
  

  

Abstract—In the existing literatures of multirobots, it is 
usually assumed that the networked robots remain connected in 
topologyduring the task execution. In pracice, however, it is not 
easy to guarante connectivity of the networked robots in a 
clustered environment. Failure to maintain connectivity  may 
decrease the performance of the networked robots or even fail 
the task. In this paper, we propose a multirobot motion 
coordination strategy that can maintain multirobot connectivity 
as well as guarante obstacle avoidance. A potential function is 
proposed to generate bounded control inputs for networked 
robots. The efficiency of the proposed apporach is demonstrated 
in both simulation and experiment performed on multirobot 
consensus tasks. 

I. INTRODUCTION 
Distributed controls of networked robots have received 

considerable attention in recent years to solve numerous 
problems such as consensus network [1]-[4], formation 
[5]-[9], and coverage problem [10] [11], etc. Among these 
studies, a basic assumption is that all the networked robots 
remain entirely connected during the task implementation. In 
practice, however, due to limited sensing and communication 
capabilities of robots, it is difficult to guarantee connectivity 
of the networked robots, which may lead to failure of the 
group tasks. 

Several approaches have been proposed to solving 
connectivity problem of the networked robots. The three main 
approaches reported in the literatures are: geometrical 
constraint technique, spectral graph theory method, and 
artificial potential field method. The geometrical constraint 
technique was pioneered by Ando [12], which was extended 
to the second order system [13]. Through measuring 
robustness of the local connectivity of the networked robots, 
global connectivity could be achieved [14]. With the graph 
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theory method, the connectivity problem was divided into 
two branches. One is to maximize the second smallest 
eigenvalue of the graph Laplacian matrix to guarantee 
connectivity [15]-[17]. The other is to have connectivity rely 
on notions of algebraic graph theory and gossip algorithm 
[18]. The artificial potential field method enables the system 
to converge to the desired configuration while preserving 
connectivity by the potential field force [3] [7] [19]-[24]. The 
most practical way of this method is to assign an appropriate 
weight to each communication link [2]. The weight is 
characterized as the tension force, which reaches infinity 
whenever the communication breaks. Recently, a navigation 
function was introduced to achieve network connectivity with 
bounded control inputs [25]. 

 A common problem of the artificial potential field force 
approach and the weighted graph approach is the use of 
unbounded potential fields to force the robots to maintain 
connectivity whenever the robot tends to leave the sensing or 
communication zone between each other. In practical 
applications, however, unbounded input is impossible, i.e., 
the motor cannot generate an infinitely large torque to the 
robots. 

In this paper, as motivated by [2] [25], we study toward a 
solution to multirobot consensus problem by a bounded 
potential field force. Compared to [25] [2], our approach 
makes a particular contribution in achieving rendezvous task 
while maintaining connectivity in presence of obstacles. 
Moreover, our approach uses bounded control inputs, which 
make it easier to be applied in practice. A 
navigation-function-like potential function is proposed, with 
the potential field modeled by integrating consensus 
requirement, connectivity maintenance, and obstacle 
avoidance, simultaneously. The control law assigned to each 
robot is negative gradient of the proposed potential field. 
Under this control law, the networked robots can achieve 
consensus in the presence of obstacles. When the initial 
configurations of the networked robots are connected, the 
control law enables the underlying network to remain 
connected during motion evolution.  

II. PROBLEM FORMULATION 

Consider n  robots in a space 2ℜ∈W . Denote the 
coordinate of the thi  robot as 2ℜ∈iq . The dynamics of the 
thi  robot is represented as follows 

                             ii uq =� ,  { }ni ,...,1∈                       (1)  
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where 2ℜ∈iu denotes the control input, which is the velocity 
of the thi  robot. Introduce the position vector 

[ ]TT
n

T qq ,,1 …=q  and the control input vector 

[ ]TT
n

T uu ,,1 …=u , where n2ℜ∈q  and n2ℜ∈u . Then the 
dynamics of all the networked robots can be rewritten as  

     uq =�                                          (2) 
Similarly, positions of obstacles can be represented by a 

vector [ ]TT
M

TT qoqoqo "" ,,1 ς
=qo , where { }M,...,1∈ς  

Due to limited sensing or communication capability of the 
robots, we suppose that the thi robot can communicate with 
the others only when they are located within a reachable area, 
which can be denoted by a circle centered by iq  and with the 
radius of r .       

To preserve connectivity of the networked robots, in a 
similar manner to [14], we can define an information flow 
graph I   according to the task requirement. For simplicity, 
we assume that the task requirement is symmetric.  

 
Fig.1 Dynamic adding and removing communication links. 

Definition 1 (Information Flow Graph) The information 
graph, denoted by ( ) ( )( )tEVtI ′= , , is a dynamic undirected 
graph consisting of a set of vertices { }nV ,,1"=  as indices of 
the robots, and a set of edge expressed by 

( ) ( ) ( ) ( ){ }1, =<=′ tandrtdjitE ijij σ , 

where { }1,0∈= jiij σσ  is a symmetric indicator that 

determines whether or not the information available in the 
edge ( )ji,  should be taken into account. A hysteresis 
function ijσ  is used to create new links and remove unused 
links, which can be calculate as (Fig. 1) 

( ) ( )( )
( )( )⎪⎩

⎪
⎨
⎧

−<∪≤≤−∩=

≥∪≤≤−∩=
=

−

−
+

ωωσ

ωσ
σ

rdrdrt

rdrdrt
t

ijijij

ijijij
ij

0,1

1,0
   (3) 

where 0>ω  is a switching threshold.  
Based on [2], we define the neighborhood relationship of 

the thi robot in the information graph I  as follows 
    ( ) ( ) ( ){ }tEjijiN I ′∈= ,                                (4) 

Definition 2 (Graph Connectivity) A graph C  is connected 
if there exists a path, i.e., a sequence of distinct vertices, such 
that any vertex can be reached by the other ones. 

Define CI  as the set containing all the connected graphs 
with n  robots. The problem of connectivity control can then 
be formulated as follows. 

Problem 1 (Graph Formulation of Connectivity 
Control) Given CI , determine the bounded control input u , 
such that when ( ) CII ∈0   in the initial time, ( ) CItI ∈   for all 
the time 

III. NETWORKED CONTROL DESIGN 

A. Connectivity constraint  
Consider a networked robot system, as shown in Fig. 2, 

where the dashed cycles denote the communication ranges of 
the robots. In order to maintain the communication links 
between robot i  and its neighbors 1−i and 1+i  , robot i  
should stay in the space marked by iF , which is enclosed 
with the solid curve in Fig. 2. 

 
Fig.2 An example of connectivity constraint. 

The connectivity constraint can be expressed as 

 ( )
( )

( )
( )

∏∏
∈∈

=−=
iNj

ijij
iNj

ic
II

drqG β22

2
1       (5) 

If the thi robot remains inside of iF , it connects to all of its 
neighbors in ( )iN I , and ( ) 0>ic qG . We further have the 
following definition. 

Definition 3 (Connectivity Space iF  )  

( ){ }0>= icii qGqF                             (6) 

B. Free work space 
The free work space iF  is defined as a subset of robot 

positions that meet the connectivity constraint ( ) 0>ic qG , 
with additional consideration of obstacle avoidance.  In Fig. 3, 
the obstacle is denoted by a disk. The free work space of robot 
i  is enclosed by the solid curve, which is marked by iF , 
excluding the area with the obstacle. Note that the difference 
between iF  and iF  is that iF  does not consider obstacle 
avoidance and iF does. 

Denote ( )iO  as the set of obstacles encountered by the thi  
robot. For the obstacle ( )iO∈ς  centered at ( )ςoq  with the 
radius ( )ςρo , the distance between robot i and obstacle ς is 

denoted as  ( )ς−=ς oii qqd . Denote ( )io qG  as constraint 
for the obstacle avoidance, expressed as 
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( )
( )

( )( )
( )

∏∏
∈∈

=−=
iO

ioi
iO

io dqG
ς

ςς
ς

αςρ 22

2
1                (7) 

 If the thi  robot does not hit any obstacle, we have 
( ) 0>io qG . 

 
Fig. 3 The free work space of robot i .  

In order to maintain the robots to be within their free work 
spaces, both constraints for connectivity (5) and obstacle 
avoidance (7) should be taken into account simultaneously. 
Denote ( )iqG  as the free work space that combines two types 
of the constraints, expressed by 

( ) ( ) ( )
( ) ( )

∏∏
∈∈

==
iO

i
iNj

ijioici
I

qGqGqG
ς

ςαβ            (8) 

If the thi robot remains inside of iF ,  we have ( ) 0>iqG . 

Definition 5 (Free Robot Work Space) 
( ){ }0>= iii qGqF                                         (9) 

A. Consensus control 
Define [ ]1,0∈ϕi  as a potential function, expressed by 

( )

( ) ( ) ( )( )
( )

( ) ( )( )kii
k

i

kioici
k

i
i

qGq

q

qGqGq

q
11

+
=

+
=

γ

γ

γ

γϕ   (10) 

where k  is a positive parameter with a low bound, and ( )iqγ
is a criteria function, expressed as 

( )
( )

2

2
1∑

∈
−=γ

iNj
jii

I

qqq                        (11) 

The consensus control aims to minimize ( )iqγ . To achieve 
this objective, we design the control input to be negative 
gradient of the potential function iϕ , i.e., 

i

i
ii q

Ku
∂
∂−= ϕ                                     (12) 

where 0>iK is a positive control gain.  
Substituting  (8), (10) into (12) yields  

( ) ( )( )

( ) ( ) ( ) ( )⎟
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γγ

γϕ 11

    (13)  

where ( )⋅∇
iq denotes the partial derivation of ( )⋅ with respect 

to iq . 
Further, consider the following equation 

( ) ( ) ( ) ( )iq
i

iqi qG
k
qqqG
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where 
( )

∏
≠
∈

β=β
jl

iNl
ilij

I

and 
( )

∏
ς≠

∈
ς α=α

m
iOm

imi .  

Substituting (13) and (14) into (12), the control input 
becomes 

( ) ( )
( )( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−−= ∑ ∑

∈ ∈iNj iO
iiijiijii

I

qqqqu
ς

ςςδνπν    (15)  

where ( ) ( )( ) 11 −−
+γ=ν k

ii
k

ii qGqK . 
Rewrite the close-loop equation (15) as 

( ) ( ) ( ) oqqqq 222 ILILIL ODM ⊗+⊗+⊗−=�        (16) 
where ML is a Metzler matrix whose elements can be defined 
as 

( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∉

∈−

=

=

∑
∈

)(,0
)(,

,

iNj
iNj

ji

L

I

Iiji

iNj
iji

ijM

I

πν

πν

                            (17) 

DL is a diagonal matrix with the diagonal element as 

( )
∑
∈

=
iO

iiiiDL
ς

ςδν                                      (18) 

Introduce a Weighted Robot-Obstacle Adjacent matrix, 
denoted by OL , calculated below 

( )
( )⎩

⎨
⎧

∉
∈−

=
iO
iO

L ii
iO ς

ςδν ς
ς ,0

,
                    (19) 

Theorem 1 Consider n networked robots with dynamics (1), 
which are all located in the free work space at the initial time. 
Under the control law (15), we have ( ) 0>iqG , 0>∀t ,  
which indicates that the underlying graph stays connected 
and all the robots are obstacle free. 

 
Fig. 4 The boundaries of the free work space. 

Proof: As shown in Fig. 4, iF  is formed by two kinds of 
boundaries. The outside boundary iF∂  is formed by the 
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communication ranges of the neighbors of robot i , and the 
inside boundary iF∂  is formed by the obstacle inside iF . 

Consider the thi robot and ( ) 0>iqG at the initial time. In 
the following, we will prove that ( ) 0=iqG  only occurs when 
there exists at least one neighbor ( )iNj I∈  at the outside 
boundary iF∂ ,  or the thi robot itself locates at the inside 
boundary iF∂ , which is, however,  impossible to happen. 

Suppose that at a point iq , ( ) 0=iqG . It then follows that 

( )( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ ∇
γ

−×γ=
∂
ϕ∂ −−

iq
ik

i
k

i

i qG
k
q

q
q i

11

            (20) 

The partial derivate of iG  with respect to iq is 

( )
( )

( )
( )

( )
( )

( )
∏∑

∏∑

∈
ςς

∈ς

∈ς
ς

∈

−βα+

−βα−=∇

iNj
iiji

iO

iO
jiiji

iNj
iq

I

I
i

qq

qqqG
                     (21) 

When only one robot ( )iNj I∈  locates at the outside 

boundary iF∂  , we have 0=βij  and 0≠βij . When the thi

robot locates at the inside boundary iF∂   formed by ( )iO∈ς  
and none of its neighbors locates at iF∂ , we have 0=α ςi  

and 0≠α ςi . In either case, we have 0≠
∂
ϕ∂

i

i

q
  from (20) and 

(21). It then follows that at the point iq , the negative gradient  
of iϕ  is normal to the surface 0=iG and towards the set 

0>iG .  
When the thi robot itself locates at the inside boundary 

iF∂   formed by ( )iO∈ς and at least one of its neighbors 
( )iNj I∈ locate at the outsider boundary iF∂ , we have 

0=α=β ςiij . When more than one neighbors, ( )iNj I∈  and  

( )iNl I∈ , locate at the outside boundary iF∂ , we have 

0=β=β ijij . In either case, we have 0=
∂
ϕ∂

i

i

q
 from (20) and 

(21). Since [ ]1,0∈ϕi  and 0=iG , it follows that ( ) 1=ϕ ii q  
from (10), which means that iϕ  reaches the maximum value 
at iq . Since the initial condition 0>iG  holds, it was proved 
that no open set of initial conditions could be attracted to the 

maxima of iϕ  along 
i

i

q∂
ϕ∂

−  [25]. 

The above analysis shows that it is impossible to have 
( ) 0=iqG . Therefore,  ( ) 0>iqG  always holds as time

∞→t .                                      ■ 
Lemma 1 For potential function iϕ , there exists a positive 
lower bound on parameter k  and a positive upper bound on 
ε , such that for ( )ε1Nk ≥  and 0εε < , iϕ  has a unique 
minimum at ji qq = , ( )iNj I∈∀ .  

The proof of this Lemma is rather extensive to be included 
here. Interested readers can refer to [26] [27]. 
Theorem 2 Consider the networked robots with dynamics 
(1), which all locate in the free work space in the initial time. 
The robots can achieve rendezvous successfully the under the 
controller (15), as time tends to infinity. 
Proof: Define iϕ  as a Lyapunov function candidate 

iV ϕ=                                                     (22) 
Taking the time derivation of  V  yields 

 ( ) 02 ≤∇−=∇∇−=∇= iii
T

iii
T

i KKqV ϕϕϕϕ��   (23) 

0=V�  holds in the set of critical points ( ) { }0=ϕ∇=ψ iqi i
qi . 

According to Lemma 1, the set of critical points contains only 
one minimum ji qq = , ( )iNj I∈∀ , which is the state in 
agreement. When time tends to infinity, there is ji qq = , 

( )iNj I∈∀ . From Theorem 1, the underling graph always 
stays connected when time tends to infinity. The system then 
converges to the equilibrium ji qq = , { }nji ,,1, "∈ .           ■ 

IV. SIMULATIONS 

Simulations were performed on a group of nine robots to 
demonstrate the proposed approach in solving the problem of 
achieving rendezvous with bounded control inputs, while 
maintaining the network connectivity and avoiding obstacles. 
As shown in Fig. 5, the nine mobile robots are denoted by the 
small points. In the simulation, the proposed control 
algorithm (15) was applied with dynamic communication 
topology. For comparison purpose, the initial positions were 
exactly the same as in [2]. Unlike [2], here there were two 
obstacles in the workspace. The parameter of the potential 
function was 3=k , and the feedback control gains were 
chosen as 2921 === KKK " . The sampling period was set 
to 0.1 second in the simulation. 

Fig. 5 illustrates the motion rendezvous evolution under the 
control law (15). The dotted circles denote the 
communication ranges of the robots. The solid lines denote 
the communication links among the robots. As expected, no 
communication links were broken during the maneuver, and 
the rendezvous task was achieved without hitting any 
obstacles. 

V. EXPERIMENTS 
We further carried out experiments on a group of three 

mobile robots to verify the proposed control method. The 
three robots are P3DX mobile robots denoted by robot 1, 2 
and 3, respectively. The robots communicate with each other 
via 54.0MHz wireless access point. Each robot is equipped 
with a sonar system to detect obstacles. The robot motion 
state is measured using motor encoder and estimation scheme 
[28]. The three robots were controlled with the rendezvous 
control law (15). At the beginning, the robots were placed 
with the initial configurations of robot 1 (0m, 2.4m, 0°), robot 
2 (1.8m, 0m,0°) and robot 3 (3.6m, 3m, 0°). The parameter of  
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Fig. 5 Evolution of a rendezvous task with nine robots. After 360 seconds, all the robots reached to an agreement position. 
the potential function was 3=k  and the control gains were 

1321 === KKK . 
Fig. 6 illustrates the rendezvous process collected from the 

video. Fig. 6 (a) shows the robots at the beginning, and Fig. 6 
(b) ~ (f) show the robots at different times. The two long lines 
denote x  and y  coordinate axes. These figures demonstrate 
that the proposed control law can drive robots to achieve the 
expected multirobot rendezvous task. Fig. 7 (a) ~ (c) illustrate 
the bounded control inputs of the three robots. The solid lines 
denote the control inputs in x  direction and dotted lines 
denote control inputs in y  direction. 

VI. CONCLUSION 
In this paper, we propose a distributed control approach to 

solving multirobot consensus problem in presence of 
obstacles while maintaining connectivity with bounded 
control inputs. The control law is designed to be the negative 
gradient of a navigation potential function, which is modeled 
by integrating consensus requirement, connectivity 
maintenance and obstacle avoidance, simultaneously. 
Comparing to the existing approaches, the proposed 
controller considers obstacle avoidance and requires bounded 
control input only, which makes it more feasible to practical 
applications. Both simulation and experiment are performed 
to demonstrate the effectiveness of the proposed approach. 
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