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II. RELATED WORKS

Vision-based outdoor navigation has been studied for

decades [6]. Many methods of ego-motion estimation, such

as visual odometry, have been proposed [7][8] but visual

odometry is not sufficient because errors accumulate over

time. To correct the accumulated errors, landmark-based lo-

calization is necessary. Many features and objects have been

used as landmarks for outdoor navigation; road boundary

detection for autonomous driving [9], buildings [10] and

Braille blocks [11].

Some navigation methods do not use explicit landmarks

[12][13]. In these methods, the robot navigates along a pre-

learned path given as an image sequence, but precise robot

positions on the map cannot be obtained.

Recently, appearance-based localization methods which

are robust to changes in lighting have been proposed

[14][15]. These methods do not provide precise localization

on a metric map since they provide only topological mapping

and localization.

In contrast to the above approaches, our method uses a

map containing both 3D shapes and image features, and

can be used in structured environments as well as in less-

structured environments such as passage without apparent

road boundaries and open spaces without 3D features.

III. MAP BUILDING

A 2D occupancy grid map is used in our method. The

robot pose is denoted by x = (x, y, θ), assuming the robot

moves on a 2D ground plane. Each grid cell is labeled as

occupied, free, road landmark or unknown.

First, we collect a stereo image sequence from the tar-

get environment using a manually operated robot that is

equipped with a stereo camera. The collected stereo images

are then processed off-line to build a map in the following

steps:

1) Create a 3D point cloud from stereo images and

simultaneously estimate the trajectory of the robot.

2) Project the 3D point cloud onto a 2D grid map and

label each cell as occupied or free according to the

height of the points in the cell.

3) Extract salient line features on the ground from the

images and label the cells that contain the line features

as road landmarks.

4) Close the loop based on 2D graph SLAM.

A. 3D SLAM based on Edge-Point ICP

A 3D point cloud map is built based on the method

proposed by Tomono [16]. The method uses image edge

points which are detected from not only long segments

but also fine textures. The number of edge points detected

is usually much larger than other local features (typically

thousands per one QVGA (320×240) image), and it is

favorable for the purpose of building occupancy maps.

We refer to a pair of left and right images as stereo frame

(frame, for short). The 3D edge point Pc = (X,Y, Z)T is

calculated from point (xl, yl)
T on the left image and point

Fig. 2. Example of stereo SLAM based on edge points. Left: One of input
images. Right: point cloud map built from the input images. The yellow
points are higher and the red points are lower in height.

(xr, yr)
T on the right image based on the parallel stereo

formula.

The camera motion from time t − 1 to t is estimated

by matching the 3D points reconstructed from frame It−1

with the 2D points detected in frame It. The registration is

performed using a variant of the ICP algorithm on the image

plane. Let rt be the camera pose at t, P i
t−1

be the i-th 3D

edge point reconstructed at t− 1, and pit−1
be the projected

point of P i
t−1

onto image It. Let qit be the image edge point

at t, which corresponds to pit−1
. A cost function F is defined

as follows:

F (rt) =
1

N

N
∑

i=1

d(qit, p
i
t−1

) (1)

Here, d(qit, p
i
t−1

) is the perpendicular distance between pit−1

and the edge segment on which qit lies.

Camera motion rt and edge point correspondences are

searched by minimizing F (rt) using the ICP algorithm. The

initial value of rt is set to rt−1, and the initial correspon-

dence qit of pit−1
is set to the edge point that is the closest

to pit−1
in terms of Euclidean distance. By repeating the

minimization of F (rt) and edge point matching, the optimal

rt and edge point correspondences are obtained.

Based on the obtained camera pose rt, a 3D map is built

by transforming the intra-frame 3D points from the camera

coordinate system to the world coordinate system. Only the

3D points tracked for more than n1 frames (typically n1 = 4)

are added to the 3D map. Also, 3D points with large variance

are removed. This filter is useful to eliminate blurred edges

and moving objects.

The procedure described in this section is also used in

visual odometry, as described in section IV-A. An example

of a point cloud map built by this method is shown in Fig.

2.

B. Generating 2D Occupancy Grid Maps

A 2D occupancy grid map is generated by projecting the

3D point cloud map onto the ground. The ground plane is

divided into square grid cells and the 3D points in the point

cloud are projected onto them. To remove 3D points on the

ground and also to reduce the noise caused by errors in

stereo matching, the grid cells are labeled as occupied or

free according to the number of the contained 3D points that

are higher than th1. In our implementation, the size of the

cells was 10cm and th1 = 15cm.
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R(θ) =





cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1



 (5)

w
i
t ∼ N(0,Σt) (6)

The covariance matrix Σt is determined experimentally.

C. Update Step

The update step of the particle filter is based on a map-

matching between a global 2D grid map Mglobal and a local

2D grid map Mlocal. The global 2D grid map is built as

described in section III. The local 2D grid map is built by

the same procedure, using a point cloud generated through

the camera motion estimation (as described in section IV-A).

In the update step, particles are re-sampled according to

the weight wi proportional to the posterior probability in Eq.

(7).

wi ∝ p(Mlocal|x
i
t,Mglobal) (7)

In our implementation, p(Mlocal|x
i
t,Mglobal) is approxi-

mated by cosine correlation between the local grid map and

the global grid map. Let olk be the occupancy value of the

k-th cell in the local grid map, and rlk be the road landmark

value of the cell (Eq. (8) and (9)). Local map vector mlocal

is defined as Eq. (10).

olk =

{

1 (occupied)

0 (not occupied)
(8)

rlk =

{

1 (road landmark)

0 (not road ladnamrk)
(9)

mlocal = (ol
1
, rl

1
, ol

2
, rl

2
, ..., olN , rlN ) (10)

Let ogk,x be the occupancy value of a cell in the global

grid map corresponding to the k-th cell in the local grid

map when the robot is at x (and rgk,x is defined similarly).

Global map vector mglobal,x is defined as Eq. (11).

mglobal,x = (og
1,x, r

g
1,x, o

g
2,x, r

g
2,x, ..., o

g
N,x, r

g
N,x)(11)

The cosine correlation between the local grid map and

global grid map for the i-th particle is calculated as Eq. (12).

The weight wi is calculated by normalizing the correlation

ρi as Eq. (13).

ρi =
mlocal ·mglobal,xi

t

‖mlocal‖
∥

∥

∥
mglobal,xi

t

∥

∥

∥

(12)

wi = ρi/
∑

j

ρj (13)

Fig. 4. Robot used in experiments.

D. Recovery from Localization Failure

Although our visual odometry works well under various

illumination conditions, it can fail under extremely poor

conditions. For example, direct sunlight can saturate a large

part of the captured image to black or white due to the limited

dynamic range of the camera. In such a case, sufficient

edge points cannot be detected, which causes large errors

in motion estimation.

We found that this problem is similar to slip of the wheels

in the case of wheel odometry, and considered it as a kind

of kidnapped robot problem. Several methods have been

proposed for the kidnapped robot problem [21][22]. Our

solution is similar to Expanding Reset method described

in [23], which is suitable when the distance of kidnap is

relatively small.

V. EXPERIMENTS

We implemented the proposed method on a wheeled mo-

bile robot, which is equipped with a Bumblebee2 stereo cam-

era (Point Gray Research, Inc.). The camera was mounted at

a height of 86cm from the ground, tilted at a pitch angle of

-21◦. The image size used was QVGA.

A. Map Building under Various Illumination Conditions

Before localization experiments, we evaluated how our

maps are affected by illumination conditions. For compar-

ison, we built 2D grid maps of four areas under sunny

and rainy weather conditions, respectively. Fig. 5 shows the

images of the four areas and the maps built from them. A

lens flare seen in (a)-sunny did not affect the map. The

shadow of the building in this image was not detected as

a road landmark since the shadow boundary was blurred.

The shadows of several people in (b)-sunny were mostly

filtered out through stereo SLAM and map generation men-

tioned in Section III-A. The white lines in (c) and (d) are

detected as road landmarks under sunny and rainy conditions

despite light reflection by water. As can be seen, our map

building method generates similar maps even under different

illumination conditions, and this validates our map-matching

approach to outdoor localization.

B. Localization under Various Illumination Conditions

We conducted experiments on robot localization in our

campus. The first experiment was conducted on a path of
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Fig. 7. Localization result by proposed method (red line) and estimation
by visual odometry (green line). Magenta circles show reference points used
to measure the accuracy of the localization.

Fig. 8. Images captured by the robot during the second experiment.

captured on a sunny day. The accuracy of localization was

measured at 11 reference points. The method without road

landmarks had significant errors in the open space and at

other areas with few 3D features (see Fig. 9), resulting in

an average pose error of 313cm and 20.2◦; the maximum

error was 670cm and 86.3◦. With the road landmarks, on

the other hand, the average pose error was 41cm and 2.3◦;

the maximum error was 161cm and 5.3◦.

Fig. 10 shows a zoomed comparison of localization in the

open space. The error ellipses were calculated approximately

from particles. As can be seen in the figure, the method with

road landmarks provided better estimation.

D. Recovery from Localization Failure

Finally, we show an example of recovery from localization

failure. In an experiment on a sunny day, we found an

extremely poor condition shown in Fig. 11, in which a large

part of the images was blacked out because of sunlight

and shadow. As mentioned in section IV-D, visual odometry

cannot estimate the motion of the robot correctly in such

conditions.

We carried out an experiment with this image sequence

and a map built from a rainy data set. The result is shown in

Fig. 12. Visual odometry incorrectly estimated the motion of

the robot for approximately 70 frames immediately before

the robot turned right. After the robot finished turning to

the right, localization failure is detected and expansion reset

occurred, and eventually the robot was re-localized. The

Fig. 9. Comparison of two methods. Top: trajectory obtained without road
landmarks. Bottom: trajectory obtained using road landmarks. Magenta cir-
cles show reference points used to measure the accuracy of the localization.

Fig. 10. Localization results of two methods in open space. The red line
and the green ellipses show trajectory and error ellipses obtained with road
landmarks. The yellow line and the pink ellipses show trajectory and error
ellipses obtained without road landmarks.
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