
Incremental Adaptive Integration of Layers of a Hybrid Control Architecture

Matthew Powers and Tucker Balch

Abstract— Hybrid deliberative-reactive control architectures
are a popular and effective approach to the control of robotic
navigation applications. However, due to the fundamental
differences in the design of the reactive and deliberative layers,
the design of hybrid control architectures can pose significant
difficulties. We propose a novel approach to improving system-
level performance of hybrid control architectures by incremen-
tally improving the deliberative layer’s model of the reactive
layer’s execution of its plans. Incremental supervised learning
techniques are employed to learn the model. Quantitative
and qualitative results from a physics-based simulator are
presented.

I. INTRODUCTION AND RELATED WORK

Hybrid deliberative-reactive control architectures for
robotic navigation have long been an active area of research.
Despite their success, open questions remain how to best
integrate the layers to maximize overall system performance.
In this work, we propose a novel method to improve the
integration of deliberative planning and reactive control
in a robotic navigation system. In particular, we will use
supervised machine learning techniques to improve the de-
liberative layer’s model of the reactive layer’s interpretation
of its plans.

Arkin’s AuRA architecture [1] and Gat’s Atlantis ar-
chitecture [2] are early examples of hybrid deliberative-
reactive architectures. In both, the reasoning done by the
deliberative layer is fundamentally different from that done
by the reactive layer. The deliberative layer works to achieve
global goals based on world models. The reactive layer
works to satisfy local constraints based on current sensor
input. Each architecture suggests methods for combining
the globally-based deliberative input with the locally-based
reactive reasoning.

Many modern systems use an implementation of a hy-
brid layered approach to robot control architecture, using
decoupled layers of functionality to satisfy both the robot’s
immediate constraints and its longer-term objectives. In the
case of robot navigation (especially in the area of field
robotics), many modern architectures make use of a lower-
fidelity global deliberative planner and a higher-fidelity local
reactive controller [3], [4], [5]. Finding a compromise be-
tween global objectives and local constraints is not always
easy, and often the tradeoffs have to be empirically “fine-
tuned” by the robot software designer.

Matthew Powers is with the National Robotics Engineering Cen-
ter, Carnegie Mellon University, 10 40th St, Pittsburgh, PA 15201,
USA. Tucker Balch is with the College of Computing, Georgia In-
stitute of Technology, 801 Atlantic Drive, Atlanta, GA 30332, USA
mpowers@rec.ri.cmu.edu, tucker@cc.gatech.edu

Early work in learning across hybrid control architectures
was done by Lin [6], using reinforcement learning across
task decompositions between high and low-level skills. This
work was built upon by Stone [7] and Balch [8].

We propose an approach to improving system-level per-
formance of hybrid control architectures by learning models
of the reactive layer’s execution of the deliberative layer’s
plans, based on measurements of actual executions. Our
approach collects training data by measuring the performance
of the execution of the plans. Supervised machine learning
techniques (in particular, an implementation of the k-nearest
neighbor algorithm), are used to abstract that performance
to predict performance in other environments. Then, this
learned model is fed back to the planner for use in creating
plans with better overall performance.

II. REPRESENTATION

Following the pattern of other hybrid control architectures,
we divide the architecture into two distinct components, the
reactive layer and the deliberative layer. The reactive layer
is responsible for monitoring the robot’s sensors, performing
low-level navigation and decision making, and actuating the
robot’s motors. We model the robot’s reactive layer as a
continuous controlled dynamical system. The deliberative
layer is responsible for integrating sensor input into maps,
and planning routes and actions toward a given goal. We
model the deliberative layer as a discrete process providing
regular input to the reactive layer.

A. Reactive Layer

We begin by modeling the robot as a controlled dynamical
system,

ẋ = f (x,u), x ∈ Ra, u ∈ Rb (1)

which exists in a world W ⊂ Rd .
We are given a measurement equation,

y = hy(x) (2)

that provides access to the state of the system. Additionally,
we are given another measurement equation that gives sen-
sory access to the state of the world, hs(x,w). We then define
the array s as the collection of all observable sensory input:

s = {hs(x,w)}w∈W (3)

We can then close the loop, defining the control input u
as a function of the measurements of both the system state
and the environment state. Thus,

u = g(y,s) (4)

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2012

B. Deliberative Layer

We model the robot’s deliberative layer as a regularly
updating discrete-timed event system which updates at times
t0, t1, . . . , t f inal , where ti − ti−1 = ∆t, ∆t > 0. These intervals
account for the practical requirements of the execution of
complex algorithms and management of large data sets.

Given that the robot is using a map to guide its path
planning algorithms, we define the map M as an integrated
set of sensory input. In each update cycle, the most recent
set of sensory input, st is integrated into the map, relative
to the most recent measured state of the system, yt , by the
integration function m,

Mt = m(st ,yt ,Mt−1) (5)

We assume m is a non-invertable function. That is, given Mt
we cannot directly recover {(s0,y0), (s1,y1), . . . , (st ,yt)}.
This is an important point, as given Mt , we cannot directly
recover the reactive layer’s control output, g(yt ,st)

Given that the world W ⊂ Rd is compact and connected,
assume W is partitioned into a set of n regions,

R = {ri}n
i=1 (6)

such that ⋃
r∈R

r = W (7)

and
ro

i

⋂
ro

j = φ , ∀i, j, i 6= j (8)

where ro denotes an interior region.
For each region, we are given a collection of m control

laws,
Gro = {gi(y,s)}m

i=1, ∀ro ∈ R (9)

and a transition function d(ro,M,g) which provides a map-
ping from an interior region and a control law to the next
region the control law will drive the robot toward. Intuitively,
we can think of this is as the expected outcome of the control
law. This mapping is important to the planning process as it
provides a model of the outcome of the action of employing
a particular control law. We are also given a cost model,
c(ro,M,g) that provides an expected cost of traversing region
ro, using the control law g, given the map M.

Given a goal region, rgoal , and a starting region, rstart ,
this representation is easily mapped into a graph-based
model (compatible with many planning algorithms), Γ =
(V,E, l,vstart ,vgoal), where:

• V is a set of vertices, directly corresponding to the set
of interior regions, {ro}ro∈R

• E is a set of directed edges, E ⊆ V ×V . This set of
edges corresponds to the connectivity described by the
transition model, E = {ro×d(ro,M,g)}ro∈R, g∈Gro

• l is a cost function l : E → R+ directly corresponding
to the cost model c(ro,M,g), where the edge corre-
sponding to the weight is given by the transition model,
e = (ro×d(ro,M,g)), e ∈ E.

• vstart and vgoal are the starting and goal vertices, respec-
tively. These vertices correspond directly to the regions
ro

start and ro
goal .

Within this graph-based representation, the path planning
problem can be defined as selection a sequence of edges

Plan = {e0 = (vstart ,v1), . . . ,eN = (vgoal−1,vgoal)} (10)

to minimize the total cost

Cost = ∑
e∈Plan

l(e) (11)

In this case, the set of edges is provided by the transition
model, d(ro,M,g), which is a function of the selection of
of the control law, g. We can then more precisely define the
planning problem as choosing a mapping b ∈ B (where B is
the set of all possible mappings), from each ro to a g ∈Gro ,

ẋ = f (x,g(y,s)), ∀x | p(x) ∈ ro, g = b(ro) (12)

(where p(x) ∈W is the position of the system) , such that

b = argmin
b∈B

goal

∑
i=0

c(ro
i ,M,b(ro

i)) (13)

where
ro

i+1 = d(ro
i ,M,b(ro

i)) (14)

C. Learning

Two components of the deliberative layer’s planning
process rely primarily on a priori models of the reactive
layer’s execution of the provided plans. The transition model,
d(ro,M,g) predicts the the next region the system will enter,
given the region the robot is currently in and the control law
the robot is currently executing. The cost model c(ro,M,g)
predicts the cost incurred by the system until the next
region is reached. It is the goal of this work to improve the
integration of the deliberative and reactive layers by learning
a cost model that better represents the cost actually incurred
by the reactive execution of the plan. Improving performance
by learning the transition model as well will be discussed
further in the Future Work section.

We begin by defining a measurement function, mc(x,ro)
which measures the cost incurred by the execution of a
control law in region ro given map M. We define the learning
problem as choosing a cost model that best predicts the
measured cost, given all measurements up to time t,

ct = argmin
c∈C

E[|mc(x,ro)−c(ro,M,g)|] | {mc(x,ro)}t (15)

where C is the set of all possible cost functions. This opti-
mization is over an expectation not only because of possible
noise in the sensory information, but because, as noted
earlier, the mapping function is non-invertable. Therefore, the
cost model, which is a function of M, cannot directly access
the reactive output measured by the measurement function.
The best the cost model can do is a prediction of the reactive
output. Our goal is to minimize the error in this prediction.

2013

III. EXPERIMENTAL IMPLEMENTATION

To demonstrate the capabilities and performance of the
proposed system, a simulated robot and hybrid control archi-
tecture was implemented. A car-like robot was implemented
in the Gazebo simulation environment [10]. The robot’s
physical state is represented as simply its 2-dimensional
position and heading,

x =

 x
y
θ

 (16)

The robot has control over its translational velocity, v and
its steering angle, which is proportional to the curvature of
its path, κ ,

u =
[

κ

v

]
(17)

Thus, the dynamics of the robot are defined,

ẋ =

 v · sinθ

v · cosθ

v · κ

 (18)

The simulated robot is equipped with sensors to measure
its own state, and the state of the world. A simulated GPS
module provides the robot with a measurement of its own
state,

y =

 x
y
θ

 (19)

Simulated laser range-finders provide measurements of the
state of the world,

hs(x,w) =
{

o(w) if ‖p(x)−w‖ ≤ ∆

φ otherwise (20)

where ∆ is the range of the measurement system, and o(w)
is the occupancy of the point w ∈W . The occupancy of a
point w is defined as:

o(w) =
{

1 if the point w is occupied
0 else (21)

A. Reactive Layer

The reactive layer is implemented in a behavior-based
voting design, explained in detail in [11]. In this design a
number of behaviors evaluate candidate actions over a short
temporal scale, each behavior representing a specific interest
pertaining to the robot’s objective.

In this implementation, the behaviors reason over constant
curvature arcs. Each behavior distributes an allocation of
votes over an array of potential arcs for the robot to navigate
along. The behaviors can allocate votes for arcs that work to
achieve its interests, or against arcs that are detrimental to its
interests. In addition to distributing votes for or against arcs,
behaviors assign a maximum allowable velocity, associated
with each arc. Behaviors need not necessarily express an
interest across both curvature and velocity. A behavior may
vote for curvatures and leave the allowable velocities set
to the robot’s maximum velocity, it may cast no votes for

or against curvatures and express its interest across the
allowable velocities, or it may express its interest across both
dimensions.

To choose a curvature and velocity for the robot to
execute, an arbiter sums the votes cast by each behavior for
each curvature arc, weighting the votes for each behavior
according to a predetermined weighting scheme. It selects
for execution the curvature arc with the highest total of votes.
It then selects for execution the minimum of the maximum
allowable velocities assigned by the respective behaviors
to the selected curvature arc. The selected curvature and
velocity are sent on to low-level controllers for execution.

Five behaviors were used in this implementation:
• Move to Waypoint - allocates positive votes to arcs

according to a linear control law relating the local
heading to the waypoint to a commanded curvature.

• Avoid Obstacles - allocates negative votes to arcs ac-
cording to the distance along the arc that the arc crosses
into the configuration space around a detected obstacle.

• Maintain Headway - sets maximum allowable velocities
for each arc according to the distance along the arc
that the arc crosses into the configuration space around
a detected obstacle. If the arc does not cross into
the configuration space of the obstacle, the robot’s
maximum speed is assigned.

• Slow for Congested Areas - sets maximum allowable
velocities for each arc according to the distance along
the arc that the arc crosses into an intentionally large
configuration space around a detected obstacle.

• Slow for Turns - sets a maximum allowable velocity
for each arc according to a parameterized maximum
allowable rotational velocity.

In this implementation, the set of control laws Gro is
provided by parameterizing the given set of behaviors with
a waypoint from each adjacent region. (i.e., each member of
the set of control laws drive the robot toward one of the ad-
jacent regions, using the full compliment of behaviors.) The
transition model d(ro,M,g) is simply defined as mapping to
the region associated with the waypoint parameterizing the
control law g, regardless of the map.

B. Deliberative Layer

The deliberative layer is implemented as a global path
planner over a relatively high-resolution occupancy grid. As
sensory information is accumulated in the local frame it is
integrated into the global map based on the robot’s current
global state measurement. Detected obstacles are placed into
grid cells based on their discretized global position. Each
grid cell can be marked as either occupied or unoccupied.
Obstacles associated with unoccupied cells cause the cell to
be marked as occupied. Obstacles associated with occupied
cells have no effect on the cell; the cell remains marked
occupied.

The grid cells are then grouped into regions. A count of
occupied grid cells is kept within each region. This count
is used by the planning algorithm in evaluating the cost of
traversing each region.

2014

To represent the connectivity between the regions, a graph
is overlaid on the map. One graph vertex is placed at the
center of each region. Edges are added between contiguous
nodes. The cost of traversing each edge is proportional to
the expected time to move between its source node and des-
tination node. The time to move between nodes is modeled
as the distance between the nodes divided by the expected
average velocity of the robot over that distance. The baseline
planner uses a binary model of the robot’s velocity. If the
count of occupied grid cells within the region associated
with either node is larger than a parameterizable count, the
expected velocity is zero (i.e. the edge is not traversable
and is assigned an infinite cost). Otherwise, the expected
velocity is the robot’s top speed. This graph structure is
a suitable data structure for many planning algorithms. In
this implementation, an instance of the D*-Lite [12] [13]
algorithm is employed.

C. Learning

The learning component of this approach is implemented
within a supervised learning paradigm. To keep the learning
problem tractable, it is important to create a compact, yet
meaningful representation of the robot’s experiences execut-
ing proposed planning segments. We define the length of a
learning experience to be time to move from one region, ro to
the next region in the plan, d(ro,M,g), given the control law
g provided by the planning algorithm. We use the following
representation of a learning experience:

Exp = (g,Mlocal) (22)

where Mlocal is a local representation of the map, M. To
take advantage of symmetry in the problem, we orient the
experience into the robot’s local frame. That is, rather than
encoding the segments of the plan as “move north” or “move
east”, it is more general to encode the robot’s experiences as
“move forward” or “move right”. A more general encoding
of experiences makes learning over these experiences more
tractable, as it reduces the dimensionality of the problem.

A supervisory signal is provided by the measurement
function mc(x,ro), which measures the reactive layer’s inter-
pretation of the commanded plan. The measurement function
measures the average speed of the robot during the experi-
ence.

As experiences are collected, they are integrated into the
learning algorithm. The learner uses the experiences to ex-
trapolate expected results from new proposed experiences. In
this implementation, the learned model of expected velocity
is used by the global planner to plan subsequent navigation
paths. The planner uses the model to evaluate the expected
cost of traversing an edge, in terms of expected time to
traverse the edge. To evaluate the cost of an edge, the
edge is encoded in terms of a planning experience. The
learned velocity model returns an expected velocity over the
edge. The time-based cost model is obtained by dividing the
distance between the source node and the destination node
by the expected velocity. The planning algorithm plans over
these costs to find the fastest route.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

(a) The training environment (b) The quantitative testing environ-
ment

(c) The qualitative testing environ-
ment

Fig. 1. The environments used in training and testing. The environments
were built in the Gazebo simulation environment. Environment (a) was
used in gathering training data for the learning process. Environment (b)
represents a slightly more complex environment than (a), and was used for
quantitative testing. (c) represents a plausible environment, consisting of a
path through a dense forest, and was used for qualitative testing.

Three complex environments were designed within the
Gazebo simulation environment. The environments used are
shown in Figure 1. Environment 1(a) was used for gathering
training data. Environment 1(b) was used for running tests
comparing different systems. Environment 1(c) was used to
demonstrate the qualitative behavior of the system.

To effectively demonstrate differences in performance for
different amounts of training data, data was collected a
priori. Cost models were built using different amounts of
training data (ranging from 100 to 5000 experiences). Each
cost model was tested independently without incremental
learning. The performance of each cost model was then
compared, providing data on how performance improves with
the number of training instances.

Data was gathered in the training environment by tasking
the robot to achieve a series of randomly generated goals
around the environment, using the baseline planner and
the above described reactive layer. Every time the robot
achieved a waypoint the robot’s experience was recorded,
including the local map, the robot’s average velocity, the
commanded waypoint, and the waypoint actually achieved.
Approximately 5000 learning examples were collected.

Several different supervised learning algorithms were eval-
uated for use. The Weka machine learning environment [14]
provided a library of community-supported implementations
of well known algorithms. For learning prediction of the
robot’s velocity (a real-valued signal), we evaluated the k-
nearest neighbor algorithm for several values of k, a multi-

2015

Baseline KNN
k = 50

KNN
k = 15

KNN
k = 5

KNN
k = 2

Average Rel-
ative Error

106% 80% 72% 64% 61

Correlation -.44 .57 .62 .65 .63

TABLE I
RESULTS OF A 10-FOLD CROSS VALIDATION TEST ON SEVERAL

LEARNERS PREDICTING THE ROBOT’S VELOCITY GIVEN A PROPOSED

PLANNING TRANSITION, USING 5000 TRAINING EXAMPLES. THE

k-NEAREST NEIGHBOR ALGORITHM WITH THE k-VALUE SET TO 5
PRODUCED THE BEST RESULTS, NEARLY CUTTING THE AVERAGE

RELATIVE ERROR IN HALF, COMPARED TO THE BASELINE APPROACH.

layer perceptron network, linear regression, and the baseline
strategy of always assuming the robot travels at its maximum
speed.

Models were built from the training data, using each
algorithm. Cross-validation tests on the training data were
performed to evaluate the effectiveness of each algorithm.
Table I displays the cross validation results for each algo-
rithm on the velocity data. The k-nearest neighbor algorithm
with k = 5 produced the highest correlation and nearly the
lowest average relative error of the algorithms tested, and was
chosen for use in testing. Table II displays cross validation
results for instances of the k-nearest neighbor algorithm for
various numbers of training examples. The results show
a clear trend of improvement as the number of training
examples increases.

The learned models were then incorporated into the cost
function of the global planner. The baseline system was
compared to the system using the learned model. Each
system was tasked with achieving a sequence of goals criss-
crossing the test environment. This sequence of goals totaled
a piecewise straight-line distance of over 1500 simulated
meters. Results were compiled comparing the average time
to complete each goal between different systems.

In addition to quantitative experiments, a qualitative ex-
periment was performed to demonstrate, in an intuitive way,
the effect learning had on the overall system performance.
An environment was constructed to resemble an open path
through a wooded area, shown in Figure 1(c). The wooded
area is sparse enough that the robot is capable of finding
a path between the trees, but would travel that path slowly
due to its tendency to drive slowly in tight spaces and slow
down for the frequent required turns. The robot was tasked
with navigating to a goal whose straight-line path would
take the robot through the woods. The plans and resulting
paths created by the baseline system and the system that
had learned a cost model were compared qualitatively and
quantitatively.

B. Quantitative Results

To demonstrate how the performance of the planner im-
proved with learning, tests were run with different numbers
of examples used in the learned model. Figure 2(a) shows the
trend of performance improvement over the baseline naive

n =
100

n =
250

n =
500

n =
1000

n =
2500

n =
5000

Average Rel-
ative Error

112% 95% 87% 74% 71% 64%

Correlation .33 .43 .49 .54 .56 .65

TABLE II
RESULTS OF A 10-FOLD CROSS VALIDATION TEST ON SEVERAL

k-NEAREST NEIGHBOR INSTANTIATIONS, USING VARYING NUMBERS OF

EXAMPLES TO TRAIN. THE VALUE OF k WAS SET TO k = 5 THROUGHOUT

THE TESTS.

(a) Performance as a function of number of training instances. Larger
bars indicate better performance.

(b) Significance as a function of number of training instances. Smaller
bars indicate statistically more significant performance.

Fig. 2. System performance improvement over the baseline naive planner,
as a function of the number of examples used in training a k-nearest neighbor
regression model. (a) shows the improvement over the naive baseline system,
while (b) shows the paired t-test p-value for each instantiation.

planner. The learned planner improves significantly with just
100 examples, and starts a steady upward trend from 500 to
5000 examples. Figure 2(b) shows the statistical significance
of each test.

C. Qualitative Results

Figure 3 shows the results of the qualitative tests in the
path through the woods environment. Figure 3(a) shows the
baseline planner’s planned route through the environment.
Note how the planned route snakes through the dense ob-
stacle field on its way to the goal. Figure 3(b) shows the
trajectory actually taken by the robot following the planner’s
output. Note that it departs from the planned route early

2016

(a) Baseline system’s planned route (b) Baseline system’s traveled trajec-
tory

(c) Learned system’s planned route (d) Learned system’s traveled trajec-
tory

Fig. 3. In (a), the planned path from the robot to the goal through the “path
in the woods” environment using the baseline planner. The robot is at the
bottom of the image. The goal is at the top of the image. The planned path
is shown by pink waypoints. Obstacles in the map are shown in black. In
(b), the actual trajectory taken by the system (trajectory in red). In (c), the
planned path from the robot to the goal through the environment, using the
learned cost model. The resulting plan is longer given a constant velocity
model of the robot, but when used as input to the reactive layer, as shown
in (d), reduces mission time by 25% over the plan shown in (a).

in the mission. The planner continues to suggest updated
routes based on the robot’s position, and the robot eventually
achieves the goal.

Figure 3(c) shows the route provided by the planner using
the learned model. Note that it prefers a slightly longer
(by distance) route that follows the wide path. Figure 3(d)
shows the trajectory actually taken by the robot following
this plan. In this trial, the robot completes the mission in
25% less time than the baseline planner. This demonstrates
a clear qualitative and quantitative improvement in system-
level performance in a plausible environment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel approach to the prob-
lem of improving system-level performance of a hybrid
deliberative-reactive control architecture for robotic naviga-
tion. In particular, we propose using supervised machine
learning techniques to improve the deliberative layer’s cost
model, based on measured performance of the reactive
layer’s execution of plans. The system was implemented
in physics-based simulation environment. Quantitative and
qualitative experimental results were compiled and presented.

Certainly more work in the area can be done. For example:

• It is not yet clear if the relatively good performance
by the model using 100 examples is the result of over-
fitting or the ordering of the examples used. In general,
how does the order of training examples affect the
learning process?

• It is not yet clear how map representation effects the
performance of the learning component of the approach.
Can representations be chosen to improve learning?

• While improving the planner’s cost model certainly has
the potential to improve overall system performance,
judging from the trajectory in Figure 3(d), it is apparent
that improving the transition model may also have a
significant effect on system performance.

We look forward to exploring these questions in future work.

REFERENCES

[1] R. C. Arkin and T. Balch, “Aura: Principles and practice in review,”
Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,
pp. 175–189, 1997.

[2] E. Gat, “Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for mobile robots,” SIGART Bulletin, vol. 2,
no. 4, pp. 70–74, 1991.

[3] J. S. Albus, “4d/rcs: a reference model architecture for intelligent
unmanned ground vehicles,” in In Proceedings of SPIE Aerosense
Conference, pp. 1–5, 2002.

[4] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, et al., “The
robot that won the darpa grand challenge,” Journal of Field Robotics,
vol. 23, pp. 661–692, 2006.

[5] C. Urmson, J. Anhalt, H. Bae, J. A. Bagnell, et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal
of Field Robotics Special Issue on the 2007 DARPA Urban Challenge,
Part I, vol. 25, pp. 425–466, June 2008.

[6] L.-J. Lin, “Hierarchical learning of robot skills by reinforcement,” in
International Conference on Neural Networks, 1993.

[7] P. Stone, Layered Learning in Multi-Agent Systems. PhD thesis, School
of Computer Science, Carnegie Mellon University, 1998.

[8] T. Balch, Behavioral Diversity in Learning Robot Teams. PhD thesis,
Georgia Institute of Technology, December 1998.

[9] J. Sun, T. Mehta, D. Wooden, M. Powers, J. Rehg, T. Balch, and
M. Egerstedt, “Learning from examples in unstructured, outdoor
environments,” Journal of Field Robotics, vol. 23, pp. 1019–1036,
November/December 2006.

[10] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in
In Proceedings of the 11th International Conference on Advanced
Robotics, pp. 317–323, 2003.

[11] D. Wooden, M. Powers, M. Egerstedt, H. Christensen, and T. Balch, “A
modular, hybrid system architecture for autonomous, urban driving,”
Journal of Aerospace Computing, Information, and Communication,
vol. 4, pp. 1047–1058, December 2007.

[12] S. Koenig and M. Likhachev, “D*-lite,” in National Conference on
Artificial Intelligence, pp. 476–483, 2002.

[13] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, pp. 354–
363, June 2005.

[14] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H.
Witten, and L. Trigg, “Weka - a machine learning workbench for data
mining,” in The Data Mining and Knowledge Discovery Handbook
(O. Maimon and L. Rokach, eds.), pp. 1305–1314, Springer, 2005.

2017

