
(1), x(2), x(3) ∈ R

3

are the eigenvectors of the matrix A, and they are all orthog-
onal to each other. These eigenvectors essentially define the
principal reference system of the ellipsoid. Let α, β, γ be
the yaw, pitch and roll angles that define the orientation of
the principal reference system of the ellipsoid, with respect
to the base reference system. The rotation matrix describing
the ellipsoid principal reference system with respect to the
base system is given by:

R (α, β, γ) = Rz (α)Ry (β)Rx (γ) (15)

where Rx, Ry, Rz follow the standard notation of rotation
matrices. Since the eigenvectors of the matrix A define the
orientation of the ellipsoid principal reference system, it is:

R (α, β, γ) =
[
x
(1)

x
(2)

x
(3)

]
(16)

Solving (16) for the α, β, γ orientation angles it is:

α = tan−1
(

r21
r11

)
, β = tan−1

(
−r31√
r2
32

+r2
33

)
,

γ = tan−1
(

r32
r33

) (17)

where
[
x
(1)

x
(2)

x
(3)

]
=

⎡
⎣ r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤
⎦. More-

over, the equatorial radii a, b (along the principal axes x(1)

and x
(2) respectively) and the polar radius c (along the

principal axis x
(3)) of the ellipsoid are given by: a =

1√
λ1

, b = 1√
λ2

, c = 1√
λ3

, where λ1, λ2, λ3 are the
eigenvalues of the matrix A. Based on the above, the
symmetric partsM(s)

e ,B(s)
e ,K(s)

e of the impedance matrices,
were represented with ellipsoids with center the starting
points (S(i), i = 1, 2, . . . , 6), radii along their individual
principal axes and orientation defined above.

III. RESULTS

The impedance matrices Me, Be, Ke for each starting
point Si per subject were identified as analyzed above, and
separated into their symmetric and antisymmetric compo-
nents. The estimated numerical values of the symmetric
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Fig. 3. Ellipsoids principal axes before (x, y, z) and after (x(1), (x(2),
x(3)) rotation of α, β, γ (see (17)). The equatorial radii a, b (along the
principal axes x(1) and x(2) respectively) and the polar radius c (along the
principal axis x(3)) of the ellipsoid are shown.

components of each impedance matrix are shown in Table I.
The corresponding values of the non-symmetric impedance
components were observed to be much lower than the
corresponding ones in the symmetric impedance components.
Table II compares the values of non-symmetric and sym-
metric impedance components. The terms with subscripts
max, min, denote the maximum and minimum values of
the corresponding symmetric impedance components, while
the terms with subscript maxA denote the maximum dif-
ference between the off-diagonal symmetric elements of
the antisymmetric impedance component matrices. As it is
shown, the contribution of the curl of the force field (i.e.
the non-symmetric impedance components, see Section II)
was identified as very low. Finally it must be noted that the
values of arm impedance were identified after the application
of the least square method analyzed in Section II, while the
correlation coefficients between the recorded force values
and the ones computed using the fitted model parameters,
were 0.94, 0.88 and 0.87 for the 3 Cartesian axes of motion
respectively.
As discussed in Section II, the impedance components can

be represented by ellipsoids. In Fig. 4, the ellipsoids of each
of the impedance components, i.e. stiffness, viscosity and
inertia are depicted. As it can be shown, the stiffness compo-
nents are the ones that prevail compared to the viscosity and
inertial components, a result that is consistent with previous
studies in the 2D space [1], [3].

IV. CONCLUSIONS AND DISCUSSION

In this paper, the impedance characteristics of the hu-
man upper limb in the 3D space was analyzed. First, an
experimental protocol was defined to study the dynamic
characteristics of the arm impedance in the 3D space. Then,
experimental data were fitted to a model defined for the
3D arm impedance. The main novelty of this work is the
expansion of all the previous studies of arm impedance to the
3D space. Since every-day life tasks demand the movement
of the upper limb in the 3D Cartesian space, the modeling
and characterization of the arm impedance in this space is
significant. Finally, a way of representing the impedance
components was introduced and applied to the experimental

Fig. 4. Representation of impedance characteristics in the 3D arm
workspace. Top left figure: impedance ellipsoids centered in the points
measured in the arm workspace. Top right and bottom figures: enlarged
image of stiffness, viscosity and inertia components of the arm impedance
represented by ellipsoids. The scale of the figures in shown at the top right
corner of each one, where a sphere of a radius representing the noted value
is shown. Number of points are shown in top right figure, where each point
i corresponds to the starting point S(i), i = 1, 2, . . . , 6.

data. The significance of the characterization of the 3D arm
impedance can be found in many fields. In the field of
robotics, advanced control schemes for orthotic devices (i.e.
arm exoskeletons) can be developed and implemented, based
on arm impedance characteristics.
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TABLE I

ESTIMATED SYMMETRIC COMPONENTS OF THE ARM IMPEDANCE IN 3D SPACE

Subject
Hand
position

Stiffness Viscosity Inertia(
N

m

) (
N sec
m

) (
N sec2

m

)

K
(s)
exx K

(s)
exy K

(s)
exz B

(s)
exx B

(s)
exy B

(s)
exz M

(s)
exx M

(s)
exy M

(s)
exz

K
(s)
eyx K

(s)
eyy K

(s)
eyz B

(s)
eyx B

(s)
eyy B

(s)
eyz M

(s)
eyx M

(s)
eyy M

(s)
eyz

K
(s)
ezx K

(s)
ezy K

(s)
ezz B

(s)
ezx B

(s)
ezy B

(s)
ezz M

(s)
ezx M

(s)
ezy M

(s)
ezz

1

1002 12 26 86 22 25 0.40 0.03 0.02
S(1) 12 250 94 22 56 9 0.03 0.35 0.01

26 94 320 25 9 47 0.02 0.01 0.19
620 208 86 139 16 15 0.16 0.02 0.01

S(2) 208 360 83 16 18 11 0.02 0.03 0.01
86 83 449 15 11 17 0.01 0.01 0.18
429 155 42 32 17 21 0.22 0.02 0.07

S(3) 155 181 44 17 25 16 0.02 0.36 0.12
42 44 221 21 16 61 0.07 0.12 0.11
224 55 9 21 14 12 0.60 0.03 0.08

S(4) 55 67 16 14 18 4 0.03 0.14 0.01
9 16 167 12 4 35 0.08 0.01 0.18
431 52 23 96 2.2 8.1 0.24 0.22 0.07

S(5) 52 72 41 2.2 12 1.5 0.11 0.63 0.32
23 41 68 1.5 8.1 41 0.07 0.32 0.47
690 75 21 55 8.2 5.58 0.31 0.08 0.05

S(6) 75 282 60 8.2 18 6.68 0.08 0.22 0.06
21 60 117 5.58 6.68 20 0.05 0.06 0.31
1032 182 230 110 12 13 0.12 0.02 0.07

S(1) 182 351 148 12 86 9.5 0.02 0.15 0.03
230 148 544 13 9.5 89 0.07 0.03 0.09
879 250 65 64 17 15 0.45 0.14 0.17

S(2) 250 334 103 17 28 19 0.14 0.28 0.03
65 103 271 15 19 58 0.17 0.03 0.22
1068 218 253 114 6.1 18 0.71 0.08 0.07

2 S(3) 218 647 258 6.1 28 3.5 0.08 0.39 0.50
253 258 803 18 3.5 22 0.07 0.50 0.23
741 89 141 47 15 4 0.75 0.07 0.06

S(4) 89 506 235 15 49 1.7 0.07 0.31 0.05
141 235 320 4 1.7 24 0.06 0.05 0.51
1072 86 177 203 4.5 6.8 0.32 0.05 0.03

S(5) 86 640 56 4.5 68 4.1 0.05 0.31 0.03
177 56 214 6.8 4.1 44 0.03 0.03 0.28
791 54 25 42 8.4 5.7 0.37 0.07 0.03

S(6) 54 352 52 8.4 17 3.2 0.07 0.18 0.15
25 52 138 5.7 3.2 23 0.03 0.15 0.19

TABLE II

ANTISYMMETRIC AND SYMMETRIC COMPONENTS OF THE ARM IMPEDANCE IN 3D SPACE

Subject Hand
position

Stiffness Viscosity Inertia(
N

m

) (
N sec
m

) (
N sec2

m

)

K
(s)
emax K

(s)
emin

K
(s)
emaxA

B
(s)
emax B

(s)
emin

B
(s)
emaxA

M
(s)
emax M

(s)
emin

M
(s)
emaxA

S(1) 1002 12 2 86 9 1 0.40 0.01 1.3e-3
S(2) 620 83 13 139 11 2 0.18 0.01 2.3e-4

1 S(3) 429 42 8 61 16 2 0.36 0.02 3.4e-3
S(4) 224 9 2 35 4 0.7 0.60 0.01 1.5e-3
S(5) 431 23 2.3 96 1.5 0.09 0.63 0.07 8.9e-3
S(6) 690 21 1.2 55 5.58 0.17 0.31 0.05 0.01
S(1) 1032 148 17 110 9.5 1.2 0.15 0.02 2.9e-3
S(2) 879 65 9.3 64 15 1.3 0.45 0.03 3.8e-3

2 S(3) 1068 218 14 114 3.5 0.08 0.71 0.07 0.01
S(4) 741 89 7.5 49 1.7 0.08 0.75 0.05 8.6e-3
S(5) 1072 56 12 203 4.1 0.9 0.32 0.03 1.9e-3
S(6) 791 25 3.4 42 3.2 0.12 0.37 0.03 1.2e-3
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