
  

  

 
Abstract— Landmines continue killing and injuring people 

even many years after the end of conflicts. Mechanical systems 
and robots have been used for assisting in landmines location 
and improving the quality of humanitarian demining tasks. 
These new systems are expected to enhance safety, efficiency, 
time duration, etc, but many improvements are still needed in 
order to realize a practical system. In this paper, new vision 
techniques for improving the effectiveness of terrain mapping 
using stereo vision camera under high-contrast light conditions, 
i.e., mixed direct sunlight and shadowed areas, are introduced. 
Furthermore, trajectory optimization taking in account the 
obtained terrain map is also analyzed, which greatly reduces 
time consumption for landmine location marking tasks. These 
newly introduced methods greatly contribute to overall increase 
in reliability and efficiency of humanitarian demining tasks. 

I. INTRODUCTION 
andmines are a plague that has existed for many decades. 
While the international community is largely cooperating 

in preventive action (in trying to ban the use and spread of 
those weapons), efforts are also being focused in remedial 
action (in neutralizing buried landmines, in assisting affected 
individuals and populations). Landmine neutralization is 
dangerous, costly and tedious. Tools are still rudimentary and 
the most commonly used landmine sensors still suffer from 
high rates of false positives [1]. 

The Tokyo Institute of Technology developed a 
semi-autonomous mobile robot called Gryphon-V (shown in 
Fig.1), to assist the mine detection process. Its manipulator is 
able to automatically scan over rough terrain, record data and 
present the resulting sensor images to the operator who then 
can mark suspect spots. The developed robot has been tested 
in several field trials on test minefields in Croatia and 
Cambodia, showing promising results [2]. 

Several other attempts have been made in the world, in 
automating or assisting human deminers in the scanning 
process; legged robots [3], wheeled vehicles, tracked vehicles 
and even suspended inspection tools [1] have been researched. 
Unfortunately, research is often focusing on one particular 
aspect (e.g. locomotion or sensing) leading to weak system 
integration which results in an ineffective and slow demining  
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operation. 

For the Gryphon system in particular, most attention has 
been paid in the mechanical and electrical design to build a 
rugged system, and also main consideration of sensing 
imaging for maximization of POD (Probability Of Detection) 
and minimization of FAR (False Alarm Rate) for the mine 
sensing tasks. This proved to be effective, and the latest tests 
in Croatia [2] showed that the Gryphon system has the 
potential to be “as good as humans or even better” 
considering POD and FAR indexes. However, other 
important factors to consider are: i) “time for each operation”, 
and the ii) influence of “human factors”. 

In this article, the “time for each operation” factor is 
considered, and methods for improving the overall efficiency 
of the system is proposed, including  new vision techniques 
and trajectory optimization methods. 

 

II. GRYPHON DEMINING TASKS 
The basic tasks for the demining process using Gryphon 

are:  
1. Start of day procedure: performs auto-checking of system 

components and move the manipulator from the resting 
position to the standby position, and brings the system to 
be ready to start the demining operation. 

2. Mapping: the depth map, i.e, the 3D profile, of the area to 
be demined is mapped by use of a stereo vision camera. 

3. Reference points/line setting: the area to be scanned is 
selected by a group of points/line. 

 

 
Fig 1 – Overview of Humanitarian Demining Robot Gryphon 
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4. Scanning: the manipulator is moved inside the scan area 
and the Metal Detector (MD) signal is captured. 

5. Marking: suspect mines locations are painted/marked. 
6. Moving to the next area: the robot is moved to the next 

area to be scanned. 
7. End of day procedure: the manipulator is brought to the 

resting position, and the robot is ready to return from the 
minefield. 

The “mapping” and “marking” tasks are described in more 
detail in the following sections. 

 

2.1 Mapping Task 
The mapping task is responsible for capturing the 

environment information, where the robot performs the 
landmines detection. For this purpose, a stereo vision camera 
fixed to the robot arm is used (Fig. 1). Gryphon-V in 
particular, is equipped with Point Grey Bumblebee™. During 
the mapping task the camera is oriented to different angles by 
moving the arm to different positions (P1, P2, P3), thus 
enabling capturing information of separate areas (A1, A2, 
A3) that can be concatenated to one larger area (Fig.2) to be 
scanned. 

 

2.2 Mapping Task Problems 
Although the commercial stereo vision camera used in 

Gryphon showed good performance in most outdoor 
environments during field tests, it has been observed that for 
some extreme lighting/shadow conditions, the stereo 
correspondence algorithm is unable to find enough features to 
perform a depth analysis, and the mapping task cannot be 
successfully finished.  

The problem is mainly observed when there are regions of 
strong sunlight and shadow in the same picture. For this case, 
some areas of the image saturates while shadowed areas 
appears as dark images. Such extreme case of lighting is not 
uncommon in the field, and even the shadow of the robot 
itself can cause problems to the depth map calculation. 

Next section introduces new vision techniques to deal with 
this problem. 

 

III. NEW VISION TECHNIQUES 
Finding correspondences between features is the key of 

stereo processing, but in some undesirable cases, the number 
of features can be extremely low to perform any kind of 
analysis. 

For instance, consider Fig. 3. It shows a pair (right and left 
lens of the camera) taken by Gryphon’s stereo vision camera 
in laboratory environment, using a portable version of the 
manipulator. The extreme lighting environment simulated 
direct sunlight by using a high power directional light. The 
figure also shows the depth map calculated from the stereo 
pair and displayed in the user interface. As can clearly be seen  
it lacks so many features that only a fraction of the image was 
actually used to compute 3D information.  

 
Fig. 2 –Main steps of the mapping task 

 
The stereo correspondence algorithm is not imputable for 

such an undesirable behavior, because for limits of the 
technology itself, it would be impossible to efficiently 
compute the depth map when features are lacking. The true 
limit in this case is coming from the camera and its limited 
dynamic range. 

This section describes the vision techniques implemented 
in this work, based on the High Dynamic Range (HDR) and 
Exposure Fusion (EF) techniques. 

 

3.1 Existing Techniques 
A camera is not able to represent a large diversity of light 

conditions in one single picture, but it can obtain a good result 
by combining information coming from several pictures. As 
the camera can alter, through driver control, the behavior 
relative to the exposure control, it is possible to obtain visual 
information on the areas that would otherwise be thresholded 
either to zero (black) or to the maximum (white) level. The 
idea behind the approach is then to take multiple pictures and 
combine them together. Two techniques will be analyzed, one 
being HDR and the other one EF.  

 

 

 
Fig. 3 – Effect of strong light: real and virtual cases 
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Fig. 4 – Real and virtual cases: before (down) and after (top) the technique 

implementation 
 
HDR technique is well-known in the digital photography 

environment, and gives the overall best result, but it is 
mathematically complex, what makes it difficult to be 
implemented in real-time. Conceptual notions from HDR are 
basically coming from the first US patent described in [4] 
with a major influence from the work of Debevec in 1997 [5]. 

EF basics are introduced in the same fashion the author 
describes in his original paper [6]. The idea behind the 
approach is to compute a perceptual quality measure for each   
pixel in the multi-exposure sequence, encoding desirable 
qualities like saturation and contrast; in this way it is possible 
to select the “good” pixel in each image which is the 
candidate to form the final output image. As HDR, this 
technique also requires the perfect alignment of the input 
images. 

3.2 Proposed Implemented Vision Technique 
The algorithm proposed and implemented in this research, 

aims at reaching a good level of fusion, taking HDR as the 
maximum possible qualitative achievement, but following an 
approach more similar to EF. 

The algorithm takes, as EF does, the average image by 
considering some weights when balancing the pictures. The 
main difference with respect to the known algorithm [6], is 
that the weights work in a discrete logical fashion. 

The function used to compute the weights is based on the 
average brightness (luminance) level of each image. This 
level should move over a certain threshold, which is defined 
at the startup of the algorithm by a statistical training 
procedure, taking several pictures with the stereo camera in 
many different possible light conditions. A common value 
was obtained, which statistically proved, in the considered 
example, that at least 80% of the image was saturated to the 
maximum reading level, corresponding to white. The 
algorithm used the threshold level to set a 1.0 weight only for 
images which presented at least 20% of valid information, 
with respect to the total data. 

This particular behavior of the weight computation 
function allows to automatically exclude overexposed images, 

as well as allows the algorithm to bias the search for a 
solution with respect to the lower exposure pairs. Instead of 
using three different sources of information as classical EF is 
doing, the luminance information is the only one eventually 
used, resulting in a speed-up of the overall computation time. 

Another difference is that the algorithm always works for 
every stereo image pair as input, instead of dealing with only 
one image at a time. 

Several configurations were experimented to choose the 
right number of pictures to be taken, and the resulted quantity 
was 6 different exposures. This particular choice was 
accurately made by considering the exposures range of the 
camera, which ranged from EV 0 to EV 1000. This stepping 
of EV 200 was considered enough to avoid information loss 
between one step and the other one. A total of 6 steps are 
naturally calculated as (EV 1000 / EV 200) + 1, with the unity 
added to take into account the EV 0 factor. 

In mathematical terms, the pseudo-mean image is 
computed in a fashion similar to EF, that is: 

, , ,.i j k i j kO W I= ∑
ｖ

ｋ＝１

                        (1) 

The equation states that the pixels ij in the output image O 
are computed as an average mean weighted for each input 
image k by the dynamic weight W. The v term on top of the 
summation symbol is a variable entity, depending on the 
result of the weighting function for each image k. 

While the result would be the same as having v = N, (N = 
maximum number of images), the ability to limit it to a 
possibly smaller value (v < N), can speed up the combining 
process, since we do not need to multiply the terms inside the 
summation by a zero weight hundreds of times. 

As can be seen in Fig. 4, the performance improvement is 
traded with the contrast of the image, but in some areas of the  
image, like in the bottom-right part, the quality improvement 
is more evident.  

The overall contrast is in average much lower than the two 
analyzed standard techniques, leading to a proximity to the 

average brightness level, which is min max

2
B B+

, where “B” 

simply stands for brightness. However, this lack in the 
vivacity in colors (or grey levels) is not really important for 
stereo vision, because it is enough to improve the number of 
features within the image. An example of application for the 
algorithm in normal light conditions can be verified in Figs 5 
and 6. 

As can clearly be seen in the sample pictures, the algorithm 
performance surpasses the standard procedure taken by the 
camera even with regular light conditions.A more analytical 
comparison between the two image pairs was done (Table I) 
using SURF.feature extraction algorithm [7], which permits 
counting the overall number of features detected. Here it is 
only used as a quantitative measuring device, useful to 
estimate the number of “good” features present in an image 
pair. 
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It is possible to infer that the increase in pair shown in Fig. 
4, which is also the one strongly affected by extreme lighting 
condition, is very high (almost 60%). In Fig.6, under standard 
lighting condition, the increase is even slightly negative, less 
than 2% of difference can be confidently considered a 
minimal difference. 

Experimental results suggest that the function can be used 
in every light condition, because it can offer similar results 
during normal lightning, and boosts as far as 60% the overall 
quality of the image in extreme lighting conditions.  

Fig. 7 shows graphically the SURF features computed on 
the pair in Fig. 6, in order to show how many and where the 
features are detected. 

 

3.3 Alignment with SURF 
Vibrations coming from the wind or the engine of the All 

Terrain Vehicle (Fig.1) reduce the precision of the robot. 
Little vibrations can propagate through the long arm, 
interfering during the demining operation. In case of the 
camera, vibrations make the taken pictures become blurred, 
leading to potential problems, especially for the proposed 
methods (that require six steady pictures). 

For solving the alignment problem an algorithm was 
proposed, which is based on a random correlation window, 
which computes SURF features, in both images, that are later 
compared to each other, in order to find the one and single 
feature which is most similar between them. In this way we 
can be confident that the chosen point to calculate the 
misalignment corresponds to the same physical points in both 
images. An experiment done in laboratory, which the robot’s 
arm was manually heavily shaken is shown in Fig. 8. 

 

 
Fig. 5 – Source images taken in regular light conditions 

 
 TABLE I. 

Comparative results 
Pair Standard Compensated Increase

Fig. 4 2493 3920 +54,24%
Fig. 6 5657 5551 -1,87%

IV. TRAJECTORY OPTIMIZATION IMPLEMENTATIONS 
This section describes further optimization methods for the 

marking trajectory and for the marking sequence with 
Gryphon that can be reliably implemented after the 
enhancements in vision. 

 

4.1 Trajectory Optimization 
The marking task with Gryphon can be described in four 

main steps (Fig. 9): button pressing in the interface (a), 
motion from P1 to P2 (b), mark painting (c) and motion from 
P2 to P1 (d). The described steps are performed for each mark. 
However, according to the terrain, many marks may be 
needed, and the described procedures will be repeated as 
many times as the input number of marks. 

 

 
Fig. 6 – Compensated (top) and original (bottom) image 

 
Fig. 7 – Visual comparison of SURF features of pair in Fig. 5 

231



  

 
Fig. 8: Example of alignment result (bottom) and original image (top) 

 
For example, if the robot has to draw two marks, the 

robot’s arm will do the following trajectory: P1, P2, P1, P3 
and P1. 

Regarding the shown trajectory problem, the main 
requisite is that the arm does not go back to the initial position 
(P1) and goes directly to the next spot. The problem is that the 
ground usually has many variations in height, and if the 
terrain information is not correctly grabbed due to vision 
problems, the arm could easily hit an obstacle.  

Once the terrain containing the two points is not flat, a 
simple straight line cannot be used as a trajectory and an 
adequate (as short as possible) path has to be generated. Many 
previous works were performed to solve this problem [8-11], 
but here as a first approach a simpler algorithm was applied. 

Consider Fig. 10. The proposed method consists of 
building a line (shown in yellow) between the actual point (A) 
and the next point (B). Since we know the coordinates of A 
(X1, Y1) and B (X2, Y2), we can simply substitute them in 
the line equation: 

ｙ  = a . x + b                     (2) 

where “a” is the angular coefficient, defined as:   

a  = 2 1

2 1

Y Y
X X

−
−

               (3) 

 

 
Fig. 9 – Trajectory between two consecutive marks 

and “b” is the linear coefficient, defined as: 

b  =  Y1 – a . X1 = Y2 – a . X2           (4) 

Once we have this line, we have a plane perpendicular to 
the ground (in green), that will guide the arm until the next 
point. Finally, the robot calculates the height fields (Z 
coordinates, precisely obtained with the new techniques with 
the stereo vision camera) in this plane, and moves the arm 
through these height variations in the terrain. 

 

4.2 Sequence Optimization 
After proposing an optimized solution for the marking 

trajectory, another optimization became evident. Since the 
robot paints the marks in the inverse order they were input in 
the interface by the operator, in case we have three or more 
marks, an optimized sequence should be considered.  

Since asking the operator to input the marks in an 
optimized sequence would require too much workload and 
long decision making times, a more reasonable  approach was 
adopted, which is the robot itself computes and chooses the 
shortest path to go through all the points. Here, many 
previous works such as [12] were done to find the shortest 
path passing through all the points. However, this algorithm 
is complex to be implemented and as a first optimization 
proposal, an algorithm similar to [13] was implemented. 

Suppose the operator has set the following sequence in the 
interface: “1”,”2”,”3”,”4”,”5”,”6”,”7” and “8”. With the 
proposed method, the robot gets the first mark of the 
sequence (“1”) and calculates the distance between this first 
mark and the remaining ones. For this first approach, only 
coordinates X and Y are being used, since variations in Z are 
usually relatively smaller. 

In the example shown in Fig. 11, the robot finds that the 
nearest mark from “1” is “3”, and uses this last mark as 
verified. The robot calculates the total distance obtained with 
this path having mark “1” as initial point and stores this value. 

Then, the robot sets the next mark (“2”) of the original 
sequence as initial point and repeats all the procedures. These 
procedures are repeated until the final mark (“8”) is set as 
initial point. 

After calculating the total distance of all possible paths 
(eight in this example), the robot verifies which of them has 
the shortest path, and reorganizes the original sequence into 
this optimized one (Fig. 12). 

 
 

 
Fig. 10 – Trajectory optimization 
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Fig. 11 – Sequence optimization 

 

 
Fig. 12 – Sequence optimization test 

 
TABLE II. 

Tests results  
Original 

(s) 

Trajectory Optimization 

(s) 

Trajectory and 
Sequence Optimization 

(s) 

235 s 141 s 120 s 

 

4.3 Optimizations Evaluation 
Considering the same configuration (number and position 

of the marks) in Figs 11 and 12, a test was performed to 
evaluate the magnitude of the time duration between the 
methods. From Table II, we can observe that the time 
duration was hugely improved after applying both 
optimizations, compared to the original marking system 
(about 49%). Here, it is important to notice that the time 
duration is function of the number of marks, distance, input 
sequence and operator performance. In other words, 
variations in these variables can lead to different results, but it 
can be said that in the worst case, the time duration of the 
optimized system will be similar to the previous one. 
 

V. CONCLUSIONS 
A new technique of a HDR-like for real time stereo vision 

was developed in this work. With the presented technique, it 
is possible to improve the number of features up to 60% with 
respect to the original image pair. Another aspect is about the 
use of SURF features for fast realignment of image pairs.  

With these vision techniques, the terrain map can be 
effectively done under unfavorable light conditions, 

improving the reliability of the demining operation. 
Optimization methods for improving the times and 

decreasing the operator workload in demining operations 
with Gryphon were also presented, in particular for the 
marking sequence determination. Although the applied 
algorithms do not guarantee the most efficient results 
(according to works existing in literature), both trajectory and 
sequence optimization proved to be necessary and showed 
satisfactory results.   

Furthermore, the introduced vision enhancements and 
trajectory optimization techniques can also be applied to a 
variety of systems other than Gryphon. 

 

VII. FUTURE WORKS 
Further optimizations in Gryphon system are being 

considered. Time duration is an important factor in demining 
operations, but another crucial one is the human factors. The 
actual system still requires considerable work load from the 
operator during the landmine discrimination and in the 
overall operation. The user interface is being improved to 
increase the level of automation of each operation/task, 
resulting in a faster and more reliable system to be used in 
practical situations. 
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