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Abstract— It is well known that a robot driven by a McK-
ibben pneumatic actuator generates stable motion in spite of its
simple control and simple actuator model. However, how the
characteristics of the McKibben pneumatic actuator act on the
stability of a robots motion has not been sufficiently discussed.
In this paper, a physical model of the McKibben pneumatic
actuator is derived and the stability of a robot which is driven
by the McKibben pneumatic actuator is analyzed.

I. INTRODUCTION

Recently, soft actuators have attracted attention for appli-
cation to robots, and many studies of soft actuators have
been conducted. In this research, the McKibben pneumatic
actuator in partilular has been focused on.

Introduced in 1957 J. L. McKibben to actuate an orthotic
device for handicapped people [1][2], this actuator is a
compliant mechanical actuator and is often used as part of an
artificial muscle. It consists of a rubber bladder surrounded
by a helically braided sleeve and is driven by air pressure.
It has a very good characteristics as a soft actuator. (1) It
is very lightweight and has a high force-to-weight ratio
compared with other actuators. (2) It is comparatively safe
even if it breaks down because it uses air pressure as an
energy source. (3) It is possible to flexibly correspond it to
outside force. Based on the above features, the McKibben
pneumatic actuator has often been used for rehabilitations,
and power-assistance-suits. Moreover, it has come to be used
for actuators of various robots [3][4][5][6][7]. This is be-
cause robots actuated by McKibben pneumatic actuators can
achieve comparatively stable motions without complicated
controls.

As mentioned, it is empirically well known that McKibben
pneumatic actuators have various good characteristics and the
research of modeling of the McKibben pneumatic actuators
has been conducted[8][9][10][11][12]. Although the model-
ing of the McKibben pneumatic actuator itself was achieved
relatively well, what features of the actuator are important
and how the features influence stable robot motion have
not yet been fully discussed. Thus, in many cases, robots
in which McKibben pneumatic actuators were designed and
controlled based on a rule of thumb.

Then, the purpose of our research is to analyze how
various characteristics of the actuator influence the stability
of the movement generated by the McKibben pneumatic
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Fig. 1. McKibben actuator with exterior braid and inner elastic bladder

actuator and to reveal the features of the McKibben pneu-
matic actuator that can be used for more sophisticated
implementation. As the first step, in this paper, a model
of the McKibben pneumatic actuator is derived, in which
the characteristics of the actuator are considered Although
this model is based on the model in previous research, the
formulation is appropriate for a stability analysis. Next, the
actuator model is applied to a simple robot model and the
stability of motions generated by the actuators is analyzed.

II. MCKIBBEN PNEUMATIC ACTUATOR

An example of the McKibben pneumatic actuator is shown
in Fig. 1. The actuator consists chiefly of two components.
There is a silicon rubber tube inside and it is surrounded
with a mesh of nylon fibers. Actuation is achieved by
supplying compressed air into a bladder in the rubber tube.
The compressed air expands the bladder and then the volume
of the bladder expands. As the volume of the inner bladder
increases, the mesh of nylon fibers changes length because
the mesh of nylon fibers is not extendable laterally. From this
mechanism, the McKibben pneumatic actuator can produce
tension and become “an actuator.” The fiber used in the
actuator has not only softness but also a strong stiffness in
the direction of the fiber. By building a mesh structure with
the fiber, changeable stiffness, lightness, nonlinear elasticity
and physical flexibility can be achieved.

As a defect, an accurate physical modeling or an accurate
point-to-point control with the actuator is quite difficult
because there are many nonlinear factors in the component of
the actuator. However, even with not so complicated control
or control depending on insufficient modeling, advanced
robot operations could be achieved realized [3][4][5][6].
Although the sophisticated design and mechanism of their
robots are one big factors, the proprieties of the actuator,
in particular elasticity and viscosity, also seem to affect the
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achievement of stable robot motions. Thus, these properities
have to be revealed for more sophisticated applications of
the McKibben pneumatic actuator.

III. STATIC MODELING OF THE MCKIBBEN PNEUMATIC
ACTUATOR

As described in the previous section, an accurate modeling
of the McKibben pneumatic actuator is very difficult. Al-
though it is possible to develop a model in which the detailed
characteristics of the actuator known by the previous work[8]
are considered, the derived model become too complex
and then it is difficult to understand what character of the
McKibben pneumatic actuator contributes to the stability of
the movement. Thus, first of all, a simple physical model of
the force of actuator is derived according to the air pressure,
which is thought to be the most important element for output
to the actuator. Next, a slightly complicated physical model
was derived. In this model, a force based on the elasticity
of the McKibben pneumatic actuator is added. Both the
force based on the air pressure and the force based on the
elasticity of silicon rubber is assumed to be dependent on
the air pressure and the actuator length. However, it is also
assumed that these forces are independent on a contractile
velocity of the actuator. As a result, the semi-static force
generation mechanism can be modeled. In these modelings,
a similar technique in some previous work[9] was used.
However, to analyze the stability of robots in which the
actuator is applied, we derive a different formulation. In the
formulation, the relationship between the actuator length, the
air pressure and the force is derived explicitly and then the
stability analysis of robots can be achieved more easily.

A. Static physical model of McKibben pneumatic actuator

This section describes a static physical model powered
by the air pressure of the McKibben pneumatic actuator.
However, a detailed geometrical framework is disregarded
for simplification. The McKibben Pneumatic actuator con-
sists of a rubber bladder enclosed by helically braided shell.
When the bladder is pressured, the volume of bladder with
the braided shell expands. As the volume of inner bladder
increases, the braided shell changes its length and radius by
increasing the pitch angle since the braided fibers are not
extendable. In order to formulate a force as a function of air
pressure and actuator length without considering a detailed
geometric structure, a theoretical approach based on energy
conservation is used, as done by Chou and Hannaford[9].

Let a work in which the air pushes the inside of the bladder
be Win. Win can be derived as follows:

dWin =
∫

Si

(P−P0)dli ·dsi = P′dVb, (1)

where P is the absolute internal air pressure, P0 is the
environment pressure, P′ = P−P0 is the relative pressure,
Si is the total inside surface area of the bladder, dsi is the
amount of the change of the inside surface area, dli is the
inner surface displacement and dVb is the change of the
bladder volume.

The output work Wout is done when the actuator shortens
associated with the volume change, which is:

dWout = − fmdL (2)

where fm is the axial actuator tension (direction of the
inside is positive) and dL is axial displacement (direction
of the outside is positive). If there is no energy loss by the
transformation:

dWin = dWout (3)

can be derived from the energy conservation law.
Then Eq. (1) and (2) lead:

fm = −P′ dVb

dL
. (4)

nπD

b

 turnsD

L

n

θ

Fig. 2. The geometry of the actuator. The middle segment of the actuator
is modeled as a perfect cylinder where length of the actuator is L, diameter
is D. n is a number of turns of a thread and b is a thread length. The
relationship between the above parameters is illustrated by the triangle.

To formulate dVb/dL, a central part of the actuator is
modeled as a complete cylinder (Fig. 2), where L is the
actuator’s length, D is the diameter of bladder, n is number
of turns of a thread and b is the thread length. The relation
between L and D can be expressed by using n and b as:

D2 =
b2 −L2

n2π2 . (5)

The volume of the bladder is:

Vb =
1
4

πD2L =
1

4πn2 (b2L−L3). (6)

From Eq. (5) and Eq. (4), the tension fm can be expressed
as the function of P′ and L as follows:

fm = −P′ dVb

dL
=

P′

4πn2 (3L2 −b2). (7)

In this model Eq. (7), the tension fm is proportional to the
air pressure P′ and a monotonous function with the length L.
Only P′ and L are variable and other parameters are fixed.
Then, the tension fm of the actuator can be determined only
with the actuator length L and the actuator pressure P′.
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B. Adding Series Elasticity
In this section, the model of the actuator(Eq. (3)) is

extended by introducing an elastic energy depending on the
transformation as follows:

dWin = dWout +VrdW, (8)

where Vr is the volume occupied by the bladder and W is
the strain energy density function.

From Eq. (8), the actuator tension fm becomes:

fm = −P′ dVb

dL
+Vr

dW
dL

. (9)

The silicon rubber, which is one of the elements of McK-
ibben pneumatic actuators, is a nonlinearly elastic material
with large deformation. Such nonlinearly elastic material
with large deformation is often said to be “a hyperelastic
body.” Thus, it is better to formulate a strain energy density
function W in the elasticity body model with an appropriate
hyperelastic body model. In previous work, the rubber part
was modeled by using the Moony-Rivlin model[10] [11].
We also refer to the method in the present study. However,
for the following discussion, we derive the improved model
so that the relationship between the actuator length and the
actuator tension is explicit.

Using the assumptions of initial isotropy and incompress-
ibility, the strain energy density function W can be described
with main strain variables λi(i = 1,2,3) as:

W = C1(λ 2
1 +λ 2

2 +λ 2
3 −3)+C2(

1
λ 2

1
+

1
λ 2

2
+

1
λ 2

3
−3). (10)

C1 and C2 in Eq. (10) are Mooney-Rivlin constants decided
only depending on physical properties of the elastic body.
λ1, λ2 and λ3 are described based on the incompressibility
of the elastic deformation and λ2 can be described with L as
follows by Eq. (5):

λ1 =
L
L0

, λ2 =
D
D0

=
1

D0nπ

√
b2 −L2, λ3 =

1
λ1λ2

, (11)

where L0 is an initial actuator length and D0 is an initial
actuator outside diameter.

Eq. (10) W can be rewriten by using Eq. (11) :

W = C1(
L2

L2
0

+
b2 −L2

D2
0n2π2 +

L2
0D2

0n2π2

L2(b2 −L2)
−3)

+C2(
L2

0
L2 +

D2
0n2π2

b2 −L2 +
L2(b2 −L2)
L2

0D2
0n2π2 −3). (12)

By substituting Eq. (12) into Eq. (9):

fm =−P′ dVb

dL

+Vr

(
C1

(
2L
L2

0
− 2L

D2
0n2π2 −

2L2
0D2

0n2π2(b2 −2L2)
L3(b2 −L2)2

)
+C2

(
−

2L2
0

L3 +
2D2

0n2π2L
(b2 −L2)2 +

2Lb2 −4L3

L2
0D2

0n2π2

))
, (13)

can be derived.
Similar to the previous actuator model (7), the actuator

model (13) depends on only two variables (actuator length
L and actuator pressure P′).

TABLE I
THE PROPERTIES OF MCKIBBEN PNEUMATIC ARTIFICIAL MUSCLE

Properties Values Unit

b 0.241 m Braid length
n 3 Number of turns
L0 0.208 m Actuator’s resting state length
D0 0.013 m Actuator’s resting state diameter
C1 192 kPa Mooney-Rivlin constant
C2 1.3 kPa Mooney-Rivlin constant
t0 0.0015 m Bladder thickness

IV. VALIDATION OF ACTUATOR MODELS

To confirm how the constructed actuator models in the
previous section show the characteristics of the actual McK-
ibben pneumatic actuator, model validation experiments were
carried out with real McKibben pneumatic actuators. The
experimental setup is shown in Fig. 3 and 4.

Fig. 5(a) and 5(b) show the relation between the actuator
shrinkage and the air pressure under constant loads. In
this figure, the calculation result only with the air pressure
(model 1, Eq. (7)), the calculation result with the air pressure
and elasticity (model 2, Eq. (13)) and the experimental data
are shown. The parameters of the actuator used for the
calculation are shown in Table I.

From Fig. 5(a) and 5(b), it is difficult to say that model 1,
which considered only the air pressure of the actuator, shows
a similar property to the experimental data. On the other
hand, model 2, in which not only the air pressure but also
elasticity were considered, shows very similar characteristics
to the real McKibben pneumatic actuator. Thus, it can be said
that model 2 (Eq. (13)) is able to express the property of the
McKibben pneumatic actuator relatively well even though
the model is not so complicated.

However, the actuator models (both model 1 & model 2)
did not draw a hysteresis loop although a hysteresis loop was
shown in the experimental result according to the difference
between the pressurizing process and the decompressing
process. This is because they did not consider the difference
between the pressurizing and the decompressing process
in their models. The hysteresis loop can be expressed by
adding the frictional element to the actuator model, which
depends on the friction between the fibers and the actuator
surroundings. With such a model, we will be able to derive
a more precise actuator model. However, such a model will
be more complicated and then it will be quite difficult to
analyze the robot’s motions as applied to the McKibben

Fig. 3. Experimental setup

To Air Pressure Regulator

Load Cell McKibben Actuator Encoder
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Fig. 4. Experimental setup compo-
nents
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Fig. 5. Relation between contraction and pressure
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Fig. 6. Model of the knee pneumatic actuator group

pneumatic actuators. Therefore, we assume that model (13),
which considered the elastomeric force of rubber and the
air pressure can show a static characteristic of the actuator
sufficiency and we adopt the model in the following section.

V. TWO DIMENSIONAL MODEL OF ROBOT LEG

In this section, the robot model in which the McKibben
pneumatic actuator is applied is derived. Using the robot
model and the McKibben pneumatic actuator model (13),
we analyze the stability of the motions in the next section.
To clarify the mechanical characteristics of the McKibben
pneumatic actuator, it is necessary to choose an adequately
simple and easily comprehensible model. Thus, we adopt
a two dimensional model of the leg robot that contains a
minimum element (See Fig. 6). This model is the same as
the one used in the research that considers the mechanical
characteristics of an actual muscle-skeletal system to mus-
cular stability [13][14]. In this model, an antagonistic pair
of McKibben pneumatic actuators is arranged around the
knee. Bending and stretching movement in a perpendicular
direction can be achieved by bending the knee. Each symbol
and link length in the figure is shown in the appendix.

To simplify the following discussion, the motion of the
representative mass of the leg and hip (m in Fig. 6) is
assumed to be constrained in a vertical one-dimensional
movement, that is the hip does not move horizontally.

The geometric transformation between the ground reaction
force F and the actuator forces fme and fm f for vertical

movements can be described as:

F(X ,P′
e,P

′
f ) = Ge(X) fme(Le,P′

e)−G f (X) fm f (L f ,P′
f ). (14)

The geometric functions Ge(X) and G f (X) in Eq. (14) can
be derived from the equilibration of the moment of the robot
as:

Ge(X) = r sinα
LoLu sinβ X , (15)

G f (X) = L5L6
LoLulm f

X . (16)

The dynamical equation of the system can be described
as: (

Ẋ
V̇

)
=

(
V

(1/m)F(X ,P′
e,P

′
f )−g

)
. (17)

where V is vertical velocity of the hip, Le, P′
e are length and

pressure of actuator that virtually act as extensor muscle,
L f , P′

f are length and pressure of the actuator that virtually
acts as flexor muscle and g is the gravitational acceleration.

VI. STABILITY ANALYSIS

A. Stability criteria

In this section, the stability for the constant posture of
the robot is analyzed. That is, it is analyzed as to whether
the robot can return to its former posture after a small
disturbance.

Linearizing the system of Eq. (17), the following system
can be derived:

1
dt

(
X
V

)
=

(
0 1
a2 a1

)(
X
V

)
. (18)

where

a2 =
1
m

∂
∂X

(
Ge(X) fme(Le,P′

e)−G f (X) fm f (L f ,P′
f )

)
,

a1 =
1
m

∂
∂V

(
Ge(X) fme(Le,P′

e)−G f (X) fm f (L f ,P′
f )

)
.

By using the Jacobian of Eq. (18), the conditions of local
stability can be derived based on the well-known Routh-
Hurwiz criterion. Such a stability criterion can be derived
as follows:

a1 < 0, (19)
a2 < 0. (20)

With these conditions (19), (20), the local stability analysis
of the system can be achieved.

B. Stability of robot leg posture

In this section, we investigate whether the robot with the
constructed actuator (13) can satisfy the condition given by
Eq. (19) and (20).

First, we investigate the second condition of stability (20).
The differentiation F with X is very difficult. Thus, by using
the following geometrical relationship, X , Le and L f were
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translated to the functions as α . With the translated functions,
Eq. (20) can be rewritten as:

1
m

∂
∂X

(
Ge(X) fme(Le,P′

e)−G f (X) fm f (L f ,P′
f )

)
< 0

⇐⇒ ∂α
∂X

∂
∂α

(
Ge(α) fme(α,P′

e)−G f (α) fm f (α,P′
f )

)
< 0.

(21)

X is a monotone increasing for the range of α . Then, the
inequality:

h(α,P′
e,P

′
f ) < 0 (22)

becomes the necessary and sufficient condition for Eq. (20)
where:

h(α,P′
e,P

′
f ) =

∂
∂α

(
Ge(α) fme(α ,P′

e)−G f (α) fm f (α,P′
f )

)
=

∂Ge(α)
∂α

fme(α,P′
e)+Ge(α)

(
−P′

e
∂

∂α
dVb

dLe
+Vr

∂
∂α

dW
dLe

)
−

(
∂G f (α)

∂α
fm f (α,P′

f )+G f (α)
(
−P′

f
∂

∂α
dVb

dL f
+Vr

∂
∂α

dW
dL f

))
.

(23)

Then, the set which satisfies h(α,P′
e,P

′
f ) = 0 can be calcu-

lated and h(α,P′
e,P

′
f ) is monotonically decreased along the

α axis. The result was shown in Fig. 7. The area above the
surface h(α,P′

e,P
′
f ) = 0 is satisfied by h(α ,P′

e,P
′
f ) < 0. In the

same Figure, the set which satisfies V = 0, that is, the set
of an equilibrium point of the system (18) is also shown.
In the range of 0 < α < π/2, the plane of h(α,P′

e,P
′
f ) = 0

was obtained only one set1. From this result, it can be said
that the set of equilibrium point at the upper region of
plane h(α ,P′

e,P
′
f ) = 0 satisfies the condition (22). On the

other hand, equilibrium points at the lower region of plane
h(α,P′

e,P
′
f ) = 0 do not satisfy the condition (22). However,

in such a situation, the knee joint angle α becomes small.
This means that the knee is greatly bent. Though an animal’s
muscle is capable of such extension, the McKibben actuator
is not. Thus, this posture, in which the knee is greatly bent
and the extensor is greatly extended, can not be achieved.
Therefore, equilibrium points at the lower region of plane
h(α,P′

e,P
′
f ) = 0 can not be realized because of the limited

range of knee motion. From these facts, it can be said that
the stability condition (20) can be satisfied for the actuator
model (13).

In order to satisfy Eq. (22), the sum of the second and
third expression in Eq. (23) should be negative. The value for
terms in expression (23) can be calculated and the important
terms in the result are Eq. (24) and (25). Due to Eq. (24) and
(25), the sum of the second and third term becomes negative.

−P′
e

∂
∂α

dVb

dLe
< 0, Vr

∂
∂α

dW
dLe

< 0, (24)

−P′
f

∂
∂α

dVb

dL f
> 0, Vr

∂
∂α

dW
dL f

> 0. (25)

1For 0 < α < π/2, two planes ware obtained. But one of these plane is
physically impossible because of the range of knee motion.

TABLE II
THE PROPERTIES OF THE MODEL OF KNEE

Properties Values Unit

m 10 kg
L1 0.55 m
L2 0.08 m
L5 0.21 m
L6 0.05 m
Lo 0.44 m
Lu 0.43 m
Lec 0.52 m
L f c 0.05 m
r 0.059 m

P'f  [bar] 

P'e [bar]

α[rad]

h(α,P'e,P'f )=0 

V=0

Fig. 7. The plane of h(α,P′
e,P

′
f ) = 0 and V = 0

These facts are due to the properties of elastic and pneu-
matic materials. Therefore, it can be determined that these
properties have an overall positive effect on stability. Indeed,
by ignoring other factors in the static model of the actuator,
Eq. (24) and (25) may be not satisfied. However, from the
static experiments, it is known that the dominant forces in
the actuator come from the elastic and the pressure elements,
so this approximation seems to be reasonable. This is an
intuitive result when taking into consideration the natural
characteristics of springs and pneumatic cylinders. However,
the stability is also greatly influenced by the choice of robot
model. On the other hand, Eq. (19) can be written as:

1
m

∂
∂V

(
Ge(X) fme(Le,P′

e)−G f (X) fm f (L f ,P′
f )

)
< 0. (26)

The actuator model (13), which is derived in the previous
section, does not include the velocity-tension dependency
and depends only on the actuator length and inner pressure.
Therefore, the differentiation F with V becomes 0 and it
cannot be said that the condition (19) is satisfied. However,
in experimental results for McKibben pneumatic actuators
in previous research[11], the velocity-tension relationship of
the McKibben pneumatic actuator monotonically decreased
although its gradient is quite small. This result indicates
that the condition (19) may be satisfied by the properties
not included in the derived model (13). Indeed, results
from the experiment shown in Fig. 5(a) and 5(b) indicate
a hysteresis loop. If it has a hysteresis loop, there must also
be a dissipation term such as viscous dampening or friction.
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Therefore, the differentiation F with V becomes negative
and it can be qualitatively said that the condition (19) will
be satisfied. In order to quantify this, the velocity-tension
relationship needs to be investigated as future work.

VII. CONCLUSION

In this paper, a model of a McKibben pneumatic actuator,
in which the air pressure and the elasticity of the actuator
were taken into account was first derived. It was then
compared with the experimental data, and confirmed to be
sufficiently accurate. Thus, the air pressure and the elasticity
are dominant in actuator’s static characeristics. Next, the
stability of motions for a simple knee bending robot driven
by the McKibben pneumatic actuator was analyzed. As a
result, it was shown that the motion generated by the derived
model, in which both the air pressure and the elasticity were
considered, could satisfy the conditions of the length-tension
relationship.

However, the stability condition concerning the velocity
was not satisfied because the velocity-tension relationship of
the actuator was not included in the derived actuator model.
As mentioned, it seems that there is a relationship between
the tension in the McKibben pneumatic actuator, viscous
forces, and contractile velocity. Therefore, it is necessary to
construct an extended actuator model in which the velocity
dependence characteristics are included.

Additionally, the dynamics of the actuator air was not
considered as we approximated P′ to be constant, and actua-
tion to be instantaneous. In reality, the McKibben actuator’s
internal air pressure varies and there is a time delay when the
robot is operated. Therefore, it is also necessary to discuss
the impact these things could have on the model.
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APPENDIX

A. List of Symbols

Lo: Length from knee to waist
Lu: Lower link length
L1: Length the link to the outside actuator installation
positions from the knee
L2: Length the link to the outside actuator installation
positions from the knee
L3: Length the link from the outside actuator installa-
tion position to the waist
L4: Length the link from the outside actuator installa-
tion position to the ankle
L5: Length the link from the inside actuator installation
position to the knee
L6: Length the link from the inside actuator installation
position to the knee
lMo: Outside actuator length from thigh to kneecap
lMu: Outside actuator length from leg to kneecap
lM f : Inside actuator length
r: Length of link from knee to kneecaps
α: Turning angle of kneecap
β : Turning angle of knee
m: Body mass
X : Vertical displacement of the location of the waist
fme: Extensor(outside) actuator tension
fm f : Flexor(inside) actuator tension
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